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Abstract: Objective: To determine if there was a difference in the volatility characteristics of seizure and
non-seizure onset channels in the intracranial electroencephalogram (EEG) in a patient with temporal
lobe epilepsy. Methods: The half-life of volatility for the different EEG channels was determined
using Autoregressive Moving Average–Generalized Autoregressive Conditional Heteroscedasticity
(ARMA–GARCH) models; confidence intervals were constructed using the delta method and an
asymptotic method for comparing the half-lives. Results: Clinically determined seizure onsets
occurred over strip electrodes named RAST (Right Anterior Subtemporal) and RMST (Right Mid
Subtemporal), at locations 2, 3 and 4, on the strip electrodes. The half-lives of volatility for two
of the three seizure channels, RAST3 and RAST4, were found to be significantly lower the rest of
the channels for six one-minute EEG segments prior to seizure onset and nine one-minute EEG
segments of an awake state. The half-lives of volatility for RAST3 and RAST4 were not significantly
different to the non-seizure channels for ten one-minute segments of sleep and ten one-minute
segments of sleep-to-awake states. The estimates for the half-lives were consistent for randomly
selected one-minute EEG segments. Conclusions: The use of GARCH models may be a useful tool
in determining hidden properties in epileptiform EEGs that may lead to better understanding of
the seizure generating process.
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1. Introduction

The visual examination of electroencephalograms (EEGs) is limited by potential subjectivity due
to limited protocols and the inability to identify hidden patterns, characteristics or relationships in
large amounts of data [1,2]. The introduction of quantitative methods in the analysis of EEGs attempt
to overcome these limitations by introducing objective measures of EEG characteristics [1]. These
methods give both the clinician and/or researcher access to the valuable information within the EEG
concerning the dynamics of brain activity. Much of the quantitative research in epilepsy is based
on the detection of changes (spikes, spike-waves, sharp waves, etc.,) in the properties of an EEG;
the changes in the waveforms are associated with changes in behavioral and mental states. During an
epileptic seizure, the EEG exhibits robust changes [3,4]. The amplitude of the EEG increases during an
epileptic seizure due to episodic brief neuronal synchronous discharges; the seizure at onset may be
seen in only a few EEG channels (local or partial seizure) or in all EEG channels (generalized seizure) [2].
The information obtained from EEGs using quantitative methods has been used in such areas as
attempting to predict/anticipate the occurrence of seizures, attempting to detect the onset/occurrence
of seizures, and in modeling seizure propagation/dynamics.
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The EEG, like many physiological time series, is widely believed to be non-stationary due to
its time-varying properties; the non-stationarity may arise from the fact that the observation time
is shorter than the characteristic time scale of the EEG [3]. The non-stationarity of the EEG limits
the use of classical time series analysis methods. However, early attempts at analyzing EEG signals
in the time domain were based on a linear approach using autoregressive moving average (ARMA)
modeling [5]. Even though the use of ARMA models in the analysis of EEG signals is limited because
of the EEG’s time-varying properties, their usage contributed to the understanding of EEG signals [6].
Mormann et al. [7], citing studies by Rogowski et al., Salant et al., and Siegal et al., found changes
in the autoregressive parameters seconds prior to the onset of a seizure as well as differences in
characteristics between one-minute epochs prior to a seizure and control subjects. There are also
studies on characterization of EEG time series using spectral and wavelet analysis [8–14].

Some EEG analyses have moved away from linear time series analysis methods and toward the use
of non-linear time series analysis. Measures such as Lyapunov exponents, correlation dimension,
correlation density, entropy, and dynamic similarity have been employed [15–28]. Additional
techniques that have been used in quantitative EEG analysis either alone or combined with other
methods include, but are not limited to, spatial-temporal modeling, wavelets, genetic algorithms,
data mining, morphological filters, discriminant analysis, neural networks and support vector
machines [29–44]. Convolutional Neural Networks have also been used for feature classification and
seizure detection [45–48]. Recent research has also focused on high-frequency oscillations (HFOs) in
epileptic EEGs [45,48–53]

