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Abstract: The accurate prediction of noise levels at outdoor locations requires detailed data of
the noise sources and terrain parameters and an efficient model for prediction. However, the
possibility of predicting noise with reasonable accuracy using less input data is a challenge and
needs to be studied scientifically. The qualities of the noise data, terrain parameters, and prediction
model can impact the accuracy of the prediction significantly. This study primarily focuses on
the dependency of noise data for efficient noise prediction and mapping. This research article
proposes a detailed methodology to predict and map the noise and exposure levels in Ratapur, Uttar
Pradesh, India, with various granularities of noise data inputs. The noise levels were measured at
various places and at different times of the day at 10 min intervals. Different data input proportions
and qualities were used for noise prediction, namely, (1) a large data-based method, (2) a small
data-based method, (3) a source point average data-based method, (4) a Google navigation data-
based method, and (5) accurate modelling using an ANN-based method, integrating accurate noise
data with a sophisticated modelling algorithm for noise prediction. The analysis of the variation
between the predicted and measured noise levels was conducted for all five of the methods using
the ANOVA technique. Various methods based on less noise data methods predicted the noise
levels with accuracies within the ±4–10 dB(A) range, while the ANN-based technique predicted
it with an accuracy of ±0.5–2.5 dB(A). Interestingly, the estimation of the noise exposure levels
(>85 dB(A)) and the identification of hazard zones around the studied road intersection could also
be performed efficiently even when using the data-deficient models. This paper also showcased the
possibility of predicting an accurate 3D map for an area by extracting vehicles and terrain features
from satellite images without any direct recording of noise data. This paper thus demonstrated
approaches to reduce the noise data dependency for noise prediction and mapping and to enable
accurate noise-hazard zonation mapping.

Keywords: noise prediction; noise mapping; total station; GPS; GIS; Google Navigation

1. Introduction

Noise is a general problem that has serious health implications associated with it [1].
The rapid growth in the amount of vehicular traffic combined with increased vehicular
speeds has resulted in increased noise pollution in cities [2–8]. Road traffic noise levels
above 65 dB(A) disturb nearly 50 million people in the European Union [9,10]. Noise travels
through deflection, diffraction, and reflection. Noise values reaching a receiver’s position
decrease significantly as the distance increases. Sound has three fundamental physical
indices: (1) sound pressure: a sound wave’s steady shift in static pressure; (2) sound power:
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the pace of transferring acoustic energy from a vibrating source to a medium; (3) sound
intensity: the average rate of sound energy transmission perpendicular to a given direction.
The decibel (dB), which is one-tenth of a bel (B), is the first and most widely used scientific
index for measuring sound. A decibel (dB) is a logarithmic measure used to express how
loud something is concerning a reference level. Because humans interpret exponential
magnitude increases linearly, doubling the sound intensity causes the perceived intensity
to increase by approximately the same amount. As a result, decibels (dB) are useful for
measuring sound levels. Because of their logarithmic structure, they can represent very
large or very small ratios of sound pressure (or intensity or power) by an amount that
humans can perceive [11].

Noise pollution is a critical concern for human habitation today, and its health impacts
have drawn the attention of many urban planners. Noise exposure has been associated
with a variety of auditory and non-auditory health impacts, such as cardiovascular illness,
annoyance, sleep disturbance, and impaired cognitive function in children [12–16].

Noise propagation modeling can predict noise levels at different locations. Noise
predictions need noise data, terrain data, and a noise prediction model. Noise data collected
through noise sampling can be carried out at different time intervals for a long duration
and short duration. Similarly, noise data can also be collected over many sampling points
or by using a limited number of sampling points located close to important noise sources.
There are research studies where the impacts of variations in noise monitoring durations
for noise modeling were studied. M.S. Alam et al., 2021 [17] conducted a study to evaluate
the spatial variation in the average noise level, Lden (Lequivalent day–evening–night level),
in Dublin City and to look into the effects of the temporal aspect of the data on the noise
predictions. In this study, the Lden was considered as the predominant ambient noise level
at the location of monitoring. The Lden was typically utilized as a measure of the ambient
noise level or as an indicator for the overall level of annoyance in the area. The Lden was
estimated over a year. Ldens have also been determined on an hourly, daily, and monthly
basis to model temporal fluctuations in predictions. In the above study, the authors created
several land use regression (LUR) noise prediction models [18] using hourly, daily, and
monthly time frames of noise prediction. To determine the best working model, the models
were created in a series, using the lowest to the highest resolutions of noise data.

In this research, the authors also used an artificial intelligence (AI)-based artificial
neural network (ANN) method to accurately predict the noise value for the entire study
area using the source noise dB value, terrain information, and environmental data as the
input variables [19].

R. Anthony Alani et al., 2020 [20] studied the spatial variation in noise levels within a
portion of the Festac residential area in Lagos. The information used in their study was
gathered through a field investigation. Data on the noise level measurements were collected
over three weeks at six stations (S1 to S6) using a digital sound pressure level meter. The
location was chosen based on various criteria like the proximity to the roadside, land use,
and population density. The data collection was conducted at three different times, from
7:00 to 8:30 in the morning, from 12:00 to 2:00 in the afternoon, and from 7:00 to 8:30 in
the evening, respectively, for 10 min in each sample [21–23]. A questionnaire-based study
was conducted at the six locations with over two-hundred responders. These questions
were similar to those found in the works of Okokon et al., 2018 [24], Paiva et al., 2019 [25],
and WHO 2018. Analysis of variance (ANOVA) statistics and the Kriging geostatistical
interpolation method were used to analyze the measured noise levels. According to the
findings, the noise levels ranged from 53.50 to 81.6 dB(A) in the morning, from 55.00 to
94.00 dB(A) in the evening, and from 55.30 to 92.00 dB(A) in the afternoon. Results showed
that the authors did not select the stations in the correct strategic form to maintain the
proper distance between each station to obtain the best noise prediction value rather than a
random selection which affected the accuracy of noise prediction and is observed in the
noise map. The area away from the noise source had a similar value to the area of the noise
source [26–28]. When predicting traffic noise with a limited number of station points, it is
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critical to choose the station points strategically for the best noise prediction. This study
failed to predict the best noise value using a limited number of station points, so the current
authors obtained evidence that the selection of station points is important for the best noise
prediction using a limited number of station points [29,30].

Based on this literature review, the authors found that there are less attempts at noise
prediction using noise data variation. The variation in noise levels are related with the
factors of (i) time, (ii) location, and (iii) types of noise sources. The prediction of noise levels
needs consideration of the above variables. Understanding the above factors, the authors
have determined the following objectives for the research.

Objectives of the Research

Noise mapping, which involves using variable noise inputs, necessitates selecting
a site characterized by varying traffic flow and obstructions that affect noise levels. The
researchers chose a site located around the Raebareli City Intersection in India, a significant
traffic hub.

The study required the development of a methodology for collecting noise and terrain
data, as well as the adoption of a prediction model for estimating noise levels. Various
methods were employed to derive noise data with different levels of granularity. These
noise data, varying in density and quality, were then integrated with terrain data from the
Raebareli intersection for prediction using a standard prediction model.

The approach had to be adapted to enable predictions and facilitate result comparisons.
In summary, the study aimed to predict noise levels conveniently using computational
methods and Geographic Information Systems (GIS). By reducing the quantity of noise
data used in the modeling, the researchers aimed to assess the effectiveness of prediction
and noise mapping. The study primarily focused on the following aspects:

(a) Determining the noise prediction value using large data sets.
(b) Determining the noise prediction value with a small number of data points and

comparing the results to those from many data points to determine the deviation.
(c) Determining the noise prediction value using the same source point average value

and comparing the results with many noise prediction methods to find the deviation.
(d) Determining the noise prediction value using Google Navigation data methods and

comparing the results with large data noise prediction methods to find the deviation.
(e) Determining the accurate noise prediction value using the ANN (artificial neural

network) method and comparing the results with all other methods to find the
deviation. ANN results are also compared to the observed value to check the
accuracy of the method.

(f) Determining the noise prediction value using an automated method based on the
machine learning approach and freely available Google data.

