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Abstract

:

Data transformations are an important tool for improving the accuracy of forecasts from time series models. Historically, the impact of transformations have been evaluated on the forecasting performance of different parametric and nonparametric forecasting models. However, researchers have overlooked the evaluation of this factor in relation to the nonparametric forecasting model of Singular Spectrum Analysis (SSA). In this paper, we focus entirely on the impact of data transformations in the form of standardisation and logarithmic transformations on the forecasting performance of SSA when applied to 100 different datasets with different characteristics. Our findings indicate that data transformations have a significant impact on SSA forecasts at particular sampling frequencies.
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1. Introduction


Amidst the emergence of Big Data and Data Mining techniques, forecasting continues to remain an important tool for planning and resource allocation in all industries. Accordingly, researchers, academics, and forecasters alike invest time and resources into methods for improving the accuracy of forecasts from both parametric and nonparametric forecasting models. One approach to improving the accuracy of forecasts is via data transformations prior to fitting time series models. For example, it is noted in [1] that data transformations can simplify the forecasting task, whilst evidence from other research indicates that, in economic analysis, taking logarithms can provide forecast improvements if it results in stabilising the variance of a series [2]. However, studies also indicate that data transformations will not always improve forecasts [3] and that they could complicate time series analysis models [4,5].



In fact, a key challenge for forecasting under data transformation is to transform the data back to its original scale, a process which could result in a forecasting bias [6,7]. Historically, most studies have focused on the impact of data transformations on parametric models such as Regression and Autoregressive Integrated Moving Average (ARIMA) models [8,9]. More recently, authors have resorted to evaluating the impact of data transformations on several other forecasting models [10,11], further highlighting the relevance and importance of the topic. Our interest is focused on the evaluation of the impact of data transformations on a time series analysis and forecasting technique called Singular Spectrum Analysis (SSA).



In brief, the SSA technique is a popular denoising, forecasting, and missing value prediction technique with both univariate and multivariate capabilities [12,13]. Recently, its diverse applications have focused on forecasting solutions for varied industries and fields, from tourism [14,15] and economics [16,17,18] to fashion [19], climate [20,21], and several other sectors [22,23,24]. Regardless of its wide and varied applications, researchers have yet to explore the effect of data transformations on the forecasting performance of this nonparametric forecasting technique. Previously, in [25], the authors evaluated the forecasting performance of the two basic SSA algorithms under different data structures. However, their work did not extend to evaluating the impact of data transformations to provide empirical evidence for future research. Accordingly, through this paper, we aim to contribute to the existing research gap by studying the effects of different data transformation options on the forecasting behaviour of SSA.



Logarithmic transformation is the most commonly used transformation in time series analysis. It has been used to convert multiplicative time series structures to additive structures or to reduce the time series skewness volatility and increase stability [2,26]. The autocorrelation structure in the time series may change under different transformations that may affect the model, and different transformations may result in different specifications for ARIMA models [6,27]. Like ARIMA models, SSA too can be greatly influenced by transformations. For instance, if data transformation makes noise uncorrelated or reduces the complexity of the time series, it can improve SSA performance [21,26]. As data standardisation and logarithmic transformations are the easiest in terms of interpretability and back-transformation to the original scale, we explore the effect of these data transformations on the forecasting performance of SSA.



The remainder of this paper is organised as follows. In Section 2, we provide a detailed exposition of SSA and its recurrent and vector forecasting algorithms. In Section 3, we present data transformation techniques and their effect on forecasting accuracy. Procedures for examining the effect of transformation based on different characteristics of time series are presented in Section 4. In Section 5, we analyse different datasets of varied characteristics and present our results for an evidence-based exploration of the effect of data transformations on SSA forecasts. Finally, we present our concluding remarks in Section 6.




2. SSA Forecasting


There are two different algorithms for forecasting with SSA, namely recurrent forecasting and vector forecasting [12,28]. Those interested in a comparison of the performance of both algorithms are referred to [25]. Both of these forecasting algorithms require that one follows two common steps of SSA, the decomposition and reconstruction of a time series [12,28]. In what follows, we provide a brief description of forecasting processes in SSA.



2.1. Decomposition and Reconstruction of Time Series


In SSA, we embed the time series    {  x 1  ,  x 2  , … ,  x N  }    into a high-dimensional space by constructing a Hankel structured trajectory matrix of the form:


   X = (     x 1     x 2     x 3    …    x n       x 2     x 3     x 4    …    x  n + 1       ⋮   ⋮   ⋮   …   ⋮      x m     x  m + 1      x  m + 2     …    x N     ) = [  x 1    …    x i  …  x n  ] ,   



(1)




where m is the window length, the    m −    lagged vector     x i  =   (  x i  ,  x  i + 1   , … ,  x  i + m − 1   )  ′     is the ith column of the trajectory matrix   X  ,    n = N − m + 1   , and    m ≤ n   .



The singular value decomposition (SVD) of the trajectory matrix   X   can be expressed as


   X =  S k  +  E k  =  ∑  j = 1  k    λ j    u j   v j ′  +  ∑  j = k + 1  m    λ j    u j   v j ′    



(2)




where    u j    is the jth eigenvector of    X  X ′     corresponding to the eigenvalue    λ j    and     v j  =  X ′   u j  /   λ j     .



If k is the number of signal components,     S k  =  ∑  j = 1  k    λ j    u j   v j ′     represents a matrix of signal, and     E k  =  ∑  j = k + 1  m    λ j    u j   v j ′     is the matrix of noise. We apply the diagonal averaging procedure to    S k    to reconstruct the signal series     x ˜  t    such that the observed series can be expressed as


    x t  =   x ˜  t  +   e ˜  t  ,   



(3)




where     x ˜  t    is the less noisy, filtered series. A detailed explanation of decomposition in Equation (3) can be found in [28,29].



To construct the trajectory matrix   X   in Equation (1) and to conduct the SVD in Equation (2), we have to select the Window Length m and the number of signal components k. Since our aim is not to demonstrate the selection of SSA choices (m and k), we opt not to reproduce the selection procedures for SSA choices, as these are already covered in depth in [12,28]. As our interest is in examining the effect of transformation on the forecasting performance of SSA, we select m and k such that the Root Mean Squared Error (RMSE) in forecasting is minimised.




2.2. Recurrent Forecasting


Recurrent forecasting in SSA is also known as R-forecasting, and the findings in [25] indicate that R-forecasting is best when dealing with large samples. If     u j ∇  =   (  u  1 j   , … ,  u  ( m − 1 ) j   )  ′     is the vector of the first    m − 1    elements of the jth eigenvector    u j   , and    u  m j     is the last element of    u j   . The coefficients of linear recurrent equation can be estimated as


   a =   (  a  ( m − 1 )   , … ,  a 1  )  ′  =  1  1 −  ∑  j = 1  k   u  m j  2     ∑  j = 1  k   u  m j    u j ∇  .   



(4)







With the parameters in Equation (4), a linear recurrent equation of the form


     x ˜  t  =  ∑  i = 1   m − 1    a  ( m − i )     x ˜   t − m + i     



(5)




is used to obtain a one-step-ahead recursive forecast [29]. This linear recurrent formula in Equation (5) is used to forecast the signal at time    t + 1    given the signal at time    t , t − 1 , … , t − m + 2    [28] (Section 2.1, Equations (1)–(6)), and the one-step-ahead recursive forecast of    x  N + j     is


     x ^   N + j   = {      ∑  i = 1   j − 1    a i    x ^   N + j − i   +  ∑  i = 1   m − j    a  m − i     x ˜   N + j − m + i          for    j ≤ m − 1  ;        ∑  i = 1   m − 1    a i    x ^   N + j − i          for    j > m − 1  .       



(6)







We apply the recursive forecasting method in Equation (6) to obtain a one-step-ahead forecast.




2.3. Vector Forecasting


In contrast, the SSA Vector forecasting algorithm has proven to be more robust than the R-forecasting algorithm in most cases [25]. Let us define     U k ∇  = [  u 1 ∇    …    u k ∇  ]    as the    ( m − 1 ) × k    matrix consisting of the first    m − 1    elements of k eigenvectors. The vector forecasting algorithm computes    m −    lagged vectors     z i  ^    and constructs a trajectory matrix    Z = [   z ^  1    …     z ^  n      z ^   n + 1     …     z ^   n + h   ]    such that


     z ^  i  = {     s i     for    i = 1 , 2 , … , n  ;      (     (  U k ∇   U k  ∇ ′   +  ( 1 −  ∑  j = 1  k   u  m j  2  )  a  a ′  )   z ^   i − 1  ▵         a ′    z ^   i − 1  ▵      )    for    i = n + 1 , … , n + h  .       



(7)




where    s i    is the ith column of the reconstructed signal matrix     S k  =  ∑  j = 1  k    λ j    u j   v j ′    , and     z ^   i  ▵    is the last    m − 1    elements of the vector     z ^  i   .