While the above listed methods have been used in EEG analysis, the use of GARCH models in
characterizing volatility has not been explored. Conditional volatility models originated in finance with
the ARCH (autoregressive conditional heteroscedastistic) model of Engle and the GARCH (generalized
autoregressive conditional heteroscedastistic) model of Bollerslev [54,55]. These models and their
extensions have been used to characterize the temporal behavior and clustering of volatility in financial
markets. The use of these models to characterize the volatility of epileptiform EEG signals may be able
to provide more insight into the seizure generating processes, may be used in identifying epileptogenic
zones, and may have use in the prediction of seizures as well as aid in a diagnosis of epilepsy. In this
study, volatility characteristics of epileptiform EEGs were examined for possible differences between
seizure and non-seizure onset channels using GARCH models.

2. Methods

Data

The data used in this study were provided by the Department of Neurology at the University of
Texas McGovern Medical School. Four epochs of intracranial EEG (awake, sleep, sleep to awake, and
seizure) sampled at 200 Hz over various parts of the right hemisphere of a single individual’s brain
were used in the analysis. The recordings were obtained from subdural grid and strip electrodes, placed
directly over the brain surface through an operative procedure for the clinical investigation of temporal
lobe epilepsy. The grids and strip electrodes were recorded from a total of sixty-six discrete channels
over different brain regions. In the days following electrode placement, seizures were identified over
contacts 2 and 3 on the strip electrode labeled RAST (Right Anterior Subtemporal) and over contact 4
on the strip electrode labeled RMST (Right Mid Subtemporal). The awake, sleep, and sleep to awake
segments were approximately 10 min in length, with waking occurring in the sleep to wake signal at
approximately 8 min; the segment with the seizure was approximately 15.5 min in length, with six
minutes of pre-seizure data, 2.5 min of seizure data and seven minutes of post-seizure data. The onset
of seizure was determined by conventional visual analysis by a clinical neurologist. All four segments
were referenced to an external zero voltage reference. The data used in the analyses were de-identified.
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3. Conditional Volatility Models

3.1. Autoregressive Moving Average Models

One of the traditional models used in modeling the dynamics of a time series Yt =
{
y1, y2, . . . , yT

}
is the Autoregressive Moving Average (ARMA) process. ARMA(p,q) processes are stationary. For
stationary processes, the characteristics of the distribution for a sequence of n observations are not
dependent on the time origin [56]. A less restrictive requirement is that of a weakly stationary
process, where, for a time series Yt =

{
y1, y2, . . . , yT

}
, E(Yt) = µ for all t, Var(Yt) = σ2

Y for all t, and
Corr(Yt, Yt−s) = ρ(s) for t ≥ s, where ρ(·) is the autocorrelation function of a time series; thus, for
a weakly stationary time series, the mean and variance are constant and the correlation between
observations is only dependent on the time between the observations [56]. The property of weak
stationarity is often employed in the analysis of time series [56]. Processes of the form under commonly
used conditions

Yt =

p∑
i=1

αiYt−i +

q∑
j=1

β jε j−t + εt, (1)

where εt is a white noise sequence with variance σ2
ε for all t (for time series with non-zero mean, a mean

term can be added to the model) [56,57].
If p = 0 or q = 0, then the processes are described as a moving average process of order q

(MA(q)) or an autoregressive process of order p (AR(p)) respectively. If a time series is non-stationary,
Autoregressive Integrated Moving Average (ARIMA(p,d,q)) models may be used, where the dth
difference of the time series is an ARMA(p,q) process [56]. The parameters of an ARMA model are
useful in summarizing a time series, while the modeling may not reveal much information concerning
the data generating process; however, ARMA processes are useful in forecasting [57].

3.2. Generalized Autoregressive Conditional Heteroscedasticity Models

One limitation of an ARMA model is the assumption of constant conditional variance
(Var(Yt|Ft−1) = σ2

Y where Ft−1 is the set of information available at time t − 1, mathematically,
a σ-field generated from {Yt-1, Yt-2, . . . }), and, thus, is not satisfactory for use in modeling time
series with time varying variance [56]. Variance that changes of over time may affect the inferential
validity and efficiency of the parameters of an ARMA model [58]. Models that account conditionally
for non-constant volatility (non-constant conditional variance) allow for better predictions of (local)
variability and better prediction intervals [59]. Time series with non-constant volatility are common in
finance, and the most common family of volatility models were developed to model financial time
series; their use in biomedical research has been rarely utilized [60–62].