(g) Determining the noise exposure value for the study area for a 12-h exposure to noise
for the people living in this vicinity.

2. Materials and Methods
2.1. Study Area

The study area covers an area of 301 m in length and 179 m in width, situated within
the Rae Bareli district of Uttar Pradesh. It is located at a central geographical position
with a latitude of 26.2427◦ N and a longitude of 81.2429◦ E (see Figure 1). This area
is significant because it is where the Lucknow–Allahabad highway intersects with the
Jagdishpur–Raebareli city road, making it a high-traffic zone accommodating various types
of vehicles.

Furthermore, the region encompasses Ratapur Market, which is a diverse linear
urban settlement featuring market areas, residential zones, educational institutions such as
schools and colleges, as well as healthcare facilities like hospitals. The area is also home to
a substantial number of roadside shops and huts. The selection of this site for the study
was motivated by the need to investigate the impact of traffic noise on the local residents.
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2.2. Data Collection and Processing
2.2.1. High-Grade Sound Pressure Level Meter

Acoustic measurements involved the quantitative measurements of sound pressure
levels at important locations. The authors used the CESVA SC-310, a Class 1 Sound
Pressure level meter, for their study. The equipment was set to record sound levels,
frequencies, etc., at specific times. Before collecting the data, the authors calibrated
the sound pressure level meter to ensure accurate measurement of sound levels with
frequencies. The instrument was placed at strategic locations (close to noise sources and
to noise receiving locations), fixed at a height of 1.5 m and 1.5 m away from the road
edge. The authors ensured that the microphones were directed towards the source points.
Data were collected at various locations throughout the study intervals in weeks, from
Monday to Saturday for a duration of 10 min SPL noise values. The noise data were
collected at three different time intervals: morning (9:00 to 11:00 a.m.), afternoon (1:00
to 3:00 p.m.), and evening (4:00 to 6:00 p.m.) for different average grades of noise levels
(low-moderate-high) Table A1 in Appendix A. The detailed data schedule is available in
Table A2 in Appendix A. Generally, the data were collected within a temperature range of
38◦ to 40◦ Celsius and a wind speed of 9 KPH. However, the above atmospheric conditions
did not impact significantly on noise level computation.

2.2.2. Total Station and GPS

The total station was used for collecting ground coordinates of selected locations in
the local coordinate system, and it was fixed with a tripod at 1.5 m from the source and at
a height of 1.5 m. Trimble Juno handheld GPS (Global Positioning System) was used for
collecting coordinates in the Global coordinate system. Total Station and GPS were used to
determine the geographic locations of noise source points (road points) and away points
(noise receiving points). The location information was used for generating a noise map as
well as testing the noise prediction.

2.2.3. Mapping Software

The authors employed GIS simulation software to predict sound pressure levels in
their study. They utilized their knowledge of sound propagation modeling, referring to
ISO 9613-2 for all their predictions. The authors used their in-house sound propagation
simulation models to predict noise levels at different levels of granularity in the data. The
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in-house noise model, based on MATLAB, was extensively tested by the authors in various
other studies conducted at IIT Kanpur and RGIPT Jais. The model incorporates various
attenuation models from ISO 9613-2. The hardware and software used are summarized in
Table 1.

Table 1. Detailed description of the hardware and software used for data collection, prediction
(modeling), and mapping.

Name of Instruments and
Software Model/Version Purpose

High-grade sound pressure
level meter CESVA SC-310 Measuring and capturing

noise data

Total station and GPS Trimble M3 and Trimble Juno Collection of coordinates for
the selected location

Mapping software ArcGIS 10.2 and Simulation
Model Mapping and prediction

MATLAB—MathWorks 2009–2022 Modeling and prediction

MATLAB’s neural network tool—the “ANN tool”—and others were also used for
accurate training of the model and prediction of noise levels [29].

For the automated noise dB value calculation based on traffic load, a machine learning
approach was used, developed in MATLAB.

3. Methodology

It was planned to collect the noise data from Raebareli road intersections medium,
low, and high traffic volumes in three separate time slots: 9 to 11 a.m., 1 to 3 p.m., and 4
to 6 p.m., over the course of multiple days spanning a month. Noise measurements were
taken both near the road and at more distant points (referred to as noise receiving points).
Some of the distant points were later used to test the accuracy of the predictions.

Ground data for roads, houses, and trees were obtained from Google Earth images
to create a GIS (Geographical Information System) map of the Raebareli intersection.
The authors employed their in-house sound propagation simulation models to predict
noise levels at various levels of data granularity, drawing from their knowledge of sound
propagation modeling as detailed in ISO 9613-2.

The in-house noise model, based on MATLAB, underwent extensive testing in various
studies conducted by the authors at IIT Kanpur and RGIPT Jais. The model incorporates
various attenuation models, such as those for distance, ground, atmosphere, barriers, and
reflectors. The predicted results were visualized in a GIS environment to generate noise
maps, with data of different granularities integrated into the models to improve accuracy.

In addition to simulation-based methods, the authors also employed ANN (artificial
neural network) methods to predict noise values using the same dataset. A machine
learning method was also used to automatically calculate noise dB values from Google
image data for noise prediction.

Noise exposure measurements were conducted using a high-grade sound pressure
level meter in SPL mode, measuring equivalent continuous sound pressure levels in A-
weighted decibels on a logarithmic scale (Leq dB(A)). Before taking measurements, the
internal sound level was calibrated to adjust the device. Data were collected along the road
corridor, at intersections, in market areas, and at distant locations. LA (A-weighted sound
pressure level) measurements were taken at 10-min intervals for each sample location
during morning (9:00 to 11:00 a.m.), afternoon (1:00 to 3:00 p.m.), and evening (4:00 to
6:00 p.m.) sessions.

The research included predictions of noise pollution levels in over 60 different
locations within Ratapur Raebareli. A-weighted equivalent sound pressure level Leq
(dB(A)) and noise exposure levels were calculated based on these predictions. Five
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different methods, each accounting for data variation, were applied in this research, as
illustrated in Figure 2.
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source point average value-based method, Google navigation data-based method, and accurate
modeling-based method for noise prediction and mapping. LDBM—large data-based noise predic-
tion method; SDBM—small data- based noise prediction method; SPANV—source point average
(same source noise dB value)-based method noise prediction; GNBM—Google Navigation data
method for noise prediction; ANN-BNM—accurate modelling for ANN-based prediction with fine
data; TD—terrain data; NP—noise prediction; BH—building height; MNL—mapping noise level;
SD—small data; LD—large data; AP—attenuation parameters; GD—Google data (Google Navigation
data); SNV—single noise value (average value).

3.1. Large Data-Based Noise Prediction Method (LDBM)

• In this study, a noise map was developed using GIS for selected noisy areas around
Ratapur Chauraha in Raebareli. Noise data were collected from 60 points, consisting
of 40 points along roads and 20 points away from roads, considered as a large dataset
(LD). Predictions were also made for three different time intervals based on traffic
load: high, medium, and low traffic load [31]. Researchers deemed these data points
sufficient for reasonably accurate predictions. Equivalent noise levels were determined
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for each point and integrated spatially in GIS using IDW interpolation to determine
noise levels at various locations. All the data were collected over a period of 6 months,
and noise levels were monitored daily in a cyclic manner from Monday to Saturday.
Each day, data were collected at 10 different points, varying in traffic loads. Locations
were marked with a permanent marker to ensure accurate identification and data
collection of noise levels.

• A total of 40 data points were within the road corridor 1.5 m away from the noise
source point on the road.

• Out of 40 points, 25 points were taken at Lucknow–Allahabad highway and 15 points
were taken as Ratapur–Raebareli city road.

• All points were at equal distance maintaining a gap of 12 m from each other.
• The total road length for the Lucknow–Allahabad highway was 301 m whereas at

Ratapur–Raebareli city road, it was 179 m.
• Noise data were collected at three different levels: high traffic and noise levels (H),

moderate traffic and noise levels (M), and low traffic and noise levels (L).