After a diagonal averaging of the matrix    Z = [   z ^  1    …     z ^  n      z ^   n + 1     …     z ^   n + h   ]    constructed by employing Equation (7), we obtain a time series    {   z ^  1  , … ,   z ^  N  ,   z ^   N + 1   , … ,   z ^   N + h   }   , as has also been explained in [28] (Section 2.3). Thus,      x ^   N + j   =   z ^   N + j      produces a forecast corresponding to    x  N + j     for    j = 1 , … , h   .





3. Transformation of Time Series


Data transformation is useful when the variation increases or decreases with the level of the series [1]. Whilst logarithmic transformation and standardisation are the most commonly used data transformation techniques in time series analysis, it is noteworthy that there are other transformations from the family of power transformation such as square root and cube root transformations. However, the interpretability is not as simple and common as that for standardisation and logarithmic transformation.



3.1. Standardisation


Standardisation of time series    {  x t  }    is formulated as


    y t  =    x t  −  x ¯    σ x   ,   



(8)




where    x ¯    and    σ x    are the mean and standard deviation of the series    {  x t  }   , respectively. Data standardisation is another common data transformation in preprocessing. Standardisation is mostly common in machine learning techniques to reduce training time and error. In time series forecasting, standardisation has proven advantages when we are using machine learning algorithms (e.g., neural networks and deep neural networks) [30]. In terms of SSA, the theoretical literature does not investigate the effect of standardisation on SSA forecasts in detail. However, in Golyandina and Zhigljavski [26], the authors addressed the effect of centering the time series as preprocessing. In theory, if the time series can be expressed as an oscillation around a linear trend, centering will increase the SSA’s accuracy [26].




3.2. Logarithmic Transformation


In this paper, the following logarithmic transformation is applied on time series    {  x t  }   :


       y t  = log  ( C +  x t  )  ,      



(9)




where C is a constant value, large enough to guarantee that the term inside the logarithm is positive. As mentioned before, log-transform is a common preprocessing to handle variance instability or right skewness. Furthermore, one may use log-transform as a form of preprocessing to convert a time series with a multiplicative structure to an additive one. Given that SSA can be applied to time series with both additive and multiplicative structures, it does not necessarily need log-transform pre-processing [26]. However, the authors in Golyandina and Zhigljavski [26] showed that using log-transform could affect SSA’s forecasting accuracy. In fact, SSA’s forecasting accuracy will increase if the rank of a transformed series is smaller than the original one.





4. Comparison between Transformations


Time series with different characteristics will behave differently after transformation. For instance, forecasting accuracy in time series, with positive skewness, non-stationarity, and non-normality, may improve with logarithmic transformation. Furthermore, in time series with large observations or large variance, standardisation can improve the forecasting accuracy. Sampling frequency is another potential factor affecting forecasting accuracy. Time series with high sampling frequency (e.g., hourly or daily) usually have an oscillation frequency close to its noise frequency and consequently show instable and noisy behaviour. On the other hand, time series with larger sampling frequency are smoother. These characteristics of time series may affect forecasting and accuracy as well. As such, to investigate the practical effect of data transformation in SSA forecasting, we should consider “Sampling Frequency,” “Skewness,” “Normality,” and “Stationarity” as control factors.



To observe the effectiveness of data transformation prior to the application of SSA, we may compare the forecasting performance of SSA under different transformations and control factors: firstly, by comparing the Root Mean Squared Forecast Error (RMSFE), and secondly, by employing a nonparametric test to examine the treatment effect (data transformation).



4.1. Root Mean Squared Forecast Error (RMSFE)


The most commonly adopted approach for comparing the predictive accuracy between forecasts is to compute and compare the RMSFE from out of sample forecasts. The RMSFE can be defined as


   R M S  E h  =    1 h   ∑  t = N + 1   N + h     (  x t  −   x ^  t  )  2    ,   



(10)




where h is the forecast horizon, N is the number of observations,    x t    is observed value of time series, and     x ^  t    is the forecasted value.



The application of data transformation prior to forecasting with SSA may significantly affect the forecasting outcome and the affect may vary based on the properties of a time series. Thus, we need to examine the effect of data transformation on RMSFE along with the differing properties of time series. Comparisons between the RMSFE of the original and transformed time series can be used to learn about the forecasting performance of a model for a given time series. However, comparison of RMSFE for a pool of time series with different characteristics is not straightforward. We compute    R M S  E h     for    h = 1 , 3 , 6 , 12    (   h = 1    for a short-term forecast,    h = 12    for a long-term forecast, and    h = 3 , 6    as a medium-term forecasting horizon) for each of the time series in the pool and examine the effect of transformation by using statistical tests.




4.2. Nonparametric Repeated Measure Factorial Test


Treatment effects in the presence of factors can be examined by employing the nonparametric repeated measure factorial test [31,32] for a pool of time series of different characteristics. Thus, the effect of data transformation (treatment) can be examined by using this test under different characteristics of a time series.



Let us assume that we have K time series in the pool with series code     A k  ,  k = 1 , … , K    and for each of the series    R M S  E h     for    h = 1 , 3 , 6 , 12    are computed. If the interest lies on exploring the effect of transformation for the skewness property of time series, we essentially perform the test for treatment effect (transformation) for categories of skewness properties of these time series. There are three factor levels of the factor Skewness, namely Skew Negative, Skew Positive, and Skew Symmetric. Similarly, we will have two levels for the factor Normality (Yes = normal; No = not normal) and two levels for the factor Stationarity (Yes = stationary; No = nonstationary). To test the effect of transformation (No transformation, Standardisation, and Logarithmic transformation), we follow the procedures described below.



First, we learn some basic characteristics of a time series such as normality, stationarity, skewness, and frequency. For example, the frequency of a time series can be learnt by examining the time of measurement: hourly, daily, weekly, monthly, or annually. We also classify time series into different categories via a series of statistical tests such as the Jarque-Bera test for normality [33], the KPSS test for stationarity [34], and the D’Agostino test for skewness [35].



Secondly, the nonparametric repeated measure factorial test [31,32] is used to test the effect of the transformation on RMSFE, across different categories where categories are defined based on Frequency, Normality, Skewness, and Stationarity.





5. Data Analysis


We used the same set of time series employed by Ghodsi et al. [25] to test the effect of data transformation on SSA forecasting accuracy, with different characteristics. The dataset contains 100 real time series with different sampling frequencies and stationarity, normality, and skewness characteristics, representing various fields and categories, obtained via the Data Market (http://datamarket.com). Table 1 presents the number of time series with each feature. It is evident that the real data includes data recorded at varying frequencies (annual, monthly, weekly, daily, and hourly) alongside varying distributions (normal distribution, skewed, stationary, and non-stationary). Interestingly, the majority of the data are non-stationary overtime, which resonates with expectations within real-life scenarios.



The name and description of each time series and their codes assigned to improve presentation are presented in Table A1. Table A2 presents descriptive statistics for all time series to enable the reader to obtain a rich understanding of the nature of the real data. This also includes skewness statistics, and results from the normality (Shapiro-Wilk) and stationarity (Augmented Dickey-Fuller) tests. As visible in Table A1, the data comes from different fields such as energy, finance, health, tourism, housing market, crime, agriculture, economics, chemistry, ecology, and production.



Figure 1 shows the time series for a selection of 9/100 series used in this study. This enables the reader to obtain a further understanding of the different structures underlying the data considered in the analysis. For example, A007 is representative of an asymmetric non-stationary time series for the labour market in a U.S. county. This monthly series shows seasonality with an increasing non-linear trend. In contrast, A022 is related to a meteorological variable that is asymmetric, yet stationary and highly seasonal in nature. An example of a time series that is both asymmetric and non-stationary is A038, which represents the production of silver. Here, structural breaks are visible throughout. A055 is an annual time series, which is stationary and asymmetric, and relates to the production of coloured fox fur. An example of a quarterly time series representing the energy sector is shown via A061. This time series is non-stationary and asymmetric with a non-linear trend and an increasing seasonality over time. Another example focuses on the airline industry (A075) and is also asymmetric and non-stationary in nature. It appears to showcase a linear and increasing trend along with seasonality. A skewed and non-stationary sales series is shown via A081, with the trend indicating increasing seasonality with major drops in the time series between each season. A time series for house sales (A082) can be found to be normally distributed and non-stationary over time. It also shows a slightly curved non-linear trend and a sine wave that is disrupted by noise. Finally, the labour market is drawn on again via A094, but this is an example of a time series affected by several structural breaks leading to a non-stationary, asymmetric series, which also has seasonal periods and a clear non-linear trend.



R packages “Rssa” [36,37,38] and “nparLD” [39] are employed to implement SSA forecasting and the nonparametric repeated measure factorial test, respectively. We apply SSA to three versions of a dataset: a dataset without any transformation, a standardised dataset, and a log-transformed dataset. For each of the three datasets, we obtain RMSFE from out-of-sample forecasting at forecast horizons    h = 1 , 3 , 6 , 12   . It is noteworthy that our aim in this paper is to examine the effect of transformation in SSA forecasting. Thus, we consider the best forecast based on the RMSFE of the last 12 data points regardless of whether the forecast is from the recurrent or vector-based approach.