The Autoregressive Conditional Heteroscedasticity (ARCH) model was developed by Engle
and generalized (GARCH) by Bollerslev [54,55]. The GARCH(p,q) model for a time series Yt ={
y1, y2, . . . , yT

}
is

Yt = Et−1[Yt] + εt

εt = ztσt

σ2
t = a0 +

p∑
i=1

aiε
2
t−i +

q∑
j=1

biσ
2
t− j

(2)

where Et−1[Yt] is the expectation conditional on information available at time t− 1, zt are i.i.d. zero
mean random variables with unit variance, a0 > 0, ai, bi ≥ 0 and

max(p,q)∑
i=1

(ai + bi) < 1 (3)

[63].
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These constraints ensure positive and finite unconditional variance for εt, with
max(p,q)∑

i=1
(ai + bi) < 1

a necessary and sufficient condition for weak stationarity. A less restrictive necessary and sufficient
condition for strict stationarity is that E

(
log

(
a1σ2

t + b1
))
< 0, with certain conditions on the zt. This

allows the sum a1 + b1 to equal or exceed one [55,64–66]. The εt, often referred to as ‘shocks,’ are
serially uncorrelated, but dependent. The ai and bi in the conditional variance equation are the ARCH
and GARCH parameters respectively, with E(εt) = 0 and the unconditional variance of εt is

E
(
ε2

t

)
=

a0

1−

 p∑
i=1

ai +
q∑

j=1
bi

 , (4)

which will be positive due to the constraints. A GARCH model with q = 0 is an ARCH(p) model and

in order to identify the parameters, A(ε) =
p∑

i=1
aiε

i and B(ε) = 1−
p∑

i=1
biε

i are co-primes [67].

If the conditional variance equation follows an ARCH(1) process, σ2
t = a0 + a1ε2

t−1, large values
of εt−1 result in a larger deviation from Et−1(εt) = 0, and the conditional variance of εt is larger as
a result. This volatility will propagate since a large deviation of εt makes σ2

t+1 and ε2
t+1 large (similarly

for small values of εt). Thus, the volatility will persist, but will eventually revert to the unconditional
variance since a1 < 1. For ARCH(p) processes, large past shocks

{
ε2

t−i

}p

i=1
lead to a large conditional

variance for and a large value of εt. Thus, the probability of a large shock following a large shock is
greater than the probability of small shock. This leads to the volatility clustering often seen in financial
time series [56,68].

The development of GARCH(p,q) models were motivated by the shortcomings in the ARCH(p)
models and provide more flexibility than ARCH(p) models. Some weaknesses of an ARCH(p) model
are that the order p may be high (leading to the need for estimating many parameters), that it is likely to
overpredict the volatility, that it does not capture the excess kurtosis seen in financial time series, and
that it assumes that positive and negative shocks produce the same effect on volatility [68]. ARCH(p)
models also have high volatility in short bursts, or short volatility persistence, while GARCH(p, q)
models allow for more persistent volatility [56]. GARCH processes also tend to have heavy tails
and GARCH models also tend to be more parsimonious, and the simplest form, GARCH(1, 1), has
been successful in predicting conditional volatility [56,69]. GARCH models may be used to model
the innovations of ARMA models (ARMA–GARCH) as well.

For a GARCH(1, 1) model, values of b1 closer to 1 produce a high correlation between σ2
t and

σ2
t−1 which allows for longer persistence of volatility than an ARCH(1) model [68]. The speed with

which the process reverts to the unconditional variance (persistence) is governed by the magnitude of
a1 + b1 [63]. The half-life (HL) of a volatility shock, a measure of the length of time it takes for a shock
to decrease by one-half, is given by HL = ln(0.5)/ln(a1 + b1), and as a1 + b1 approaches 1, the larger
the half-life [63]. Models for which a1 < b1 also imply longer volatility persistence [56]. These results
can be extended to higher order GARCH(p, q) models [63].