3.2. Small Data-Based Noise Prediction Method (SDBM)

• In this method, the number of noise monitoring points was reduced from 60 locations
to 30 locations, considered as small data (SD). The methodology was implemented
to evenly distribute data points around Ratapur Chauraha in Raebareli City. The
reduced noise data points were input into GIS to generate an equivalent noise level
map using interpolation. The study aimed to demonstrate the impact of using a
smaller dataset for noise prediction (NP) compared to a larger dataset employed in
another scheme for the same region. Maintaining uniform spacing between data points
is a time-consuming task, involving extensive physical and mental calculations [32].
Predictions were also made for three different time intervals at each location, followed
by GIS-based mapping. The authors utilized the GIS model IDW (inverse distance
weighting) interpolation to predict noise values and create noise level maps (MNL).
Out of 30 points, 20 points were taken as road points (noise source points) while 10
points were away points (noise receiving points).

• Out of these 20 points, 12 points were taken at Allahabad–Lucknow highway and 8
points were taken at Ratapur city road.

• All points were at an equal distance of 24 m from each other.
• The same method is also applied as a large data prediction method for data collection.

3.3. Source Point Averaging (Using One Source Noise Level Data) Based Method of Noise
Prediction (SPANV)

In this method, noise mapping relies on averaging noise values from source points,
where all data points along the road contribute to a single dB(A) value. To predict noise
levels in Raebareli, a total of 20 locations along the road were strategically selected as data
source points, while 3 locations were designated as points away from the road. The noise
dB value average method was applied to all 20 source points. This technique estimates the
noise dB value for the entire study area based on a single, uniform noise value. While this
method simplifies the task, precision remains a concern because a single strategic source
point value is used to predict noise dB values for the entire area, even though conditions at
each location may change over time. These values were then distributed across the entire
road corridor at three different time intervals with varying traffic loads: high, medium,
and low noise values (H, M, and L) were determined based on the strategically selected 20
road source points and 3 away points, which contributed background noise values for GIS
noise mapping.

• All points were distributed at equal distances of 24-m spatial intervals.
• A total of 12 points were taken on Lucknow–Allahabad Highway and 8 points were

taken at Raebareli city road.
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3.4. Google Navigation Data Method for Noise Prediction (GNBM)

Noise data for 20 points along the road corridor were indirectly obtained using Google
Navigation-based traffic congestion color codes. This method proved cost-effective, as
it eliminated the need for expensive sound pressure level meters for noise monitoring.
The data can be easily predicted using pre-existing information that can be calibrated for
noise mapping. This technique is valuable for predicting noise dB values in specific areas,
especially for individuals who may not be experts in this field but have an interest in
understanding the predicted noise levels near their homes or localities. It contributes to
improving public perception and supports government efforts to reduce noise pollution.

The color code in Google Navigation is directly related to traffic congestion and noise
dB values. For high, medium, and low traffic noise conditions, Google Navigation data
represent noise dB values through colors, such as red, orange, green, or blue, as shown in
Table 2. The Google color code in Figure 3 was calibrated to correspond to noise dB levels
using accurately monitored noise data collected over a month at ten different locations
along the road, using a sound pressure level meter. This calibrated navigation color code is
applicable across India.
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Table 2. Noise levels were calibrated using a sound pressure level meter for H, M, and L traffic
congestions, which were determined using Google Road traffic navigation color codes.

Color Range Value
dB(A)

Average
(Medium Traffic

Load dB(A))

High Traffic
Load (+7),

dB(A)

Low Traffic
Load (−7),

dB(A)

Red 96–110 103 110 96

Orange 81–95 88 95 81

Green/Blue 65–79 72 79 65

• Google Navigation color codes provide different dB values for noise based on the
calibrated value in Table 2. For red, it gives 96–110 dB, orange, 81–95 dB, and green or
blue, 65–79 dB, at the summation of different time intervals with a varying range of
7 dB from its average value. For the traffic noise prediction of the entire study area,
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the authors considered a low range of dB for (1–3 p.m.) where traffic load is minimal,
an average dB value for medium traffic load (9–11 a.m.), and a high dB value for
maximum traffic load (4–6 p.m.).

• Out of 23 points, 20 points were road or source points, and 3 points were away, or
noise receiver points (background noise) used for GIS mapping.

3.5. Accurate Modelling for ANN-Based Prediction with Fine Data (ANN-BNM)

A natural-inspired, intelligent paradigm based on human brain cells is known as an
ANN (artificial neural network). It is made up of numerous nodes, which are information
processing units. Layers are created by combining connecting nodes, and layers are
then combined to create neural networks. Neuron units are also known as neural nodes.
Weights were assigned to each neuron connection and are tweaked during training to
provide an approximation function that minimizes error for classification or estimation
tasks. Input, hidden, and output layers make up the multilayer structure that characterizes
an ANN [19,25]. However, the number of hidden layers may change depending on how
complicated the data training set is. The input layer receives the field data first and then
sends the unprocessed information to hidden levels for processing. The output layer is
where the results that emerged from the hidden layers’ processing are compared to the
precise target values.

Accurate noise prediction used a variety of terrain and noise parameters to precisely
predict noise levels, considering the impacts of building, building heights (BH), objects,
trees, and ground at various distances from the road and away (receiving) points referred
to as terrain data (TD). Over 60 points of noise data were monitored and integrated along
with terrain parameters (5) to determine noise levels for all the receiving points using an
artificial neural network (ANN)-based technique [33]. Terrain points’ locations, their noise
levels, types of ground, elevation of buildings, dimensions of buildings, and obstructions
were fed as input to train the ANN model considering the attenuation parameters (AP).
Essentially, the impacts of every noise point on every noise receiving point were determined
in Figure 4.
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The ANN-based noise prediction model was built over three layers. The hidden
layer was associated with 20 neurons. TRAINLM was used as a training function whereas
LEARNGDM was used as an adaptation learning function [19]. The training information
and training parameters for the training network are shown in Figure 4.

3.6. Automated Noise dB Calculation Method for Noise Prediction

The proposed methodology for automated noise dB calculation works in several
stages, primarily avoiding the direct use of noise data. These stages are data acquisition,
segmentation, classification, characterization, clustering, and noise mapping, extraction
of terrain features from the geospatial raster data and further processing for noise
prediction modelling application. The flow diagram for the proposed methodology is
shown in Figure 5. The method does not need to directly record the noise data; however,
it used the calibrated scale to predict the noise levels for different vehicles present on the
road at a time.
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The actual images used for automated noise prediction were collected from Google
Earth and consisted of road intersections and areas. The collected image was first subjected
to semantic segmentation to classify different vehicles with ranges of dB values, and then a
noise map was created using the algorithm described in this paper. High-definition data
were collected from Google Earth in the form of Google Raster images of three major cities
in Uttar Pradesh. These images contained information on buildings, vehicles, roads, water,
vegetation, and other features. The dataset consisted of 1000 images, each with a resolution
of 4800 × 2751 pixels. The results obtained using this dataset were cross-validated by using
2/3 of the images for training and 1/3 for testing.

Firstly, the collected image was given as input, semantic segmentation was performed
(which classified different vehicles with ranges of dB values), and lastly, a noise map was
created from the algorithm determined in this paper [32,34]. The segmentation process in
automated noise prediction is semantic segmentation which accordingly provides feature
extraction in three different categories. Semantic segmentation is used for different types of
vehicle extraction. These vehicles are categorized into three categories small (bike), medium
(car), and large (truck, bus).
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The classification task is applied by the logistic regression layer of the traditional
U-Net model using the regression-based Softmax function, and its loss function is a
probabilistic model considering all available data. The feature space data were normal-
ized, and the classification results are displayed as probabilities in Equation (1). It is
described as follows: Imagine that the sample data come in N different categories. The
final convolution layer’s output is Y = (y1, y2 . . . , y N)T and the output after Softmax
calculation is S = (s1, s2, . . . , s N)T where

Sj =
exp(yj)

∑N
j=1 exp(yj)

(1)

Compared to Softmax, SVM performs better. The fundamental concept behind an
SVM is the addition of a kernel function that transforms features that are linearly in-
distinguishable into high-dimensional feature spaces, making the feature data linearly
distinguishable.

The image was classified using a convolutional neural network (CNN). The author
will take into account a pre-trained CNN on ImageNet and polish the dataset of vehicle
image from Google Maps [35,36].