We also know that the window length m, the number of components k, and the forecasting methods (recurrent and vector) affect the forecasting outcome. Thus, we adopt a computationally intensive approach by considering combinations of m and k, and methods that provide the minimum RMSFE for the out-of-sample forecast for the last 12 data points. The RMSFEs obtained from the computationally intensive approach are given in Table A3, Table A4, Table A5 and Table A6.



Given that the best forecasting results are achieved by util ising a computationally intensive approach, we seek to identify the factors that can affect the RMSFE. In order to address this, we employ statistical tests described in Section 4.2. For each of the series with RMSFE reported in Table A3, Table A4, Table A5 and Table A6, we examine the characteristics of the time series by employing a statistical test, as described in Section 4.2. At this stage, we are ready with the inputs for nonparametric repeated measure factorial test to conduct testing on the treatment effect (data transformation) under different characteristics of these time series. Results obtained from the Wald type tests are provided in Table 2.



Based on the Wald-type test results in Table 2, we may conclude that, at the    α = 0.05    significance level,




	
normality does not affect SSA forecasting performance;



	
stationarity affects SSA forecasting performance in long-term forecasting (h = 12) but not at shorter horizons;



	
skewness and sampling (observation) frequency affect SSA forecasting performance;



	
transformation does not affect SSA forecasting performance, but the interaction between sampling frequencies and transformation is significant, which means the SSA performance is affected by transformation at some sampling frequencies.








The above findings are important in the practice for several reasons. First, in the real world, it is well known that most time series do not meet the assumption of normality. However, as the effect of normality and its interactions with transformations are not significant, when faced with normally distributed data, our findings indicate that there is no impact on the forecasting accuracy of SSA with or without data transformations. Furthermore, these findings also indicate that data transformations do not improve the forecast accuracy in non-normal data either. Secondly, we find that, when series are stationary, it affects the long-term forecasting accuracy of SSA. However, when generating short-term forecasts, the forecasting accuracy of SSA is not affected by stationarity. Thirdly, in reality, as most time series are skewed and increasingly found at varying frequencies (especially following the emergence of Big Data), these findings show that forecasters should remember that varying skewness and frequency of data are features indicative of the need for careful exploration of the use of SSA as the forecasts are sensitive to these features. In general, transformations are not required when forecasting with SSA, as there is no evidence of transformations impacting the SSA forecasting performance; however, there could be a significant impact at certain sampling frequencies. This indicates that, when modelling data with different frequencies, the sensitivity of SSA forecasts to such frequencies could potentially be controlled by transforming the input data.



Since the interaction between sampling frequency and transformation is significant, we explore the relative effect of frequencies on RMSFE. Figure 2 shows the effect plot of treatment (transformation) for different forecast horizons    h = 1 , 3 , 6 , 12   .



To explore the relative effects of sampling frequency for different forecast horizons, we plot the relative effect of frequencies in Figure 3 and Figure 4.



Sampling frequencies under investigation are hourly (F H), daily (F D), weekly (F W), monthly (F M), and annual (F A). When the relative effect plots in Figure 3 and Figure 4 are compared with the effect plots in Figure 2, we can evaluate how the hourly (F H), weekly (F W), quarterly (F Q), and annual (F A) sampling frequencies are affecting the forecasting performance of SSA. Moreover, the change in shape of the transform’s relative effects (e.g., see the difference between the shapes of “F Q” and “F H” lines in Figure 3 and Figure 4) suggests an interaction between transformation and sampling frequency.



We analyse the results by forecasting horizon. It can be seen in Figure 3 that, in very short-term forecasting (   h = 1   ), the standardisation produces a comparatively large RMSFE in quarterly frequencies, while the log transformation reports a slightly larger RMSFE at daily, quarterly, hourly, and annual frequencies. This indicates that users should certainly avoid transforming data with quarterly frequencies when forecasting at    h = 1    step ahead with SSA. In the short-term forecasting horizon (   h = 3   ) (see Figure 3), the smallest RMSFE belongs to standardisation for monthly frequencies, while standardisation has the largest RMSFE at quarterly frequencies. In mid- and long-term forecasting horizons (   h = 6    and 12), which are visible in Figure 4, the following can be seen. At    h = 6    steps ahead, standardisation produces the lowest RMSFE at monthly sampling frequencies, whilst it has the largest RMSFE in quarterly and weekly time series data. The log transformation produces higher RMSFEs at daily, hourly, and annual frequencies. Accordingly, the only instance when standardisation could produce better forecasts with SSA at this horizon is when faced with monthly data. At    h = 12    steps ahead, standardisation leads to better forecasts at daily frequencies, whilst log transformations can provide better forecasts with SSA at weekly frequencies.



Finally, these findings indicate that standardisation should only be used to transform data when forecasting with SSA at    h = 12    steps ahead at the daily frequency, at    h = 3    or    h = 6    steps ahead when dealing with a monthly frequency, and at    h = 1    step ahead when forecasting data with monthly or weekly frequencies. At the same time, standardisation should not be employed when forecasting quarterly data at any frequency, as it worsens the forecasting accuracy by comparatively larger margins. Interestingly, log transformations are only suggested when dealing with forecasting weekly data at    h = 6    or    h = 12    steps ahead. In the majority of the instances, SSA is able to provide superior forecasts without the need for data transformations when compared with time series following varied frequencies.




6. Concluding Remarks


This paper focused on evaluating the impact of data transformations on the forecasting performance of SSA, a nonparametric filtering and forecasting technique. Following a concise introduction, the paper introduces the SSA forecasting approaches followed by the transformation techniques considered here. Regardless of its popularity (and in contrast to other methods such as ARIMA and neural networks), there has been no empirical attempt to quantify the impact of data transformations on the forecasting capabilities of SSA. Accordingly, we consider the impact of standardisation and logarithmic transformations on the forecasting performance of both vector and recurrent forecasting in SSA. In order to ensure robustness within the analysis, we not only compare the forecasts using the RMSFE but also rely on a nonparametric repeated measure factorial test.



The forecast evaluation is based on 100 time series with varying characteristics in terms of frequencies, skewness, normality, and stationarity. Following the application of SSA to three versions of the same dataset, i.e. the original data, standardised data, and log transformed data, we generate out-of-sample forecasts at horizons of 1, 3, 6, and 12 steps ahead. Our findings indicate that, in general, data transformations do not affect SSA forecasts. However, the interaction between sampling frequency and transformations are found to be significant, indicating that data transformations are significant at certain sampling frequencies.



According to the results of this study, in time series with a higher sampling frequency (i.e. daily or hourly data), standardisation can improve SSA forecasting accuracy in the very long term at daily frequencies only. On the other hand, in time series with low sampling frequencies (i.e. quarterly and annual), neither logarithmic transformation nor standardisation is suitable across all horizons. In other time series’ sampling frequencies (weekly and monthly), data transformation with standardisation can affect all forecasting horizons (except    h = 12   ) when faced with monthly data and at    h = 1    step ahead when faced with weekly data. The results also show improvement in forecasting accuracy in weekly data with logarithmic transformations at    h = 6    and    h = 12    steps ahead. These findings provide additional guidance to forecasters, researchers, and practitioners alike in terms of improving the accuracy of forecasts when modelling data with SSA.



Future research should consider the relative gains of suggested data transformations at different sampling frequencies in relation to other benchmark forecasting models as well as theories explaining the mechanism of these effects in detail. Moreover, the development of automated SSA forecasting algorithms could be informed by the findings of this paper to ensure that data transformations are conducted prior to forecasting at selected sample frequencies.
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Table A1. List of 100 real time series.






Table A1. List of 100 real time series.





	Code
	Name of Time Series





	A001
	US Economic Statistics: Capacity Utilization.



	A002
	Births by months 1853–2012.



	A003
	Electricity: electricity net generation: total (all sectors).



	A004
	Energy prices: average retail prices of electricity.



	A005
	Coloured fox fur returns, Hopedale, Labrador, 1834–1925.



	A006
	Alcohol demand (log spirits consumption per head), UK, 1870–1938.



	A007
	Monthly Sutter county workforce, Jan. 1946–Dec. 1966 priesema (1979).



	A008
	Exchange rates—monthly data: Japanese yen.



	A009
	Exchange rates—monthly data: Pound sterling.



	A010
	Exchange rates—monthly data: Romanian leu.



	A011
	HICP (2005 = 100)—monthly data (annual rate of change): European Union (27 countries).



	A012
	HICP (2005 = 100)—monthly data (annual rate of change): UK.



	A013
	HICP (2005 = 100)—monthly data (annual rate of change): US.



	A014
	New Homes Sold in the United States.



	A015
	Goods, Value of Exports for United States.



	A016
	Goods, Value of Imports for United States.



	A017
	Market capitalisation—monthly data: UK.



	A018
	Market capitalisation—monthly data: US.



	A019
	Average monthly temperatures across the world (1701–2011): Bournemouth.



	A020
	Average monthly temperatures across the world (1701–2011): Eskdalemuir.



	A021
	Average monthly temperatures across the world (1701–2011): Lerwick.



	A022
	Average monthly temperatures across the world (1701–2011): Valley.