4. Confidence Intervals for Half-Life (HL)

To construct conventional two-sided confidence intervals, the standard errors for the half-life
can be approximated using the delta method and using the large sample asymptotic properties of
the estimated parameters. Using the delta method, the variance of a differentiable function of random
variables, f (X), where X = (X1, X2, . . . , Xn), can be approximated as

Var( f (X)) =
n∑

i=1

fi′(θ)
2

Var(Xi) + 2
∑
i> j

fi′(θ) f j′(θ)Cov
(
Xi, X j

)
, (5)
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where
θ = (E(X1), E(X2), . . . , E(Xn)),

and
fi′(θ) =

∂
∂Xi

f (x)
∣∣∣∣∣
x1=θ1,...,xn=θn

Using the equation for half-life, HL = ln(0.5)/ln(a1 + b1), for a GARCH (1,1) model, taking
partial derivatives and substituting into the variance equation above yields the following equation for
the standard error:

σ(HL) =
ln(0.5)

(a1 + b1)[ln(a1 + b1)]
2
[Var(a1) + Var(b1) + 2Cov(a1, b1)]

1
2 . (6)

Based on large sample asymptotics, the confidence interval for the half-life can be constructed as:

HLest ± 1.96 ∗ σ(HLest). (7)

Additionally, using the fact that the variance of the sum of random variables is the sum of
the variances plus the sums of twice the respective covariances, confidence intervals can also be
constructed for the sum of the coefficients. The 95% confidence intervals for large sample sizes can be
constructed as:

Z± 1.96 ∗ σ(Z). (8)

where Z is the sum of n random variables. The estimates for the upper and lower confidence limits
can then be transformed using the half-life formula since it is a monotonic function in order to obtain
a confidence interval for the half-life.

5. Analysis

All four datasets were divided into one-minute (12,000 values) segments for analysis. This resulted
in 15 segments for the seizure data, 10 segments for the sleep and sleep to awake data, and 9 segments
for the awake data. Of the 15 segments for the seizure data, there were six complete segments preceding
seizure onset, one segment containing seizure onset, one segment of seizure, one segment containing
the transition from ictal to post-seizure, and six post-seizure segments. The sleep-to-awake data had
seven segments of sleep data, one segment containing the transition from sleep to awake and two
segments of awake data. For each segment, ARMA–GARCH models were estimated for all 66 channels
using MATLAB. The estimated parameters from the models were used to estimate unconditional
volatility and half-lives. Confidence intervals for half-lives based on the GARCH coefficients were
constructed. Additionally, models were estimated for one-minute segments with randomly selected
starting points to see if the models were dependent on the particular segments.

6. Results

The onset of the seizure was identified at the three channels RAST3, RAST4 and RMST4. Based
on these three channels, the ARMA(2,2)–GARCH(1,1) models were estimated for all channels. Using
Equations (1) and (2), these models take the following form where Yi,t is the value of EEG signal i at
time t:

Yi,t = c1Yi,t−1 + c2Yi,t−2 + d1εi,t−1 + d2εi,t−2 + εi,t, (ARMA(2, 2))

where εi,t = zi,tεi,t and
σ2

i,t = a0 + a1ε
2
i,t−1 + b1σ

2
i,t−1 (GARCH(1, 1))

Models were estimated for all segments of the seizure data. The models based on the seizure and
post-seizure resulted in integrated models; thus, results only for the pre-seizure data are included. For
the other three datasets, models were estimated for all segments.
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The models used to estimate and examine volatility were ARMA(2,2)-GARCH(1,1) models. Since
the EEG is believed to be non-stationary, one-minute (12,000 points) segments were selected and
assumed to be (weakly) stationary. This particular model was selected for this analysis based on fitting
an ARMA(2,2) model to the data, and checking the innovations (errors) for heteroscedasticity using an
Ljung–Box Q test, and examining the autocorrelation and partial autocorrelation plots for GARCH
characteristics, namely serial correlation in the squared innovations. These models were initially fit to
the three seizure channels (RAST3, RAST4 and RMST4) and the standardized residuals were tested
using the Ljung–Box Q test.