The clustering of images was completed based on the length and width of the cluster
to identify the number of vehicles. The standard length and width of the vehicles were
provided for Indian roads.

3.7. Noise Exposure Mapping

The efficacy of five noise prediction methods was compared and tested to estimate
noise exposure and identify noise hazard zones. Noise exposure refers to the amount of
noise a person experiences throughout the day. Permanent physical damage occurs only
when individuals are exposed to high levels of noise for extended periods [37,38]. There is
existing literature that provides methods for computing noise exposure levels [26]. This is
particularly relevant for roadside shopkeepers or people residing in temporary roadside
huts. The noise levels at the shopkeepers’ locations were calculated near the road corridor
over a 12-h period. Noise exposure was calculated using Equation (2) [38]:

Lex,8 = 10 log10

([
∑n

I=1
(
ti × 100.1SPLi

)
]

8

)
(2)

where

Lex,8—is the equivalent sound exposure level in 8 h?
Σ—sum of the values in the enclosed expression for all noise incidents from i = 1 to i = n.
i—is a distance incident leading to noise level impacted worker/dweller.
ti —is the duration in hours of i.
SPLi—is the sound level of in dB.

The noise exposure level is calculated for people working and staying adjacent to the
roadside over 12 h following the relationship.

n = the total number of noise events for the people living in the area during the evaluation
period.

Different noise levels and their exposure levels for 12 h were computed and are
provided in Table 3 with hazard limits in Section 4.
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Table 3. The table shows Google Navigation-based noise data monitoring.

S.No. X Y High (4–6 p.m.) dB(A) Medium (9–11 a.m.)
dB(A)

Low (1–3 p.m.)
dB(A)

1 81.24109 26.24493 79 72 65
2 81.24133 26.24458 95 88 81
3 81.24182 26.24405 110 103 96
4 81.24188 26.24382 110 103 96
5 81.24156 26.2433 95 88 81
6 81.24148 26.24314 95 88 81
7 81.24135 26.24279 79 72 65
8 81.24116 26.24327 79 72 65
9 81.24102 26.24433 79 72 65

10 81.24139 26.24376 79 72 65
11 81.24127 26.24349 95 88 81
12 81.24212 26.24423 110 103 96
13 81.24115 26.24481 79 72 65
14 81.24192 26.24401 110 103 96
15 81.24172 26.24349 95 88 81
16 81.24137 26.2429 79 72 65
17 81.24194 26.24386 110 103 96
18 81.24156 26.24437 95 88 81
19 81.24118 26.2448 79 72 65
20 81.24163 26.24335 79 72 65
21 81.23991 26.24384 55 55 55
22 81.24055 26.24342 57 57 57
23 81.24038 26.24371 57 57 57

4. Results and Discussion
4.1. Large Data-Based Noise Prediction Method (LDBM)

A predicted map was prepared for three different time intervals, revealing variations
in noise levels. During the high traffic time period (4–6 p.m.), the predicted noise values
reached 105–110 dB(A). In the medium traffic period (9–11 a.m.), the values ranged from 92
to 95 dB(A), while during the low traffic period (1–2 p.m.), the values ranged from 83 to
85 dB(A). This result highlights the dynamic nature of noise levels throughout the day.

Leq (Lequivalent noise levels) for the entire day over the course of a month were de-
termined for these time intervals and presented as maps. The predicted average equivalent
noise levels fell within the range of 95–101 dB(A) (Figure 6a–c). To validate the predicted
noise values, measurements were taken using a sound pressure level meter at ten different
locations. The prediction did not account for the effects of buildings, walls, or other local
factors, leading to lower accuracy in those areas, while reasonably accurate results could be
obtained in open spaces.

4.2. Small Data-Based Noise Prediction Method (SDBM)

This method is useful and can avoid time-consuming data collection processes. Sur-
prisingly, the small data-based method predicted similar results to the large data-based
method, averaging out by a few dB(A) on average. This technique indicated predicting the
noise value for an area with fewer data (Figure 7a–c).

4.3. Source Point Averaging (Using One Noise Level for All Source Points)-Based Method Noise
Prediction (SPANV)

This technique predicted noise levels for three different time intervals, corresponding
to high, medium, and low traffic loads. It was evident that, like the prediction of large
and small noise data inputs, this technique also estimated noise levels, albeit with some
deviation from the actual values. The results indicated high noise levels ranging from
97 to 110 dB(A), medium noise levels ranging from 83 to 85 dB(A), and low noise levels
ranging from 72 to 73 dB(A) (see Figure 8a–c). To validate these results, comparisons were



Acoustics 2023, 5 1078

made with actual data-based predictions at ten validation points, revealing discrepancies
of ±5–6 dB(A) compared to others.

4.4. Google Navigation Data Based Prediction Method (GNBM)

Every color of Google Navigation data was assigned some dB(A) value as shown in
Table 1 after calibration with ground data. Values were assigned based on data validation
using a sound pressure level meter. The ranges for high (H) and low (L) traffic were
observed to vary within ±7 dB(A) from its average value, red corresponded to 103 dB(A),
orange corresponded to 88 dB(A), and green corresponded to 72 dB(A), respectively. The
authors collected noise data for a duration of 10 min, three times a day for six weeks (see
Table A2 in Appendix A). The three time periods were chosen in line with high, medium,
and low traffic mobility conditions. The measurements were taken from the edge of the
road at a distance of 1.5 m from the road center. The recorded noise levels at the road edge
were used to compute the likely noise levels at the noise source, i.e., road center. During
the time of high traffic conditions, the authors estimated it to be 103 dB(A) on an average.
This is generally the case with high traffic levels and associated honking conditions. The
recorded sound pressure levels for three traffic navigational conditions (as available in
three colors) for various locations of the study area are listed in Tables 2 and 3.

Acoustics 2023, 5 4 FOR PEER REVIEW  13 
 

 

15 81.24172 26.24349 95 88 81 
16 81.24137 26.2429 79 72 65 
17 81.24194 26.24386 110 103 96 
18 81.24156 26.24437 95 88 81 
19 81.24118 26.2448 79 72 65 
20 81.24163 26.24335 79 72 65 
21 81.23991 26.24384 55 55 55 
22 81.24055 26.24342 57 57 57 
23 81.24038 26.24371 57 57 57 

4. Results and Discussion 
4.1. Large Data-Based Noise Prediction Method (LDBM) 

 A predicted map was prepared for three different time intervals, revealing variations 
in noise levels. During the high traffic time period (4–6 p.m.), the predicted noise values 
reached 105–110 dB(A). In the medium traffic period (9–11 a.m.), the values ranged from 
92 to 95 dB(A), while during the low traffic period (1–2 p.m.), the values ranged from 83 
to 85 dB(A). This result highlights the dynamic nature of noise levels throughout the day. 

Leq (Lequivalent noise levels) for the entire day over the course of a month were 
determined for these time intervals and presented as maps. The predicted average equiv-
alent noise levels fell within the range of 95–101 dB(A) ( Figure 6a–c). To validate the pre-
dicted noise values, measurements were taken using a sound pressure level meter at ten 
different locations. The prediction did not account for the effects of buildings, walls, or 
other local factors, leading to lower accuracy in those areas, while reasonably accurate 
results could be obtained in open spaces. 

 
(a) 

Figure 6. Cont.



Acoustics 2023, 5 1079Acoustics 2023, 5 4 FOR PEER REVIEW  14 
 

 

 
(b) 

 
(c) 

Figure 6. Noise prediction at Ratapur using large data-based noise value-based equivalent noise 
data. (a) Predicted noise map at Ratapur. High dB(A) value (4–6 p.m.); (b) predicted noise map at 
Ratapur. Medium dB(A) value (9–11 a.m.); (c) predicted noise map at Ratapur. Low dB(A) value (1–3 
p.m.). 

4.2. Small Data-Based Noise Prediction Method (SDBM) 
This method is useful and can avoid time-consuming data collection processes. Sur-

prisingly, the small data-based method predicted similar results to the large data-based 

Figure 6. Noise prediction at Ratapur using large data-based noise value-based equivalent noise data.
(a) Predicted noise map at Ratapur. High dB(A) value (4–6 p.m.); (b) predicted noise map at Ratapur.
Medium dB(A) value (9–11 a.m.); (c) predicted noise map at Ratapur. Low dB(A) value (1–3 p.m.).