	A023
	Average monthly temperatures across the world (1701–2011): Death Valley.



	A024
	US Economic Statistics: Personal Savings Rate.



	A025
	Economic Policy Uncertainty Index for United States (Monthly Data).



	A026
	Coal Production, Total for Germany.



	A027
	Coke, Beehive Production (by Statistical Area).



	A028
	Monthly champagne sales (in 1000’s) (p. 273: Montgomery: Fore. and T.S.).



	A029
	Domestic Auto Production.



	A030
	Index of Cotton Textile Production for France.



	A031
	Index of Production of Chemical Products (by Statistical Area).



	A032
	Index of Production of Leather Products (by Statistical Area).



	A033
	Index of Production of Metal Products (by Statistical Area).



	A034
	Index of Production of Mineral Fuels (by Statistical Area).



	A035
	Industrial Production Index.



	A036
	Knit Underwear Production (by Statistical Area).



	A037
	Lubricants Production for United States.



	A038
	Silver Production for United States.



	A039
	Slab Zinc Production (by Statistical Area).



	A040
	Annual domestic sales and advertising of Lydia E, Pinkham Medicine, 1907 to 1960.



	A041
	Chemical concentration readings.



	A042
	Monthly Boston armed robberies January 1966-October 1975 Deutsch and Alt (1977).



	A043
	Monthly Minneapolis public drunkenness intakes Jan.’66–Jul’78.



	A044
	Motor vehicles engines and parts/CPI, Canada, 1976–1991.



	A045
	Methane input into gas furnace: cu. ft/min. Sampling interval 9 s.



	A046
	Monthly civilian population of Australia: thousand persons. February 1978–April 1991.



	A047
	Daily total female births in California, 1959.



	A048
	Annual immigration into the United States: thousands. 1820–1962.



	A049
	Monthly New York City births: unknown scale. January 1946–December 1959.



	A050
	Estimated quarterly resident population of Australia: thousand persons.



	A051
	Annual Swedish population rates (1000’s) 1750–1849 Thomas (1940).



	A052
	Industry sales for printing and writing paper (in Thousands of French francs).



	A053
	Coloured fox fur production, Hebron, Labrador, 1834–1925.



	A054
	Coloured fox fur production, Nain, Labrador, 1834–1925.



	A055
	Coloured fox fur production, oak, Labrador, 1834–1925.



	A056
	Monthly average daily calls to directory assistance Jan.’62–Dec’76.



	A057
	Monthly Av. residential electricity usage Iowa city 1971–1979.



	A058
	Montly av. residential gas usage Iowa (cubic feet) * 100 ’71–’79.



	A059
	Monthly precipitation (in mm), January 1983–April 1994. London, United Kingdom.



	A060
	Monthly water usage (ml/day), London Ontario, 1966–1988.



	A061
	Quarterly production of Gas in Australia: million megajoules. Includes natural gas from July 1989. March 1956–September 1994.



	A062
	Residential water consumption, Jan 1983–April 1994. London, United Kingdom.



	A063
	The total generation of electricity by the U.S. electric industry (monthly data for the period Jan. 1985–Oct. 1996).



	A064
	Total number of water consumers, January 1983–April 1994. London, United Kingdom.



	A065
	Monthly milk production: pounds per cow. January 62–December 75.



	A066
	Monthly milk production: pounds per cow. January 62–December 75, adjusted for month length.



	A067
	Monthly total number of pigs slaughtered in Victoria. January 1980–August 1995.



	A068
	Monthly demand repair parts large/heavy equip. Iowa 1972–1979.



	A069
	Number of deaths and serious injuries in UK road accidents each month. January 1969–December 1984.



	A070
	Passenger miles (Mil) flown domestic U.K. Jul. ’62–May ’72.



	A071
	Monthly hotel occupied room av. ’63–’76 B.L.Bowerman et al.



	A072
	Weekday bus ridership, Iowa city, Iowa (monthly averages).



	A073
	Portland Oregon average monthly bus ridership (/100).



	A074
	U.S. airlines: monthly aircraft miles flown (Millions) 1963–1970.



	A075
	International airline passengers: monthly totals in thousands. January 49–December 60.



	A076
	Sales: souvenir shop at a beach resort town in Queensland, Australia. January 1987–December 1993.



	A077
	Der Stern: Weekly sales of wholesalers A, ’71–’72.



	A078
	Der Stern: Weekly sales of wholesalers B, ’71–’72’



	A079
	Der Stern: Weekly sales of wholesalers ’71–’72.



	A080
	Monthly sales of U.S. houses (thousands) 1965–1975.



	A081
	CFE specialty writing papers monthly sales.



	A082
	Monthly sales of new one-family houses sold in USA since 1973.



	A083
	Wisconsin employment time series, food and kindred products, January 1961–October 1975.



	A084
	Monthly gasoline demand Ontario gallon millions 1960–1975.



	A085
	Wisconsin employment time series, fabricated metals, January 1961–October 1975.



	A086
	Monthly empolyees wholes./retail Wisconsin ’61–’75 R.B.Miller.



	A087
	US monthly sales of chemical related products. January 1971–December 1991.



	A088
	US monthly sales of coal related products. January 1971–December 1991.



	A089
	US monthly sales of petrol related products. January 1971–December 1991.



	A090
	US monthly sales of vehicle related products. January 1971–December 1991.



	A091
	Civilian labour force in Australia each month: thousands of persons. February 1978–August 1995.



	A092
	Numbers on Unemployment Benefits in Australia: monthly January 1956–July 1992.



	A093
	Monthly Canadian total unemployment figures (thousands) 1956–1975.



	A094
	Monthly number of unemployed persons in Australia: thousands. February 1978–April 1991.



	A095
	Monthly U.S. female (20 years and over) unemployment figures 1948–1981.



	A096
	Monthly U.S. female (16–19 years) unemployment figures (thousands) 1948–1981.



	A097
	Monthly unemployment figures in West Germany 1948–1980.



	A098
	Monthly U.S. male (20 years and over) unemployment figures 1948–1981.



	A099
	Wisconsin employment time series, transportation equipment, January 1961–October 1975.



	A100
	Monthly U.S. male (16–19 years) unemployment figures (thousands) 1948–1981.
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Table A2. Descriptives for the 100 time series.






Table A2. Descriptives for the 100 time series.





	Code
	F
	N
	Mean
	Med.
	SD
	CV
	Skew.
	SW(p)
	ADF
	Code
	F
	N
	Mean
	Med.
	SD
	CV
	Skew.
	SW(p)
	ADF





	A001
	M
	539
	80
	80
	5
	6
	−0.55
	<0.01
	−0.60     †   
	A002
	M
	1920
	271
	249
	88
	33
	0.16
	<0.01
	−1.82     †   



	A003
	M
	484
	2.59 × 10    5   
	2.61 × 10    5   
	6.88 × 10    5   
	27
	0.15
	<0.01
	−0.90     †   
	A004
	M
	310
	7
	7
	2
	28
	−0.24
	<0.01
	0.56     †   



	A005
	D
	92
	47.63
	31.00
	47.33
	99.36
	2.27
	<0.01
	−3.16
	A006
	Q
	207
	1.95
	1.98
	0.25
	12.78
	−0.58
	<0.01
	0.46     †   



	A007
	M
	252
	2978
	2741
	1111
	37.32
	0.79
	<0.01
	−0.80     †   
	A008
	M
	160
	128
	128
	19
	15
	0.34
	<0.01
	−0.59     †   



	A009
	M
	160
	0.72
	0.69
	0.10
	13
	0.66
	<0.01
	0.53     †   
	A010
	M
	160
	3.41
	3.61
	0.83
	24
	−0.92
	<0.01
	1.58     †   



	A011
	M
	201
	4.7
	2.6
	5.0
	106
	2.24
	<0.01
	−2.66
	A012
	M
	199
	2.1
	1.9
	1.0
	49
	0.92
	<0.01
	−0.79     †   



	A013
	M
	176
	2.5
	2.4
	1.6
	66
	−0.52
	<0.01
	−2.27     †   
	A014
	M
	606
	55
	53
	20
	35
	0.79
	<0.01
	−1.41     †   



	A015
	M
	672
	3.39
	1.89
	3.48
	103
	1.09
	<0.01
	2.46     †   
	A016
	M
	672
	5.18
	2.89
	5.78
	111
	1.13
	<0.01
	1.91     †   



	A017
	M
	249
	130
	130
	24
	19
	0.35
	<0.01
	0.24    †   
	A018
	M
	249
	112
	114
	25
	22
	−0.01
	0.01*
	0.06     †   



	A019
	M
	605
	10.1
	9.6
	4.5
	44
	0.05
	<0.01
	−4.77
	A020
	M
	605
	7.3
	6.9
	4.3
	59
	0.04
	<0.01
	−6.07



	A021
	M
	605
	7.2
	6.8
	3.3
	46
	0.13
	<0.01
	−4.93
	A022
	M
	605
	10.3
	9.9
	3.8
	37
	0.04
	<0.01
	−4.19



	A023
	M
	605
	24
	24
	10
	40
	−0.02
	<0.01
	−7.15
	A024
	M
	636
	6.9
	7.4
	2.6
	38
	−0.29
	<0.01
	−1.18     †   



	A025
	M
	343
	108
	100
	33
	30
	0.99
	<0.01
	−1.23     †   
	A026
	M
	277
	11.7
	11.9
	2.3
	20
	−0.16
	0.06 *
	−0.40     †   