In addition to testing the standardized residuals, the fit of the GARCH(1,1) model to innovations
of the ARMA(2,2) model, the estimated unconditional volatility from the GARCH coefficients and
the variance of the innovations are listed in Figure 1a–d (all coefficients for models are included in
supplementary Table S1a–d). For the three seizure channels, unconditional volatility estimates were
within two percent of the innovation variance, with the exception of segment 3 of RAST3, which
showed an approximate seven percent difference; this particular channel also had the highest estimated
GARCH coefficient (0.7485) and coefficient sum (0.8763). The data for the other signals showed similar
results with RAST3 awake segment 7, sleep to awake segment 3, sleep segments 1 and 3, RAST4 awake
segment 5 and RMST4 sleep segments 1, 3, and 5 showing greater than five percent difference. For
the other channels, three from the seizure data, fifteen from the awake data, twenty-two from the sleep
to awake data and ninety from the sleep data had a greater than five percent difference between
unconditional volatility and innovation variance.Signals 2019, 2 FOR PEER REVIEW  7 
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Figure 1. GARCH parameters and unconditional volatility for three seizure channels (RAST3, RAST4, 
RMST4) compared to summarized values for non-seizure channels. 

  

Figure 1. GARCH parameters and unconditional volatility for three seizure channels (RAST3, RAST4,
RMST4) compared to summarized values for non-seizure channels.
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6.1. GARCH Models

The estimated GARCH coefficients and unconditional volatilities for RAST3, RAST4 and RMST4
are listed in Table 2a–d, along with the minimum, median and maximum of the coefficients from
the non-seizure channels. Table 2a shows the results for six one-minute segments preceding the onset
of seizure. RAST3 and RAST4 show higher ARCH and lower GARCH parameters across all segments
than the majority of the other signals; the sum of the ARCH and GARCH parameters are also lower
than the majority of the other channels. Estimates for RMST4 do not appear to be different than
the non-seizure channels. The unconditional volatility for all three channels do not show as marked
a difference; however, each are less than the median of the unconditional volatility of all other signals
for each segment. Similar results can be seen for the awake data (Table 2b). As with the seizure data,
RAST3 and RAST4 show higher ARCH and lower GARCH coefficients than RMST4 and all of the other
channels. The unconditional volatility for each of the three channels is also lower than the median for
the other channels. The sleep to awake and sleep data (Table 2c,d) do not show as large of differences
as the seizure and awake data. The estimated ARCH and GARCH coefficients of the sleep to awake
and sleep data for RAST3 and RAST4 are higher (lower) than the median for the non-seizure channels.
The unconditional volatility for the three channels are also lower than the median for the non-seizure
channels and are similar to the those found in the seizure and awake data.

Table 1. Half-Life and 95% (Delta Method) CIs Pre-seizure data.

Seizure Channels Non-seizure
Channels

RAST3 RAST4 RMST4 Half Life

Segment

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

Median
Min
Max

1
1.64

(1.29,1.98)
5

1.78
(1.55,2.01)

5

6.36
(3.24,9.47)

32

12.37
6.00
69.59

2
1.83

(1.37,2.29)
5

1.49
(1.26,1.72)

5
N/A

12.24
4.03

141.25

3
5.24

(4.27,6.22)
22

1.93
(1.68,2.18)

3

6.49
(3.11,9.88)

26

14.09
3.24

452.16

4
1.90

(1.58,2.23)
5

1.79
(1.55,2.03)

5

6.33
(1.52,11.14)

33

18.61
4.44

106.59

5
1.27

(0.98,1.55)
4

1.50
(1.30,1.70)

5

6.42
(0.10,12.74)

37

8.27
2.16

208.17

6
1.61

(1.30,1.91)
2

1.98
(1.73,2.23)

2

268.82
(0.14,537.50)

53

28.11
4.82

83.82

(A) CIs Pre-seizure data.
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Table 1. Cont.