Acoustics 2023, 5 1080

Acoustics 2023, 5 4 FOR PEER REVIEW  15 
 

 

method, averaging out by a few dB(A) on average. This technique indicated predicting the 
noise value for an area with fewer data (Figure 7a–c). 

 
(a) 

 
(b) 

Figure 7. Cont.



Acoustics 2023, 5 1081Acoustics 2023, 5 4 FOR PEER REVIEW  16 
 

 

 
(c) 

Figure 7. Noise prediction at Ratapur using small data-based noise value-based equivalent noise 
data. (a) Predicted noise map at Ratapur. High dB(A) value (4–6 p.m.); (b) predicted noise map at 
Ratapur. Medium dB(A) value (9–11 a.m.); (c) predicted noise map at Ratapur. Low dB(A) value (1–
3 p.m.). The noise levels (in dB(A)) mapped for the locations A, B, C, D, E, F, G, and H are used later 
to compare the noise mapping accuracies for different granularities of noise data. 

4.3. Source Point Averaging (Using One Noise Level for All Source Points)-Based Method Noise 
Prediction (SPANV) 

 This technique predicted noise levels for three different time intervals, correspond-
ing to high, medium, and low traffic loads. It was evident that, like the prediction of large 
and small noise data inputs, this technique also estimated noise levels, albeit with some 
deviation from the actual values. The results indicated high noise levels ranging from 97 
to 110 dB(A), medium noise levels ranging from 83 to 85 dB(A), and low noise levels rang-
ing from 72 to 73 dB(A) (see Figure 8a–c). To validate these results, comparisons were 
made with actual data-based predictions at ten validation points, revealing discrepancies 
of ±5–6 dB(A) compared to others. 

Figure 7. Noise prediction at Ratapur using small data-based noise value-based equivalent noise
data. (a) Predicted noise map at Ratapur. High dB(A) value (4–6 p.m.); (b) predicted noise map at
Ratapur. Medium dB(A) value (9–11 a.m.); (c) predicted noise map at Ratapur. Low dB(A) value
(1–3 p.m.). The noise levels (in dB(A)) mapped for the locations A, B, C, D, E, F, G, and H are used
later to compare the noise mapping accuracies for different granularities of noise data.

These 20 road data points were used along with the 3 away data points to determine the
noise map using GIS, and IDW interpolation techniques in (Figure 9a–c). The results were
also validated and compared with other prediction techniques. Generally, the predictions
correlated well with other predictions. However, the results were found to deviate from
large noise data points-based prediction techniques by ±3–8 dB(A). So, these results
indicated the possibility of predicting noise levels without even collecting the ground noise
data with a precise and costly sound pressure level meter. Thus, it can be a very useful and
time and cost-saving technique.

4.5. Accurate ANN Modelling-Based Noise Prediction

The ANN-based accurate prediction model was established using 60 noise data
points and related terrain data points. The best validation performance for modeling
was established at the 35th epoch in Table 4. Model validation performance and gradient
Mu and validation checks are exhibited up to the 35th epoch. Neural network training
performance in Figure 10 and training regression results in Figure 11 indicate encouraging
model fit with training, validation, and test results all giving R2 = 1. The well-trained
model was then used to check the test points. The noise data observed separately over the
study site were compared with the ANN-based prediction. The ANN-based technique
was also compared with the other four techniques discussed in this paper. Understandably,
the ANN-based prediction technique was found to be far superior (predicting within
±0.5–2.5 dB(A)) than any other technique used in the study. However, the ANN-based
technique, although found to be very accurate, needed many data points, accurate noise
and a sophisticated model for the above prediction. The method was expensive in terms
of time, cost, and data dependency.
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4.6. Automated Noise dB(A) Calculation Method for Noise Prediction without the Recording of
Noise Levels of the Sources

In this method, noise dB(A) values are calculated based on the number of vehicles
present in each cluster on the road. Noise dB(A) values for different categories of vehicles
are recorded by a sound pressure level meter from the nearby intersection of the RGIPT
campus. The recorded noise levels are then used to calibrate the noise scene from the
images. The noise levels used for calibration for different vehicles were as follows: for
scooters, and bikes, the noise was determined as 41.6 dB(A) at high frequency, 50.5 dB(A)
at medium frequency, and 57.5 dB(A) at low frequency; for cars, the noise was determined
as 62.4 dB(A) at high frequency, 72.3 dB(A) at medium frequency, and 85 dB(A) at low
frequency; and for trucks and buses, the noise was determined as 76.4 dB(A) at high
frequency, 85.4 dB(A) at medium frequency, and 104.3 dB(A) at low frequency.

These vehicles on the road move in various clusters, i.e., in pairs, such as two cars
and two buses, one car, one bike, and one truck, or in isolation. In such cases, the number
of possible vehicle pairs is determined in three different clusters: small, medium, large,
and isolated clusters. Vehicle distances greater than 5 m were considered in the different
clusters, and the number of vehicles in the cluster depended on the dB(A) sum of the noise
levels of all vehicles. If the dB(A) sum of the noise levels of vehicles in the small cluster was
greater than the dB(A) value of the large vehicle, then that cluster was considered in the
large cluster. An isolated cluster was a cluster that contained a single vehicle, which might
be a car, scooter, truck, or bus. Table 5 indicates information on a few clusters, including
the type of vehicle, the number of vehicles, and the noise level of the cluster.
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Figure 9. The noise prediction at Ratapur using Google Navigation-based equivalent noise data. (a) 
Predicted noise map at Ratapur. High dB(A) value (4–6 p.m.); (b) predicted noise map at Ratapur. 
Medium dB(A) value (9–11 a.m.); (c) predicted noise map at Ratapur. Low dB(A) value (1–3 p.m.). 
The noise levels (in dB(A)) mapped for the locations A, B, C, D, E, F, G, and H are used later to 
compare the noise mapping accuracies for different granularities of noise data. 
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Figure 9. The noise prediction at Ratapur using Google Navigation-based equivalent noise data.
(a) Predicted noise map at Ratapur. High dB(A) value (4–6 p.m.); (b) predicted noise map at Ratapur.
Medium dB(A) value (9–11 a.m.); (c) predicted noise map at Ratapur. Low dB(A) value (1–3 p.m.).
The noise levels (in dB(A)) mapped for the locations A, B, C, D, E, F, G, and H are used later to
compare the noise mapping accuracies for different granularities of noise data.

Table 4. The ANN model training with epoch, performance, gradient, mu, and validation check.

Algorithm

Data Division Random
Training Levenberg-Marquardt

Performance Mean Squared Error
Calculation MEX

Progress

Epoch 35 iterations
Time 0:00:0

Performance 3.25 × 10−19

Gradient 5.38 × 10−8

Mu 1 × 10−11

Validation Check 0

One thousand clusters with different noise levels were used to train a model for further
prediction of the dB(A) (noise level) of testing images. A noise map was prepared based on
the automated derived noise value in Figure 12. The study was designed to characterize
traffic noise, giving importance to the frequency of noise, the source of noise, and the size
of the vehicle.
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Table 5. Vehicular cluster variants and their noise dB(A) value.

S. No No. of Vehicles
(Large)

No. of Vehicles
(Medium)

No. of Vehicles
(Small)

Total No. of
Vehicles

Noise db(A)
Value

1 3 1 2 6 100
2 3 3 2 8 105
3 2 2 2 6 98
4 4 2 2 8 106
5 2 2 2 6 96
6 2 2 2 6 95
7 2 2 1 5 95
8 1 2 2 5 85
9 1 2 1 4 81

10 1 2 3 5 81
11 1 2 3 5 79
12 1 1 3 5 75
13 1 1 2 4 70
14 0 2 2 4 68
15 0 2 2 4 65
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Figure 12. Automated noise prediction map in dB(A) determined using image processing technique
(and no direct recording of noise levels of the sources).