	A027
	M
	171
	0.21
	0.13
	0.19
	88
	1.26
	<0.01
	−1.81     †   
	A028
	M
	96
	4801
	4084
	2640
	54.99
	1.55
	<0.01
	−1.66     †   



	A029
	M
	248
	391
	385
	116
	30
	−0.03
	0.08 *
	−1.22     †   
	A030
	M
	139
	89
	92
	12
	13
	−0.82
	<0.01
	−0.28     †   



	A031
	M
	121
	134
	138
	27
	20
	0.05
	<0.01
	1.51     †   
	A032
	M
	153
	113
	114
	10
	9
	−0.29
	0.45 *
	−0.52     †   



	A033
	M
	115
	117
	118
	17
	15
	−0.29
	0.03 *
	−0.46     †   
	A034
	M
	115
	110
	111
	11
	10
	−0.53
	0.02 *
	0.30     †   



	A035
	M
	1137
	40
	34
	31
	78
	0.56
	<0.01
	5.14    †   
	A036
	M
	165
	1.08
	1.10
	0.20
	18.37
	−1.15
	<0.01
	−0.59     †   



	A037
	M
	479
	3.04
	2.83
	1.02
	33.60
	0.46
	<0.01
	0.61     †   
	A038
	M
	283
	9.39
	10.02
	2.27
	24.15
	−0.80
	<0.01
	−1.01     †   



	A039
	M
	452
	54
	52
	19
	36
	−0.15
	<0.01
	0.08     †   
	A040
	Q
	108
	1382
	1206
	684
	49.55
	0.83
	<0.01
	−0.80     †   



	A041
	H
	197
	17.06
	17.00
	0.39
	2.34
	0.15
	0.21 *
	0.09     †   
	A042
	M
	118
	196.3
	166.0
	128.0
	65.2
	0.45
	<0.01
	0.41     †   



	A043
	M
	151
	391.1
	267.0
	237.49
	60.72
	0.43
	<0.01
	−1.17     †   
	A044
	M
	188
	1344
	1425
	479.1
	35.6
	−0.41
	<0.01
	−1.28     †   



	A045
	H
	296
	−0.05
	0.00
	1.07
	−1887
	−0.05
	0.55 *
	−7.66
	A046
	M
	159
	11890
	11830
	882.93
	7.42
	0.12
	<0.01
	5.71



	A047
	D
	365
	41.98
	42.00
	7.34
	17.50
	0.44
	<0.01
	−1.07     †   
	A048
	A
	143
	2.5 × 10    5   
	2.2 × 10    5   
	2.1 × 10    5   
	83.19
	1.06
	<0.01
	−2.63



	A049
	M
	168
	25.05
	24.95
	2.31
	9.25
	−0.02
	0.02 *
	0.07     †   
	A050
	Q
	89
	15274
	15184
	1358
	8.89
	0.19
	<0.01
	9.72     †   



	A051
	A
	100
	6.69
	7.50
	5.88
	87.87
	−2.45
	<0.01
	−3.06
	A052
	M
	120
	713
	733
	174
	24.39
	−1.09
	<0.01
	−0.78     †   



	A053
	A
	91
	81.58
	46.00
	102.07
	125.11
	2.80
	<0.01
	−3.44
	A054
	A
	91
	101.80
	77.00
	92.14
	90.51
	1.43
	<0.01
	−3.38



	A055
	A
	91
	59.45
	39.00
	60.42
	101.63
	1.56
	<0.01
	−3.99
	A056
	M
	180
	492.50
	521.50
	189.54
	38.48
	−0.17
	<0.01
	−0.65     †   



	A057
	M
	106
	489.73
	465.00
	93.34
	19.06
	0.92
	<0.01
	−1.21     †   
	A058
	M
	106
	124.71
	94.50
	84.15
	67.48
	0.52
	<0.01
	−3.88



	A059
	M
	136
	85.66
	80.25
	37.54
	43.83
	0.91
	<0.01
	−1.88     †   
	A060
	M
	276
	118.61
	115.63
	26.39
	22.24
	0.86
	<0.01
	−0.47     †   



	A061
	Q
	155
	61728
	47976
	53907
	87.33
	0.44
	<0.01
	0.06     †   
	A062
	M
	136
	5.72 × 10    7   
	5.53 × 10    7   
	1.2 × 10    7   
	21.51
	1.13
	<0.01
	−0.84    †   



	A063
	M
	142
	231.09
	226.73
	24.37
	10.55
	0.52
	0.01
	−0.39     †   
	A064
	M
	136
	31388
	31251
	3232
	10.30
	0.25
	0.22 *
	−0.16     †   



	A065
	M
	156
	754.71
	761.00
	102.20
	13.54
	0.01
	0.04 *
	0.04     †   
	A066
	M
	156
	746.49
	749.15
	98.59
	13.21
	0.08
	0.04 *
	−0.38     †   



	A067
	M
	188
	90640
	91661
	13926
	15.36
	−0.38
	0.01 *
	−0.38     †   
	A068
	M
	94
	1540
	1532
	474.35
	30.79
	0.38
	0.05 *
	0.54     †   



	A069
	M
	192
	1670
	1631
	289.61
	17.34
	0.53
	<0.01
	−0.74     †   
	A070
	M
	119
	91.09
	86.20
	32.80
	36.01
	0.34
	<0.01
	−1.93     †   



	A071
	M
	168
	722.30
	709.50
	142.66
	19.75
	0.72
	<0.01
	−0.52     †   
	A072
	W
	136
	5913
	5500
	1784
	30.17
	0.67
	<0.01
	−0.68     †   



	A073
	M
	114
	1120
	1158
	270.89
	24.17
	−0.37
	<0.01
	0.76     †   
	A074
	M
	96
	10385
	10401
	2202
	21.21
	0.33
	0.18 *
	−0.13     †   



	A075
	M
	144
	280.30
	265.50
	119.97
	42.80
	0.57
	<0.01
	−0.35     †   
	A076
	M
	84
	14315
	8771
	15748
	110
	3.37
	<0.01
	−0.29     †   



	A077
	W
	104
	11909
	11640
	1231
	10.34
	0.60
	<0.01
	−0.16     †   
	A078
	W
	104
	74636
	73600
	4737
	6.35
	0.64
	<0.01
	−0.59     †   



	A079
	W
	104
	1020
	1012
	71.78
	7.03
	0.60
	0.01 *
	−0.41     †   
	A080
	M
	132
	45.36
	44.00
	10.38
	22.88
	0.17
	0.15 *
	−0.81     †   



	A081
	M
	147
	1745
	1730
	479.52
	27.47
	−0.39
	<0.01
	−1.15     †   
	A082
	M
	275
	52.29
	53.00
	11.94
	22.83
	0.18
	0.13 *
	−1.30     †   



	A083
	M
	178
	58.79
	55.80
	6.68
	11.36
	0.93
	<0.01
	−0.92     †   
	A084
	M
	192
	1.62 × 10    5   
	1.57 × 10    5   
	41661
	25.71
	0.32
	<0.01
	0.25     †   



	A085
	M
	178
	40.97
	41.50
	5.11
	12.47
	−0.07
	<0.01
	1.45     †   
	A086
	M
	178
	307.56
	308.35
	46.76
	15.20
	0.17
	<0.01
	1.51     †   



	A087
	M
	252
	13.70
	14.08
	6.13
	44.73
	0.16
	<0.01
	1.13     †   
	A088
	M
	252
	65.67
	68.20
	14.25
	21.70
	−0.53
	<0.01
	−0.53     †   



	A089
	M
	252
	10.76
	10.92
	5.11
	47.50
	−0.19
	<0.01
	−0.05     †   
	A090
	M
	252
	11.74
	11.05
	5.11
	43.54
	0.38
	<0.01
	−0.88     †   



	A091
	M
	211
	7661
	7621
	819
	10.70
	0.03
	<0.01
	3.27     †   
	A092
	M
	439
	2.21 × 10    5   
	5.67 × 10    4   
	2.35 × 10    5   
	106.32
	0.77
	<0.01
	1.61     †   



	A093
	M
	240
	413.28
	396.50
	152.84
	36.98
	0.36
	<0.01
	−1.60     †   
	A094
	M
	211
	6787
	6528
	604.62
	8.91
	0.56
	<0.01
	2.69     †   



	A095
	M
	408
	1373
	1132
	686.05
	49.96
	0.91
	<0.01
	0.60     †   
	A096
	M
	408
	422.38
	342.00
	252.86
	59.87
	0.65
	<0.01
	−1.95     †   



	A097
	M
	396
	7.14 × 10    5   
	5.57 × 10    5   
	5.64 × 10    5   
	78.97
	0.79
	<0.01
	−2.51     †   
	A098
	M
	408
	1937
	1825
	794
	41.04
	0.64
	<0.01
	−1.15     †   