Seizure Channels Non-seizure
Channels

RAST3 RAST4 RMST4 Half Life

Segment

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

Median
Min
Max

1
1.13

(0.86,1.41)
2

1.47
(1.18,1.75)

2

6.49
(2.73,10.24)

42

7.64
1.16

186.05

2
1.72

(1.20,2.23)
2

1.88
(1.47,2.29)

2

70.74 (5.59,135.88)
52

10.94
4.89

67.61

3
1.75

(1.06,2.44)
7

1.71
(1.31,2.11)

5

13.65
(3.83,23.47)

53

15.25
3.06

115.7

4
1.84

(1.35,2.34)
4

1.35
(1.14,1.58)

1

39.8
(6.99,72.6)

50

12.83
6.13

74.15

5
5.61

(4.30,6.95)
31

6.18
(4.94,7.43)

31

16.56
(7.42,25.69)

48

6.61
2.58

54.82

6
1.67

(1.26,2.09)
3

1.55
(1.29,1.80)

3

8.98
(3.1,14.86)

45

10.68
4.67

49.25

7
5.50

(4.66,6.33)
30

1.71
(1.47,1.95)

4
N/A

6.84
2.65

187.9

8
1.47

(1.17,1.78)
3

1.55
(1.32,1.79)

3

6.46
(3.07,9.85)

44

6.45
5.68

73.61

9
1.41

(1.12,1.70)
2

1.34
(1.15,1.54)

2

6.49
(3.28,9.7)

32

13.08
4.59

92.17

(B) Awake data.

Seizure Channels Non-seizure
Channels

RAST3 RAST4 RMST4 Half Life

Segment

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

Median
Min
Max

1
8.43

(6.39,10.47)
3

14.86
(9.97,19.75)

23

6.26
(4.89,7.64)

0

36.04
12.69

96

2
7.93

(5.61,10.25)
2

13.28
(7.10,19.47)

18

14.38
(7.94,20.82)

21

41.09
12.95
85.08

3
7.38

(5.82,8.93)
2

15.51
(10.79,20.24)

16

7.84
(6.35,9.32)

3

39.87
7.64
90.62

4
10.13

(7.92,12.33)
7

6.44
(4.98,7.91)

0

13.05
(9.92,16.17)

9

34.97
13.22
65.6
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Table 1. Cont.

Seizure Channels Non-seizure
Channels

RAST3 RAST4 RMST4 Half Life

Segment

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

Median
Min
Max

5
18.57

(14.58,22.55)
23

16.33
(10.77,21.88)

22

22.54
(16.63,28.45)

37

41.25
8.21

151.69

6
10.31

(7.99,12.62)
6

13.41
(8.53,18.20)

14

13.39
(9.93,16.85)

11

37.05
8.69

127.36

7
13.70

(11.47,15.93)
6

29.42
(18.56,40.29)

55

41.87
(26.61,57.13)

56

40.41
16.16
91.14

8
28.15

(19.96,36.34)
56

25.51
(14.18,36.84)

56

32.90
(20.28,45.51)

60

38.86
1.26
94.01

9
12.05

(9.23,14.97)
7

12.26
(8.59,15.93)

13

22.84
(16.49,29.19)

43

32.98
12.27
93.52

10
12.13

(9.97,14.29)
10

10.73
(8.26,13.20)

7

20.78
(15.07,26.49)

41

34.07
9.67

98.84

(C) Sleep data.

Seizure Channels Non-seizure
Channels

RAST3 RAST4 RMST4 Half Life

Segment

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

Median
Min
Max

1
8.47

(5.74,11.21)
22

10.00
(7.10,12.90)

23

37.68
(12.44,62.93)

49

29.9
2.82

308.76

2
17.07

(12.91,21.22)
29

29.08
(12.12,46.04)

43

23.14
(8.68,37.61)

49

30.64
6.32
134

3
6.32

(5.11,7.54)
24

8.27
(5.20,11.35)

25

6.23
(3.87,8.59)

27

21.72
0.77

126.04

4
12.14

(8.40,15.88)
38

181.4
(80.7,282.1)

12

36.23
(13.53,58.92)

27

9.26
5.42

342.14

5
8.41

(6.59,10.24)
36

8.68
(4.51,12.85)

41

6.33
(3.94,8.72)

33

18.84
6.18

178.51

6
18.86

(13.29,24.44)
41

22.62
(5.77,39.47)

59

10.51
(6.7,14.33)

40

20.32
4.56

136.41

7
15.83

(10.98,20.68)
28

72.72
(24.29,121.2)

27

6.43
(2.43,10.44)

39

11.35
3.63

188.24
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Table 1. Cont.