Noise level measurements were validated, and users can generate a noise prediction
map by simply recording and analyzing road traffic images and connecting them with
calibrated noise levels. The authors automatically calculated the Leq noise value for the
road intersection, determining a short-term L equivalent for 15 min. This calculation is
based on Equation (3) and Table 6.

Leq = 10 log
i=n

∑
i=1

10
Li
10

t1 (3)

n = total number of sound samples, Li is the noise level of any ith sample, t is the time
duration expressed as a fraction of the total sample time.
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Table 6. Equivalent noise level for different frequencies.

Time dB Value Frequency
(31.5 Hz)

dB Value Frequency
(2 KHz)

dB Value Frequency
(16 KHz)

20 min 74.5 67.1 53.5
25 min 81.2 73.4 59.2
15 min 62.3 55.1 45

For the dB(A) calculation based on frequency value (31.5 Hz):

Leq = 10log
[
10 74.5

10 × 20
60 + 10 81.2

10 × 25
60 + 62.3

10 × 15
60

]
= 80.158 dB

4.7. Noise Exposure Mapping

Primarily, the predicted noise data levels from the noise maps (generated using both
large data-based and small data-based methods) were used to calculate noise exposure
levels using Equation (2). The noise exposure levels are visualized in Figure 13, with zones
compared to the acceptable threshold values listed in Table 7. The territory outlined in blue
exhibited noise values ranging from 105 to 110 dB(A). For instance, roadside shopkeepers
were predicted to be exposed to noise levels of 106.8 dB(A) when working for 12 h in that
noisy environment.
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Figure 13. Map of noise exposure with various large and small noise data-based methods. Prediction
demarcates health hazard zones within the blue boundary having over 105 dB(A) of noise exposure
levels and the zone within the yellow boundary having over 85 dB(A) of noise exposure levels.

Noise exposure levels exceeding 85 dB(A) were calculated for the area between the
green, yellow, and blue boundaries. These regions pose a significant health threat, particu-
larly concerning noise-induced hearing loss. The danger zones were reduced somewhat
for other prediction methods. However, the road corridor consistently exhibited noise
exposure levels exceeding 85 dB(A) for all prediction schemes, as indicated in Table 7.

For preventing hearing loss in commercial shopping and traffic areas, both indoors
and outdoors, WHO recommends a limit of LAeq, 24 = 70 dB(A) [37,38].
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Table 7. Noise exposure levels for 12 h.

Traffic Noise Value
dB(A)

Noise Exposure Value for 12 h
dB(A)

105 106.8
96 97.8
91 92.8
86 87.8
82 83.8
77 78.8
72 73.8
67 68.8
62 63.8

WHO provides noise levels per hour for different time averages to stay within the
recommended yearly average exposure in, as shown in Table A4 in Appendix A.

Thus, every prediction scheme was able to predict (even with inaccurate and lower
quantities of noise data), the hazardous zone(s), which can potentially cause hearing
loss [38]. The results are validated for all the methods. The noise exposure maps generated
with different data were found to be nearly the same. The authors found even by the
reduction in noise data, i.e., 60 data receiving points (large data method) to 30 receiving
points (small data method), the hazard zone demarcation did not alter any significantly.
The authors also found that there was no significant dB(A) value difference, so it offered
the possibility of using the technique for hazard zone mapping using less dense noise data
as well.

4.8. Comparison of Various Methods

The authors employed five different methods for noise prediction in their study. These
methods varied in terms of the number of noise sources used, the quality of noise sources,
and the noise modeling algorithms. The primary objective was to investigate the impact
of noise data on the prediction of noise maps. By conducting this analysis, the authors
aimed to determine the optimum quantity of noise data and/or the minimum resources
required to predict noise values with reasonable accuracy. This research serves the purpose
of enabling the public to easily predict noise levels in their respective areas.

The authors predicted the noise levels for the study area of Raebareli Intersection using
five methods of noise prediction, varying in the number and quality of noise data points:
(1) large noise source data; (2) small noise source data; (3) one source value-averaged noise
data; (4) Google Navigation-based averaged noise dB(A) calculation technique introduced
different densities (and qualities) of noise data inputs integrated into the GIS platform; and
(5) ANN-based noise data prediction technique, which offered a technique to predict with
finer noise data, terrain data, and a very sophisticated modeling algorithm.

The performance of different prediction models was compared with the ground
observations made for the 10 points. It was found that the large data point-based technique
with ISO 9613-2 modeling and GIS mapping provided the best results among the first four
modeling techniques. The large noise data-based technique predicted with an accuracy
of ±1–4 dB(A). The Google Navigation-based method predicted the noise levels within
an accuracy of ±4–10 dB(A). Other models performed within this range, as indicated in
Table 8. The performance of predictions improved significantly for the study area when
higher granularities of noise data and improved modeling techniques were used. The
ANN-based prediction technique with a large noise data set predicted with an accuracy
of ±0.5–2.5 dB(A). The performance of models 1 to 4 was also compared with the best-
performing software model (i.e., ANN) and is illustrated in Table 9. Based on these results,
it was found that all the techniques tried could predict with reasonable accuracy.
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Table 8. Observed noise data and their predicted noise levels using five prediction techniques, with deviations and average deviation for each technique at all
different time’s high value (4–6 p.m.), medium value (9–11 a.m.), and low Value (1–3 p.m.).

S.No. Observed Predicted
Large Data Dev. Avg.

Dev.
Predicted Small

Data Dev. Avg.
Dev.

Predicted Source
Average Data Dev. Avg.

Dev.
Google Navigation

Data Dev. Avg.
Dev.

ANN
Prediction Dev. Avg.

Dev.

1 105–110 105–110 0 0 97–104 6–8 7 96–101 9 9 101–110 0–5 2.5 105–109 0–1 0.5

2 105–110 97–100 8–10 9 95–100 10 10 96–101 9 9 87–92 18 18 103–108 2–2 2

3 100–104 97–100 3–4 3.5 85–91 13–15 14 92–96 8 8 87–92 12–13 12.5 97–102 2–3 2.5

4 85–91 91–97 6 6 95–99 8–10 9 96–101 10–11 10.5 81–87 4 4 89–91 0–4 2

5 85–91 92–96 5–7 6 94–98 7–9 8 90–95 4–5 4.5 81–87 4 4 88–92 2–3 2.5

6 79–85 87–91 6–8 7 90–95 10–11 10.5 70–76 9–11 10 76–81 3–4 3.5 82–83 2–3 2.5

7 79–85 82–86 1–3 2 85–88 3–6 4.5 66–71 13–14 13.5 71–76 8–9 8.5 82–85 0–3 1.5

8 73–79 76–81 2–3 2.5 79–84 5–6 5.5 60–64 13–14 13.5 65–71 8 8 76–81 2–3 2.5

9 73–79 66–70 7–9 8 64–68 9–11 10 55–59 18–20 19 60–65 13–14 13.5 69–75 4 4

10 65–72 61–67 4–5 4.5 55–61 10–11 10.5 55–60 10–12 11 55–60 10–12 11 62–70 2–3 2.5

Ten sample results are exhibited.

Table 9. The average deviations in prediction for five prediction techniques.

Sample Observation No. Avg Dev. Large Data
±dB(A)

Avg Dev. Small Data
±dB(A) Avg Dev. Source Avg. ±dB(A) Avg Dev. Google Navigation Data

±dB(A)
Avg. ANN Prediction

±dB(A)

1 0 7 9 2.5 0.5

2 9 10 9 18 2

3 3.5 14 8 12.5 2.5

4 6 9 10.5 4 2

5 6 8 4.5 4 2.5

6 7 10.5 10 3.5 2.5

7 2 4.5 13.5 8.5 1.5

8 2.5 5.5 13.5 8 2.5

9 8 10 19 13.5 4

10 4.5 10.5 11 11 2.5

Mean 4.85 8.9 10.8 8.55 2.3

Standard Deviation 2.86 2.76 3.89 5.15 0.78
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Understandably, the ANN-based prediction techniques with finer noise data and a so-
phisticated algorithm predicted the noise levels very accurately, deviating by ±0.5–2.5 dB(A)
from observed ground noise levels, on average, as shown in Figure 14. The deviations of
ANN-based predictions from ground observations of noise levels for the 10 selected points
are illustrated in Figure 14.