	A099
	M
	178
	40.60
	40.50
	4.95
	12.19
	−0.65
	<0.01
	−0.10     †   
	A100
	M
	408
	520.28
	425.50
	261.22
	50.21
	0.64
	<0.01
	−1.65     †   







Note: * indicates data is normally distributed based on a Shapiro-Wilk test at p = 0.01. † indicates a nonstationary time series based on the augmented Dickey-Fuller test at p = 0.01. A indicates annual, M indicates monthly, Q indicates quarterly, W indicates weekly, D indicates daily and H indicates hourly. N indicates series length.
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Table A3. Out-of-sample forecasting RMSFE.
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Series’

	
h = 1

	
h = 3

	




	
Code

	
NT

	
Std

	
Log

	
NT

	
Std

	
Log






	
A001

	
1.283

	
0.542

	
1.144

	
1.884

	
1.157

	
1.715




	
A002

	
36.275

	
35.019

	
28.844

	
36.991

	
35.900

	
30.741




	
A003

	
12,521.688

	
13,643.067

	
13,616.737

	
16,041.250

	
16,584.228

	
17,449.138




	
A004

	
0.250

	
0.150

	
0.139

	
0.792

	
0.354

	
0.333




	
A005

	
61.625

	
61.548

	
60.476

	
53.906

	
53.268

	
58.074




	
A006

	
0.068

	
0.063

	
0.067

	
0.100

	
0.107

	
0.099




	
A007

	
338.358

	
511.055

	
288.753

	
511.033

	
560.970

	
331.925




	
A008

	
7.129

	
5.667

	
7.505

	
19.200

	
16.096

	
17.845




	
A009

	
0.042

	
0.040

	
0.042

	
0.051

	
0.051

	
0.051




	
A010

	
0.122

	
0.107

	
0.155

	
0.268

	
0.306

	
0.417




	
A011

	
0.338

	
0.229

	
0.286

	
0.831

	
0.407

	
0.560




	
A012

	
0.984

	
0.963

	
1.049

	
1.374

	
1.410

	
1.386




	
A013

	
1.345

	
1.101

	
1.395

	
3.141

	
2.971

	
7.484




	
A014

	
8.096

	
6.829

	
6.410

	
9.515

	
9.810

	
9.638




	
A015

	
7.24 × 10    9   

	
6.45 × 10    9   

	
6.31 × 10    9   

	
1.1 × 10    10   

	
8.45 × 10    9   

	
7.08 × 10    9   




	
A016

	
1.28 × 10    10   

	
1.46 × 10    10   

	
1.56 × 10    10   

	
1.76 × 10    10   

	
1.74 × 10    10   

	
1.81 × 10    10   




	
A017

	
12.423

	
9.066

	
Inf

	
19.782

	
15.435

	
Inf




	
A018

	
7.950

	
8.093

	
10.205

	
15.132

	
12.983

	
16.137




	
A019

	
1.429

	
1.425

	
1.375

	
1.531

	
1.510

	
1.469




	
A020

	
1.319

	
1.389

	
1.669

	
1.363

	
1.482

	
1.429




	
A021

	
1.070

	
1.076

	
1.051

	
1.129

	
1.147

	
1.122




	
A022

	
1.133

	
1.209

	
1.152

	
1.280

	
1.270

	
1.275




	
A023

	
6.097

	
5.936

	
5.309

	
6.551

	
6.674

	
5.980




	
A024

	
0.959

	
0.771

	
0.954

	
1.067

	
0.971

	
1.096




	
A025

	
22.689

	
26.924

	
56.529

	
26.056

	
43.196

	
49.542




	
A026

	
1.174

	
1.212

	
2.490

	
1.686

	
1.787

	
3.475




	
A027

	
0.050

	
0.100

	
0.064

	
0.114

	
0.509

	
0.226




	
A028

	
4137.576

	
4218.129

	
4038.143

	
4474.756

	
4199.967

	
4183.622




	
A029

	
59.124

	
44.474

	
52.390

	
62.490

	
69.349

	
78.321




	
A030

	
15.207

	
31.175

	
16.755

	
24.388

	
51.218

	
32.464




	
A031

	
8.783

	
5.662

	
8.633

	
80.118

	
8.464

	
18.103




	
A032

	
9.779

	
10.315

	
9.972

	
12.431

	
13.093

	
12.748




	
A033

	
5.820

	
5.432

	
5.791

	
9.729

	
8.527

	
10.148




	
A034

	
3.061

	
2.785

	
3.320

	
5.796

	
5.286

	
6.157




	
A035

	
0.965

	
1.455

	
5.973

	
1.536

	
2.155

	
6.234




	
A036

	
0.151

	
0.175

	
0.186

	
0.169

	
0.279

	
0.249




	
A037

	
0.293

	
0.310

	
0.308

	
0.417

	
0.395

	
0.368




	
A038

	
1.923

	
1.243

	
3.462

	
2.427

	
1.370

	
2.474




	
A039

	
4.853

	
3.508

	
5.107

	
7.494

	
6.099

	
9.125




	
A040

	
489.909

	
614.577

	
717.710

	
815.463

	
785.927

	
929.787




	
A041

	
0.329

	
0.322

	
0.328

	
0.390

	
0.408

	
0.389




	
A042

	
68.459

	
82.182

	
67.108

	
132.417

	
212.367

	
118.468




	
A043

	
33.081

	
33.066

	
33.750

	
41.996

	
40.189

	
43.350




	
A044

	
420.634

	
389.750

	
545.116

	
538.590

	
552.070

	
726.264




	
A045

	
0.522

	
0.522

	
0.886

	
0.999

	
0.998

	
1.297




	
A046

	
15.552

	
1.906

	
1.169

	
18.721

	
5.275

	
3.773




	
A047

	
8.206

	
8.222

	
11.116

	
8.679

	
8.640

	
10.166




	
A048

	
3.15 × 10    5   

	
1.66 × 10    5   

	
1.79 × 10    7   

	
3.82 × 10    5   

	
1.95 × 10    5   

	
595,729.790




	
A049

	
1.189

	
1.248

	
1.199

	
1.277

	
1.377

	
1.285




	
A050

	
18.038

	
128.254

	
17.562

	
37.219

	
295.980

	
35.731








NT = No Transformation, Std = Standardisation, and Log = Logarithmic.
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Table A4. Out-of-sample forecasting RMSFE (Continuation).






Table A4. Out-of-sample forecasting RMSFE (Continuation).





	
Series’