Seizure Channels Non-seizure
Channels

RAST3 RAST4 RMST4 Half Life

Segment

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

Median
Min
Max

8
20.30

(14.19,26.40)
36

380.8
(134.7,626.9)

3

7.92
(1.45,14.39)

41

24.55
4.94
98.15

9
10.76

(7.27,14.24)
37

5.94
(4.40,7.49)

23

6.42
(2.5,10.34)

32

25.01
6.29

106.96

10
25.37

(12.71,38.03)
32

44.89
(20.83,68.94)

29

6.39
(1.64,11.14)

40

14.58
3.16

164.74

(D) Sleep to Awake data.

For the seizure data, the estimates across the six segments for the seizure channels for RAST3 show
the most variation. RAST3 ranges from 0.4449 to 0.7485 for the GARCH coefficient, while the estimates
for the ARCH coefficient only range from 0.1145 to 0.1516; the sum of the coefficients has a maximum
of 0.8763 in the third segment, while the other sums are relatively similar. The unconditional volatility
has a range of 79.1 to 96.5. The variation of the estimates for RAST4 and RMST4 do not show as
large of differences as RAST3. The coefficients for RAST4 are similar across all segments; however,
the unconditional volatility ranges from 62.4 to 80.9. RMST4 shows similar estimates across the first
five segments, with noticeable differences in the sixth segment for the GARCH estimate. All three
channels show jumps in unconditional volatility from the fifth to the sixth segment.

The estimates across the nine segments of the awake data do not show as much variation.
Segments 5 and 7 for RAST3 and segment 5 for RAST4 have higher GARCH coefficients and higher
coefficient sums than the estimates for the other segments. The unconditional variation is similar
across all segments for all three channels. For the sleep to awake data, the estimates are similar across
the segments with the exception of the unconditional volatility for segment 9 (first awake only segment)
of RAST3 and RAST4. All three channels have their minimum unconditional volatility in the last
segment. The sleep data estimates are similar across all segments.

6.2. Half-life and Confidence Intervals

To examine the volatility across all channels for the different segments of each dataset, the volatility
half-life was calculated for each model along with 95% confidence intervals using the delta and
asymptotic methods outlined above (Equations (6) and (7)). Only models with both significant ARCH
and GARCH coefficients were used, and confidence intervals with negative confidence limits were used.

There were noticeable differences between the seizure and non-seizure channels in the pre-seizure
and awake datasets (Table 2a,b and Table 2a,b). The half-life estimates for RAST3 and RAST4 were
between one and two for all but three segments of the both datasets, indicating a volatility persisting
half as long as most other channels, and at least four times shorter than at least half of all other channels.
In examining the CIs for these two channels, they overlap with at most five of the CIs of the non-seizure
channels using the delta method (Table 2a,b) and at most one using the asymptotic method (except for
the segments where the half-life was greater than 2). For RMST4, the half-life for the segments varied,
ranging from 6.33 to 268.82, with more than half below 6.50; the CIs for these overlapped more than
half of the CIs for the non-seizure channels for all of the awake segments and approximately half for



Signals 2020, 1, 3 12 of 20

the pre-seizure data (for both methods). The CIs for RMST4 only overlapped the CIs of RAST3 and
RAST4 in segment 6 of the pre-seizure data using the delta method.

Table 2. Half-Life and 95% CIs (Asymptotic Method) Pre-seizure data.

Seizure Channels Non-seizure
Channels

RAST3 RAST4 RMST4 Half Life

Segment

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

Median
Min
Max

1
1.64

(1.34,2.05)
0

1.78
(1.57,2.04)

0

6.36
(4.23,12.16)

29

14.24
6

312.3

2
1.83

(1.45,2.41)
1

1.49
(1.29,1.75)

0
N/A

12.27
4.03

165.01

3
5.25

(4.41,6.44)
21

1.93
(1.7,2.21)

0

6.49
(4.23,13.17)

27

18.42
3.24

452.16

4
1.9

(1.62,2.28)
0

1.79
(1.57,2.06)

0

6.33
(3.53,23.46)

38

19.56
4.44

152.9

5
1.27

(1.02,1.61)
0

1.5
(1.32,1.72)

0

6.42
(3.15,99.28)

50

8.27
2.16

413.78

6
1.61

(1.35,1.97)
0

1.98
(1.75,2.26)

1

268.82
(134.36,148185.87)

14

29.05
4.24

139.58

(A) ) Pre-seizure data.