Acoustics 2023, 5 4 FOR PEER REVIEW  26 
 

 

 
Figure 14. Deviation between the observed and predicted noise levels in dB(A) for 10 sample points 
using the ANN prediction technique. 

Table 8. Observed noise data and their predicted noise levels using five prediction techniques, with 
deviations and average deviation for each technique at all different time’s high value (4–6 p.m.), 
medium value (9–11 a.m.), and low Value (1–3 p.m.). 

S.No. Observed 
Predicted 

Large Data 
Dev. 

Avg. 
Dev. 

Predicted 
Small Data 

Dev. 
Avg. 
Dev. 

Predicted 
Source Av-
erage Data 

Dev. 
Avg. 
Dev. 

Google 
Naviga-

tion Data 
Dev. 

Avg. 
Dev. 

ANN 
Prediction 

Dev. 
Avg. 
Dev. 

1 105–110 105–110 0 0 97–104 6–8 7 96–101 9 9 101–110 0–5 2.5 105–109 0–1 0.5 
2 105–110 97–100 8–10 9 95–100 10 10 96–101 9 9 87–92 18 18 103–108 2–2 2 
3 100–104 97–100 3–4 3.5 85–91 13–15 14 92–96 8 8 87–92 12–13 12.5 97–102 2–3 2.5 
4 85–91 91–97 6 6 95–99 8–10 9 96–101 10–11 10.5 81–87 4 4 89–91 0–4 2 
5 85–91 92–96 5–7 6 94–98 7–9 8 90–95 4–5 4.5 81–87 4 4 88–92 2–3 2.5 
6 79–85 87–91 6–8 7 90–95 10–11 10.5 70–76 9–11 10 76–81 3–4 3.5 82–83 2–3 2.5 
7 79–85 82–86 1–3 2 85–88 3–6 4.5 66–71 13–14 13.5 71–76 8–9 8.5 82–85 0–3 1.5 
8 73–79 76–81 2–3 2.5 79–84 5–6 5.5 60–64 13–14 13.5 65–71 8 8 76–81 2–3 2.5 
9 73–79 66–70 7–9 8 64–68 9–11 10 55–59 18–20 19 60–65 13–14 13.5 69–75 4 4 
10 65–72 61–67 4–5 4.5 55–61 10–11 10.5 55–60 10–12 11 55–60 10–12 11 62–70 2–3 2.5 

Ten sample results are exhibited. 

Table 9. The average deviations in prediction for five prediction techniques. 

Sample Ob-
servation No. 

Avg Dev. 
Large Data 

±dB(A) 

Avg Dev. 
Small 
Data 

±dB(A) 

Avg Dev. 
Source 
Avg. 

±dB(A) 

Avg Dev. Google 
Navigation Data 

±dB(A) 

Avg. ANN Predic-
tion  

±dB(A) 

1 0 7 9 2.5 0.5 
2 9 10 9 18 2 
3 3.5 14 8 12.5 2.5 
4 6 9 10.5 4 2 
5 6 8 4.5 4 2.5 
6 7 10.5 10 3.5 2.5 

Figure 14. Deviation between the observed and predicted noise levels in dB(A) for 10 sample points
using the ANN prediction technique.

The authors also conducted a statistical comparison of the performances of the five
models using one-way ANOVA (analysis of variance). Regarding the normality of the
group data, one-way ANOVA can tolerate non-normal data (skewed or kurtotic distribu-
tions) with only a small effect on the Type I error rate [39]. ANOVA tests were conducted
to examine the deviations in predictions using different combinations, namely: (a) con-
sidering all prediction techniques (1, 2, 3, 4, and 5); (b) considering techniques 2, 3, and
4; (c) considering techniques 2 and 4. These comparisons are illustrated in Tables 10–12.
F-statistics were calculated along with the p-value or the probability of the test statistic
obtaining a value greater than the computed test statistic [40–42]. Very low p-values for
schemes (a) and (b) indicate that, overall, the prediction techniques may not be performing
similarly. Higher p-values for ANOVA test schemes (b) and (c) indicate that the associated
prediction techniques were performing similarly. Notably, schemes (b) and (c) involved
less noise data-dependent prediction techniques, such as the small noise data-based model,
single noise value-averaged prediction model, and Google Navigation-based prediction
model. The performances of these models based on rough noise data were not significantly
different. Moreover, their performances differed from the large noise data-based models,
albeit not by more than ±3 to 6 dB(A). Therefore, it can be concluded that a model with
lower noise data density can still be used for general noise prediction.
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Table 10. One-way ANOVA Test with all five prediction models.

ANOVA: Single Factor

SUMMARY
Groups Count Sum Average Variance
Column 1 10 48.5 4.85 8.17
Column 2 10 89 8.9 7.65
Column 3 10 108 10.8 15.17
Column 4 10 85.5 8.55 26.58
Column 5 10 23 2.3 0.62
ANOVA
Source of Variation SS df MS F p-value F crit
Between Groups 471.33 4 117.83 10.12 6.25072 × 10−6 2.59
Within Groups 523.85 45 11.64
Total 995.18 49

SS—sum of square; df—degree of freedom; MS—mean square; F—F static; p-value—probability; F crit—F critical.

Table 11. One-way ANOVA Test with three prediction models.

ANOVA: Single Factor

SUMMARY
Groups Count Sum Average Variance
Column 1 10 89 8.9 7.65
Column 2 10 108 10.8 15.17
Column 3 10 85.5 8.55 26.58
ANOVA
Source of Variation SS df MS F p-value F crit
Between Groups 29.32 2 14.66 0.89 0.42 3.35
Within Groups 444.73 27 16.47
Total 474.04 29

Table 12. One-way ANOVA Test with two prediction models.

ANOVA: Single Factor

SUMMARY
Groups Count Sum Average Variance
Column 1 10 89.00 8.9 7.66
Column 2 10 85.50 8.55 26.58
ANOVA
Source of Variation SS df MS F p-value F crit
Between Groups 0.61 1 0.61 0.036 0.85 4.41
Within Groups 308.12 18 17.11
Total 308.73 19

Using this study, the authors uncovered a potential reason for the decrease in the
number of points and utilized some free source noise data (Google Navigation data-
based noise prediction method and automated noise dB(A) calculation method for noise
prediction) to predict traffic noise. In the current research, the authors also observed that
the number of receiving points could be decreased with proper selection to maintain an
equal distance between each point without sacrificing accuracy. Similar results were found
in the current research.

An additional study was conducted to compare the noise mapping accuracies at
different granularities of noise data for the locations marked as A, B, C, D, E, F, G, and
H on the predicted map. The detailed deviations in noise mapping in dB(A) are listed in
Table A3, in Appendix A. The analysis indicated the higher deviations in mapping with
rougher noise datasets.
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The study primarily considered the noise source points at an equal distance for dif-
ferent predictions. In future, the relative positions of noise source points may be altered
to find their impact on predictions. Furthermore, the number of noise source points are
reduced to half (e.g., 30) for the study site. It is possible to reduce them further at the cost of
accuracy. However, the acceptable extent of dilution of accuracy can be studied separately
in future.

5. Conclusions

The effectiveness of noise prediction depends on the quality of noise and terrain data
used in the prediction and the quality of the modeling algorithm employed in the models.
The authors primarily focused on varying the levels of granularity of noise data while
keeping other factors, such as terrain data and modeling approach, unchanged. They
studied in detail the impacts of various qualities of noise data on noise prediction.

Different techniques, including large data-based, small data-based, averaged one
data-based, and Google Navigation-based methods, were used with noise data of varying
qualities but with similar terrain data and modeling algorithms. The prediction perfor-
mances deteriorated between ±4 and ±10 dB(A) as the quality of the noise data decreased
from denser and accurate to rougher data. The detailed comparison of predicted results
indicated that the performances of various levels of granularity of noise data were not
equally effective. The differences in predictions were not very significant, but denser data
provided ±1 to 4 dB(A) less deviation compared to the ground observed data.