	
h = 1

	
h = 3




	
Code

	
NT

	
Std

	
Log

	
NT

	
Std

	
Log






	
A051

	
3.983

	
3.976

	
4.003

	
5.694

	
5.612

	
5.605




	
A052

	
272.279

	
276.113

	
574.713

	
268.784

	
271.246

	
445.832




	
A053

	
35.559

	
39.680

	
36.963

	
26.795

	
32.500

	
31.927




	
A054

	
124.519

	
89.800

	
125.412

	
110.606

	
88.796

	
107.684




	
A055

	
43.121

	
37.090

	
44.808

	
34.715

	
37.302

	
40.039




	
A056

	
266.333

	
99.502

	
1.43E+12

	
287.931

	
214.556

	
9.42 × 10    88   




	
A057

	
125.600

	
84.462

	
126.023

	
131.253

	
92.122

	
129.780




	
A058

	
38.474

	
35.384

	
71.104

	
119.964

	
99.107

	
139.656




	
A059

	
44.950

	
41.240

	
45.696

	
45.079

	
40.224

	
45.094




	
A060

	
7.598

	
8.085

	
7.845

	
8.248

	
9.090

	
8.709




	
A061

	
6819.116

	
7597.052

	
23,730.348

	
10,097.877

	
11,645.535

	
16,058.889




	
A062

	
8.44 × 10    6   

	
7.04 × 10    6   

	
1.37 × 10    7   

	
1.42 × 10    7   

	
8.94 × 10    6   

	
1.76 × 10    7   




	
A063

	
21.829

	
21.831

	
13.583

	
26.600

	
26.655

	
10.258




	
A064

	
4393.038

	
3077.310

	
4376.077

	
5016.437

	
2925.211

	
4980.827




	
A065

	
28.982

	
11.405

	
27.430

	
30.717

	
16.662

	
30.903




	
A066

	
12.033

	
10.131

	
15.854

	
19.196

	
16.703

	
28.192




	
A067

	
11,923.554

	
11,039.522

	
10,617.132

	
17,077.208

	
13,448.762

	
13,328.422




	
A068

	
362.752

	
357.340

	
369.231

	
462.893

	
433.739

	
473.690




	
A069

	
160.579

	
203.037

	
208.287

	
203.002

	
208.562

	
230.166




	
A070

	
14.483

	
13.741

	
14.152

	
29.635

	
26.206

	
29.278




	
A071

	
26.793

	
27.217

	
23.647

	
27.381

	
33.930

	
25.245




	
A072

	
1379.200

	
1382.348

	
1472.325

	
1565.464

	
1624.687

	
1401.969




	
A073

	
69.327

	
69.141

	
68.699

	
122.183

	
114.652

	
115.324




	
A074

	
3294.883

	
2015.225

	
3445.829

	
3741.524

	
2288.009

	
3749.168




	
A075

	
48.901

	
59.574

	
58.507

	
41.848

	
117.860

	
64.366




	
A076

	
25,153.667

	
29,044.831

	
19,684.339

	
35,607.579

	
58,525.282

	
21,322.355




	
A077

	
394.752

	
387.456

	
395.114

	
873.390

	
813.589

	
836.260




	
A078

	
701.741

	
1275.259

	
790.650

	
1805.609

	
4921.674

	
1802.354




	
A079

	
35.709

	
34.064

	
35.661

	
45.108

	
43.559

	
45.010




	
A080

	
8.947

	
7.183

	
9.725

	
13.505

	
11.505

	
19.930




	
A081

	
498.376

	
530.862

	
473.551

	
380.003

	
447.889

	
438.681




	
A082

	
9.233

	
7.292

	
5.204

	
11.262

	
9.342

	
6.710




	
A083

	
1.291

	
1.137

	
1.225

	
1.621

	
1.477

	
1.518




	
A084

	
21,495.185

	
9111.162

	
11,832.143

	
32,355.027

	
9641.016

	
11,414.744




	
A085

	
0.883

	
0.862

	
0.641

	
2.054

	
1.640

	
1.273




	
A086

	
3.725

	
2.874

	
3.613

	
5.016

	
4.500

	
4.665




	
A087

	
1.035

	
1.273

	
0.768

	
1.408

	
1.958

	
1.148




	
A088

	
7.109

	
7.672

	
6.258

	
5.385

	
7.010

	
5.581




	
A089

	
0.862

	
1.170

	
1.025

	
2.248

	
2.282

	
2.331




	
A090

	
2.164

	
2.428

	
2.081

	
2.755

	
2.609

	
2.373




	
A091

	
240.568

	
124.286

	
129.086

	
1376.708

	
148.271

	
160.964




	
A092

	
3.35 × 10    31   

	
31,233.891

	
16,483.627

	
2.38× 10    32   

	
71,880.798

	
40,209.373




	
A093

	
63.119

	
5.79× 10    25   

	
54.632

	
300.893

	
1.35× 10    26   

	
76.301




	
A094

	
44,254.670

	
66,245.621

	
66,414.588

	
76,182.034

	
86,009.422

	
91,714.035




	
A095

	
136.663

	
139.571

	
144.039

	
287.480

	
311.372

	
265.696




	
A096

	
58.558

	
80.578

	
67.889

	
65.715

	
79.429

	
70.496




	
A097

	
1.42× 10    5   

	
144,364.409

	
143,654.990

	
192,501.733

	
182,442.168

	
192,581.617




	
A098

	
441.676

	
476.749

	
173.231

	
691.051

	
595.127

	
372.177




	
A099

	
3.199

	
3.168

	
4.478

	
3.236

	
3.075

	
5.052




	
A100

	
79.931

	
90.467

	
79.684

	
132.074

	
118.099

	
109.238








NT = No Transformation, Std = Standardisation, and Log = Logarithmic.
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Table A5. Out-of-sample forecasting RMSFE (Continuation).






Table A5. Out-of-sample forecasting RMSFE (Continuation).





	
Series’

	
h = 6

	
h = 12




	
Code

	
NT

	
Std

	
Log

	
NT

	
Std

	
Log






	
A001

	
3.083

	
2.326

	
2.919

	
5.593

	
4.355

	
5.503




	
A002

	
37.593

	
36.769

	
33.318

	
39.847

	
38.221

	
37.346




	
A003

	
16,770.672

	
17,357.863

	
16,657.420

	
15,925.414

	
18,493.303

	
16,868.789




	
A004

	
0.709

	
0.455

	
0.446

	
0.715

	
0.639

	
0.585




	
A005

	
63.208

	
61.157

	
63.065

	
61.792

	
60.274

	
61.740




	
A006

	
0.140

	
0.144

	
0.138

	
0.209

	
0.194

	
0.204




	
A007

	
642.282

	
522.970

	
388.967

	
613.790

	
550.802

	
482.934




	
A008

	
36.757

	
22.657

	
32.054

	
31.678

	
25.325

	
31.028




	
A009

	
0.063

	
0.064

	
0.063

	
0.091

	
0.092

	
0.091




	
A010

	
0.381

	
0.489

	
0.515

	
0.492

	
0.908

	
2.268




	
A011

	
0.964

	
0.817

	
0.689

	
0.929

	
1.592

	
0.977




	
A012

	
1.856

	
1.994

	
1.782

	
2.536

	
2.947

	
2.197




	
A013

	
4.561

	
3.983

	
142.109

	
3.901

	
3.624

	
2.37 × 10    7   




	
A014

	
10.397

	
9.917

	
10.106

	
13.580

	
12.915

	
13.602




	
A015

	
1.92 × 10    10   

	
1.12 × 10    10   

	
8.94 × 10    9   

	
2.86 × 10    10   

	
1.65 × 10    10   

	
1.14 × 10    10   




	
A016

	
2.44 × 10    10   

	
2.09 × 10    10   

	
2.15 × 10    10   

	
4.10 × 10    10   

	
2.70 × 10    10   

	
2.80 × 10    10   




	
A017

	
30.286

	
23.902

	
Inf

	
46.368

	
28.383

	
Inf




	
A018

	
21.450

	
19.146

	
20.342

	
34.721

	
21.988

	
28.244




	
A019

	
1.555

	
1.436

	
1.447

	
1.517

	
1.476

	
1.511




	
A020

	
1.330

	
1.391

	
1.435

	
1.387

	
1.440

	
1.557




	
A021

	
1.138

	
1.134

	
1.092

	
1.126

	
1.134

	
1.166




	
A022

	
1.265

	
1.239

	
1.287

	
1.321

	
1.265

	
1.273




	
A023

	
6.861

	
6.813

	
6.278

	
7.870

	
7.750

	
7.283




	
A024

	
1.198

	
1.293

	
1.283

	
1.396

	
1.943

	
1.555




	
A025

	
29.947

	
44.077

	
78.266

	
33.726

	
57.839

	
467.347




	
A026

	
2.515

	
3.076

	
4.651

	
2.847

	
4.475

	
5.937




	
A027

	
0.152

	
13.916

	
0.486

	
0.180

	
12187.788

	
0.889




	
A028

	
4436.727

	
4208.136

	
3995.665

	
2687.645

	
3283.876

	
2860.657




	
A029

	
70.063

	
104.764

	
108.981

	
80.046

	
153.812

	
222.842




	
A030

	
40.923

	
103.102

	
82.010

	
50.163

	
1302.044

	
200.370




	
A031

	
1557.631

	
12.751

	
9.338

	
2.16E+25

	
16.890

	
348,877.932




	
A032

	
15.136

	
13.364

	
14.781

	
20.471

	
11.586

	
19.519




	
A033

	
16.619

	
11.811

	
14.619

	
338.296

	
212.221

	
31,730.543




	
A034

	
10.100

	
9.151

	
11.136

	
27.066

	
16.203

	
24.326




	
A035

	
2.554

	
3.283

	
6.623

	
4.415

	
5.513

	
7.378




	
A036

	
0.190

	
0.179

	
0.199

	
0.259

	
0.241

	
0.237




	
A037

	
0.542

	
0.494

	
0.467

	
0.706

	
0.795

	
0.771




	
A038

	
2.077

	
1.588

	
2.504

	
4.153

	
2.112

	
3.248




	
A039

	
9.958

	
7.750

	
15.538

	
12.330

	
9.615

	
27.556




	
A040

	
1185.420

	
967.918

	
1187.496

	
1781.242

	
1087.955

	
1476.007




	
A041

	
0.437

	
0.491

	
0.437

	
0.537

	
0.630

	
0.536




	
A042

	
282.364

	
652.016

	
211.125

	
1844.972

	
4.31 × 10    6   

	
488.603




	
A043

	
68.250

	
65.163

	
82.580

	
114.347

	
100.176

	
263.026




	
A044

	
467.834

	
637.165

	
587.869

	
511.228

	
585.946

	
626.670




	
A045

	
1.422

	
1.419

	
1.661

	
1.334

	
1.329

	
1.570




	
A046

	
23.722

	
11.922

	
9.536

	
35.328

	
28.669

	
19.088




	
A047

	
8.883

	
8.557

	
10.191

	
9.115

	
8.849

	
9.983




	
A048

	
6.35 × 10    5   

	
2.25 × 10    5   

	
Inf

	
2.73 × 10    6   

	
2.71 × 10    5   

	
Inf




	
A049

	
1.353

	
1.320

	
1.355

	
1.326

	
1.424

	
1.338




	
A050

	
59.765

	
528.428

	
56.831

	
103.999

	
935.576

	
99.881








NT = No Transformation, Std = Standardisation, and Log = Logarithmic.
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Table A6. Out-of-sample forecasting RMSFE (Continuation).






Table A6. Out-of-sample forecasting RMSFE (Continuation).