Furthermore, ANOVA analysis clearly indicated that the performance of all the models
using rough noise data was similar. Models with less granular noise data differed in terms
of the lower number of accurate noise data points used in modeling or the lower quality of
noise data points used in prediction (e.g., the use of averaged one noise levels or the use of
Google Navigation-based noise data, managing noise source data indirectly).

The possibility of using a lesser number of noise data points or inferior quality noise
data for noise prediction was further explored for noise exposure mapping. The performance
in noise exposure mapping using different levels of granularity of noise data was similar.
All methods similarly depicted hazardous and other zones around the road intersections.

Models requiring fewer or no ground-based noise data collection for predicting
noise levels were highlighted separately. The success of using the Google Navigation-
based prediction technique was an important direction in which noise prediction or
modeling can be applied to urban modeling applications. This approach offers significant
ease in noise prediction.

The study also demonstrated that integrating large noise data with a sophisticated
noise prediction model (such as ANN-based prediction) offers the best predictions, with
a deviation of ±0.5–2.5 dB(A) (on average) from the noise data recorded on the ground.
This approach indicates that the prediction model can also have an impact on the quality
of predictions.

Indirect noise data and sophisticated noise modeling techniques were integrated to
showcase the possibility of accurate noise prediction and mapping with convenience in
3D. Google images were processed to extract vehicle data and assign noise data (through
calibration). These data were then used to enable accurate noise prediction in 3D, avoiding
the direct use of noise data in prediction.
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Appendix A

Table A1. The table showing the sampling data at different coordinates for three-time schedules.

Sample No X Y H (4–6 p.m.) 10 min
Duration

M (9–11 a.m.)
10 min Duration

L (1–3 p.m.) 10 min
Duration

1 81.24109 26.24493 100 85 75
2 81.24123 26.24474 105 90 80
3 81.24133 26.24458 103 88 77
4 81.24142 26.24447 105 90 80
5 81.24148 26.2444 110 95 85
6 81.24165 26.24433 110 95 85
7 81.24182 26.24405 110 95 85
8 81.24193 26.24393 110 95 85
9 81.24188 26.24382 110 95 85

10 81.24183 26.24363 110 95 85
11 81.2417 26.2434 110 95 85
12 81.24174 26.24358 110 95 85
13 81.24156 26.2433 100 95 75
14 81.24144 26.243 102 87 77
15 81.24148 26.24314 105 90 80
16 81.24139 26.24302 108 92 82
17 81.24135 26.24279 105 90 80
18 81.2413 26.24272 95 85 75
19 81.24116 26.24327 92 80 70
20 81.2411 26.24343 87 75 75
21 81.24086 26.24362 87 75 70
22 81.24069 26.24359 84 72 63
23 81.24053 26.24418 58 61 61
24 81.24043 26.24414 58 55 55
25 81.24018 26.24402 55 55 57
26 81.24008 26.24394 58 55 58
27 81.23991 26.24384 55 60 60
28 81.24072 26.24437 75 65 60
29 81.24102 26.24433 88 70 60
30 81.24083 26.24411 72 65 60
31 81.24128 26.24399 85 75 65
32 81.24139 26.24376 86 75 70
33 81.24127 26.24349 86 75 70
34 81.24098 26.24314 90 70 71
35 81.24086 26.24294 88 70 72
36 81.24055 26.24342 57 55 60
37 81.24038 26.24371 57 60 60
38 81.2403 26.2432 55 55 55
39 81.24163 26.24484 87 75 70
40 81.24184 26.24458 84 72 70
41 81.24212 26.24423 90 80 75
42 81.24059 26.2441 85 78 70
43 81.24098 26.24366 85 78 70
44 81.24129 26.24332 85 78 70
45 81.24056 26.24444 85 78 70
46 81.24056 26.24425 85 78 70
47 81.24069 26.244 85 78 70
48 81.24128 26.24466 105 80 66
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Table A1. Cont.

Sample No X Y H (4–6 p.m.) 10 min
Duration

M (9–11 a.m.)
10 min Duration

L (1–3 p.m.) 10 min
Duration

49 81.24115 26.24481 105 80 66
50 81.24173 26.24421 105 80 66
51 81.24192 26.24401 105 80 66
52 81.24183 26.24372 100 80 66
53 81.24172 26.24349 100 80 66
54 81.24155 26.2432 100 80 66
55 81.24137 26.2429 100 80 66
56 81.24163 26.24335 100 80 66
57 81.24123 26.2434 85 78 70
58 81.24194 26.24386 105 80 66
59 81.24156 26.24437 105 80 66
60 81.24118 26.2448 105 80 66

Table A2. The table showing the detailed data collection (day-wise) in different weeks.

S.No. Sample No 1st Week 2nd Week 3rd Week 4th Week 5th Week 6th Week

1 1–10 Monday Tuesday Wednesday Thursday Friday Saturday
2 11–20 Tuesday Wednesday Thursday Friday Saturday Monday
3 21–30 Wednesday Thursday Friday Saturday Monday Tuesday
4 31–40 Thursday Friday Saturday Monday Tuesday Wednesday
5 41–50 Friday Saturday Monday Tuesday Wednesday Thursday
6 51–60 Saturday Monday Tuesday Wednesday Thursday Friday

Table A3. The table shows the difference in the dB(A) value over the different methods.
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A. High Traffic Noise (4–6 p.m.)

A 105–110 105–110 0 97–100 8–10 9 110–110 0–5 2.5

B 97.9–104 97.9–104 0 97–100 8–10 9 74–79 23.9–25 24.45

C 85.6–91.7 85.6–91.7 0 92–96 6.4–4.3 5.3 80–86 5.6–5.7 5.6

D 85.6–91.7 85.6–91.7 0 92–96 6.4–4.3 5.3 87–92 2.6–0.3 1.4

E 67.3–73.3 67.3–73.3 0 61–65 6.3–8.3 7.3 62–67 5.3–6.3 5.8

F 73.4–79.4 73.4–79.4 0 71–75 2.4–4.4 3.4 62–67 11.3–12.4 11.8

G 97.9–104 97.9–104 0 97–100 0.9–4 2.5 80–86 17.9–18 18

H 91.8–97.8 91.8–97.8 0 97–100 6.8–2.2 4.5 93–98 1.2–0.2 0.7
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B. Medium traffic noise (9–11 a.m.)

A 87–91 87–91 0 83–85 4–6 5 97.8–103 10.8–12 11.4

B 78–82 78–82 0 83–85 3–5 4 71.1–76.3 6.9–5.7 6.3

C 74–77 74–77 0 79–82 5–5 5 71.1–76.3 2.9–0.7 1.8

D 78–82 78–82 0 79–82 0–1 0.5 81.8–87 3.8–5 4.4

E 69–73 69–73 0 63–65 6–8 7 60.4–65.7 8.6–7.3 15.9

F 60–64 60–64 0 59–62 1–2 1.5 60.4–67.7 0.4–3.7 2

G 83–86 83–86 0 79–82 4–4 4 71.1–76.3 11.9–9.7 10.8

H 78–82 78–82 0 79–82 0–1 0.5 81.8–87 3.8–5 4.4

C. Low traffic noise (1–3 p.m.)

A 77–79 77–79 0 72–73 5–6 5.5 92–96 15–17 16

B 67–69 67–69 0 72–73 4–5 4.5 65–69 0–2 1

C 67–69 67–69 0 69–69 0–2 1 70–73 3–4 3.5

D 70–73 70–73 0 70–71 0–2 1 79–82 9–9 9

E 64–66 64–66 0 62–62 2–4 3 55–60 6–9 7.5

F 64–66 64–66 0 63–64 1–2 1.5 61–64 2–3 2.5

G 77–79 77–79 0 70–71 7–8 7.5 65–69 10–12 11

H 70–73 70–73 0 70–71 0–2 1 79–82 9–9 9

Table A4. A yearly average LAeq is calculated by combining hourly exposure and the number of
hours worked per week.

Hours of Exposure per Week One-Hour Exposure Level (LAeq) dB

80 85 90 95 100
40 (8 h per day, 5 days per week) 74 79 84 89 94

168 (24 h per day, 7 days per week) 80 85 90 95 100
Sources: Environmental Noise Guidelines for the European Region—2018 [37].
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