	
Series’

	
h = 6

	
h = 12




	
Code

	
NT

	
Std

	
Log

	
NT

	
Std

	
Log






	
A051

	
6.645

	
6.646

	
6.689

	
8.259

	
39.667

	
8.384




	
A052

	
327.886

	
333.472

	
349.271

	
519.432

	
455.743

	
539,109.574




	
A053

	
55.656

	
71.070

	
56.373

	
77.760

	
88.068

	
80.306




	
A054

	
135.441

	
107.388

	
114.467

	
121.277

	
114.368

	
111.057




	
A055

	
47.052

	
47.075

	
49.962

	
44.947

	
49.411

	
44.323




	
A056

	
318.035

	
442.579

	
Inf

	
369.935

	
1397.180

	
Inf




	
A057

	
111.700

	
97.869

	
110.430

	
76.521

	
123.163

	
78.379




	
A058

	
93.679

	
73.906

	
161.798

	
76.617

	
72.198

	
33.833




	
A059

	
47.999

	
43.077

	
49.706

	
47.200

	
38.382

	
50.650




	
A060

	
9.065

	
9.929

	
8.915

	
9.775

	
11.311

	
9.225




	
A061

	
21,401.308

	
21,029.664

	
34,763.978

	
47,497.769

	
42,578.592

	
43,718.789




	
A062

	
1.53 × 10    7   

	
9.22 × 10    6   

	
1.43 × 10    7   

	
1.04 × 10    7   

	
9.77 × 10    6   

	
1.33 × 10    8   




	
A063

	
28.561

	
28.558

	
10.218

	
25.355

	
25.598

	
9.908




	
A064

	
4121.217

	
2945.853

	
3866.332

	
21881.052

	
3065.284

	
6688.179




	
A065

	
31.507

	
24.464

	
27.822

	
31.161

	
39.859

	
30.524




	
A066

	
33.907

	
24.501

	
26.523

	
85.870

	
39.738

	
25.640




	
A067

	
24,790.111

	
14,696.437

	
16,013.912

	
40,325.312

	
12,620.240

	
18,179.972




	
A068

	
490.894

	
450.505

	
499.947

	
327.430

	
426.795

	
335.514




	
A069

	
233.149

	
233.000

	
217.660

	
261.487

	
235.576

	
212.738




	
A070

	
21.055

	
17.474

	
36.299

	
18.092

	
15.445

	
16.239




	
A071

	
30.033

	
30.922

	
28.063

	
23.335

	
37.390

	
28.972




	
A072

	
991.918

	
1186.083

	
1013.985

	
1022.795

	
1148.504

	
1004.258




	
A073

	
191.317

	
173.546

	
170.028

	
371.023

	
236.600

	
288.816




	
A074

	
4012.015

	
2191.142

	
3290.446

	
8470.587

	
2279.084

	
3402.155




	
A075

	
40.891

	
115.551

	
33.467

	
44.112

	
228.585

	
43.708




	
A076

	
69,298.230

	
2.26 × 10    5   

	
24,927.158

	
2.63 × 10    5   

	
3.64 × 10    6   

	
7571.182




	
A077

	
1714.226

	
1532.812

	
1561.112

	
3608.945

	
2515.070

	
3097.836




	
A078

	
4173.555

	
654,416.059

	
3581.874

	
1.25 × 10    4   

	
1.01 × 10    9   

	
7095.955




	
A079

	
58.260

	
52.793

	
58.023

	
97.730

	
97.056

	
96.553




	
A080

	
16.268

	
13.189

	
14.747

	
12.158

	
13.096

	
15.346




	
A081

	
450.450

	
494.004

	
450.436

	
523.863

	
609.279

	
614.195




	
A082

	
10.665

	
10.620

	
7.961

	
10.362

	
7.757

	
10.242




	
A083

	
1.871

	
1.698

	
1.958

	
7.386

	
1.967

	
3.098




	
A084

	
74,374.861

	
11,949.864

	
15,030.189

	
4.54 × 10    5   

	
15,064.148

	
35,040.170




	
A085

	
2.972

	
2.375

	
2.443

	
5.394

	
3.867

	
4.246




	
A086

	
6.089

	
5.903

	
5.641

	
7.324

	
9.107

	
7.144




	
A087

	
1.517

	
2.552

	
1.521

	
2.522

	
3.060

	
2.358




	
A088

	
5.616

	
6.772

	
5.806

	
4.916

	
7.063

	
5.706




	
A089

	
3.882

	
2.942

	
3.045

	
5.597

	
3.709

	
4.223




	
A090

	
2.866

	
3.398

	
2.659

	
2.830

	
3.763

	
2.913




	
A091

	
28,312.543

	
254.885

	
326.947

	
1.39 × 10    7   

	
369.785

	
724.020




	
A092

	
7.46 × 10    32   

	
1.41 × 10    5   

	
73816.394

	
9.10 × 10    32   

	
3.81 × 10    5   

	
1.36 × 10    5   




	
A093

	
7814.412

	
1.30 × 10    26   

	
95.842

	
7.95 × 10    6   

	
2.84 × 10    25   

	
128.056




	
A094

	
1.02 × 10    5   

	
9.46 × 10    4   

	
1.10 × 10    5   

	
1.41 × 10    5   

	
1.30 × 10    5   

	
1.75 × 10    5   




	
A095

	
406.105

	
441.419

	
404.087

	
503.204

	
588.870

	
604.329




	
A096

	
78.448

	
90.126

	
75.130

	
100.969

	
104.199

	
83.458




	
A097

	
2.06 × 10    5   

	
1.92 × 10    5   

	
2.06 × 10    5   

	
2.44 × 10    5   

	
2.43 × 10    5   

	
2.42 × 10    5   




	
A098

	
858.043

	
625.258

	
751.271

	
1077.612

	
849.184

	
1205.582




	
A099

	
3.761

	
3.337

	
4.914

	
4.370

	
3.253

	
5.528




	
A100

	
140.073

	
132.262

	
141.576

	
188.195

	
173.609

	
194.600








NT = No Transformation, Std = Standardisation, and Log = Logarithmic.
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Figure 1. A selection of nine real time series. 
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Figure 2. Effect plot: RMSFE∼Tr. 
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Figure 3. Effect plot: RMSFE ∼ Tr + Freq + Tr × Freq for forecast horizons    h = 1    and    h = 3   . 
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Figure 4. Effect plot: RMSFE ∼ Tr + Freq + Tr × Freq for forecast horizons    h = 6    and    h = 12   . 






Figure 4. Effect plot: RMSFE ∼ Tr + Freq + Tr × Freq for forecast horizons    h = 6    and    h = 12   .



[image: Signals 01 00002 g004]







[image: Table] 





Table 1. Number of time series with each feature.






Table 1. Number of time series with each feature.





	
Factor

	
Levels






	
Sampling Frequency

	
Annual

	
Monthly

	
Quarterly

	
Weekly

	
Daily

	
Hourly




	
5

	
83

	
4

	
4

	
2

	
2




	
Skewness

	
Positive Skew

	
Negative Skew

	
Symmetric




	
61

	
21

	
18




	
Normality

	
Normal

	
Non-normal




	
18

	
82




	
Stationarity

	
Stationary

	
Non-Stationary




	
14

	
86
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Table 2. Wald-type test results.






Table 2. Wald-type test results.





	
Model

	
Factor

	
P-Value




	

	

	
h = 1

	
h = 3

	
h = 6

	
h = 12






	
RMSFE ∼ Tr + Skew

	
Skew

	
0.0037

	
0.0043

	
0.0056

	
0.0131




	
    + Tr × Skew

	
Tr

	
0.0718

	
0.1447

	
0.4186

	
0.2098




	

	
Tr × Skew

	
0.4177

	
0.5106

	
0.2120

	
0.1482




	
RMSFE ∼ Tr + Stationarity

	
Stationarity

	
0.0997

	
0.053

	
0.0501

	
0.0248




	
    + Tr × Stationarity

	
Tr

	
0.2351

	
0.3754

	
0.7607

	
0.5276




	

	
Tr × Stationarity

	
0.5160

	
0.6808

	
0.7678

	
0.3792




	
RMSFE ∼ Tr + Normality

	
Normality

	
0.5052

	
0.5320

	
0.4954

	
0.5820




	
    + Tr × Normality

	
Tr

	
0.0747

	
0.1152

	
0.5849

	
0.4892




	

	
Tr × Normality

	
0.2492

	
0.3576

	
0.4042

	
0.4549




	
RMSFE ∼ Tr + Freq

	
Freq

	
0.0000

	
0.0000

	
0.0000

	
0.0000




	
    + Tr × Freq

	
Tr

	
0.0841

	
0.1194

	
0.1355

	
0.1143




	

	
Tr × Freq

	
0.0000

	
0.0000

	
0.0000

	
0.0000




	
RMSFE ∼ Tr

	
Tr

	
0.4271

	
0.6740

	
0.9535

	
0.4860








Here, Freq, Skew, and Tr represent frequency, skewness, and transformation, respectively. Bold values show the significant effects at the    α = 0.05    significance level.
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