Seizure Channels Non-seizure
Channels

RAST3 RAST4 RMST4 Half Life

Segment

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

Median
Min
Max

1
1.13

(0.90,1.47)
1

1.47
(1.22,1.80)

1

6.49
(4.06,14.82)

42

9.33
1.16

283.79

2
1.72

(1.30,2.39)
0

1.88
(1.53,2.37)

0

70.74
(36.74,850.50)

23

11.43
4.89

166.48

3
1.75

(1.22,2.76)
1

1.71
(1.38,2.21)

1

13.65
(7.88,46.53)

55

18.72
3.06

237.25

4
1.84

(1.44,2.48)
0

1.36
(1.16,1.61)

0

39.8
(21.74,219.32)

39

13.06
6.13

153.46

5
5.62

(4.54,7.31)
30

6.18
(5.14,7.72)

30

16.56
(10.63,36.42)

38

6.61
2.58

54.82

6
1.67

(1.33,2.19)
0

1.55
(1.32,1.84)

0

8.98
(5.37,24.85)

50

10.64
4.67

49.25
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Table 2. Cont.

Seizure Channels Non-seizure
Channels

RAST3 RAST4 RMST4 Half Life

Segment

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

Median
Min
Max

7
5.5

(4.76,6.48)
28

1.71
(1.50,1.98)

0
N/A

7.42
2.65

187.9

8
1.47

(1.21,1.84)
0

1.55
(1.34,1.82)

0

6.46
(4.19,13.20)

45

6.45
5.68

92.53

9
1.41

(1.16,1.75)
0

1.34
(1.16,1.56)

0

6.49
(4.3,12.53)

36

13.26
4.59

94.41

(B) Awake data.

Seizure Channels Non-seizure
Channels

RAST3 RAST4 RMST4 Half Life

Segment

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

Median
Min
Max

1
8.43

(6.78,11.08)
0

14.86
(11.16,22.06)

16

6.26
(5.12,8)

0

26.15
9.94

64.51

2
7.93

(6.12,11.16)
0

13.28
(9.03,24.61)

17

14.38
(9.9,25.82)

18

29.67
1.19
57.56

3
7.38

(6.08,9.32)
0

15.51
(11.87,22.25)

11

7.84
(6.58,9.65)

0

29.51
6.36

55.36

4
10.13

(8.31,12.92)
3

6.44
(5.24,8.31)

0

13.05
(10.51,17.12)

4

26.31
10.65
47.97

5
18.57

(15.27,23.62)
14

16.33
(12.16,24.66)

16

22.54
(17.85,30.51)

24

30.11
7.08

82.57

6
10.31

(8.40,13.27)
0

13.41
(9.80,20.97)

5

13.39
(10.63,18.01)

1

28
7.14
79.1

7
13.7

(11.77,16.35)
1

29.43
(21.47,46.53)

50

41.87
(30.66,65.77)

53

29.67
11

63.35

8
28.15

(21.79,39.64)
48

25.51
(17.63,45.67)

50

32.9
(23.75,53.22)

53

28.22
1.21

64.22

9
12.05

(9.69,15.87)
2

12.26
(9.41,17.43)

6

22.84
(17.85,31.58)

36

25.75
8.99

729.5

10
12.13

(10.29,14.74)
2

10.73
(8.71,13.9)

2

20.78
(16.28,28.6)

35

26.01
7.98

67.47

(C) Sleep data.
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Table 2. Cont.

Seizure Channels Non-seizure
Channels

RAST3 RAST4 RMST4 Half Life

Segment

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

HL
95% CI

Overlapping
Interval Count

Median
Min
Max

1
8.48

(6.39,12.43)
12

10.00
(7.73,14.02)

14

37.68
(22.51,112.78)

47

20.12
2.20

181.18

2
17.07

(13.71,22.52)
24

29.08
(18.32,69.11)

44

23.14
(14.19,60.8)

46

18.25
3.08

85.24

3
6.32

(5.29,7.81)
16

8.27
(6.01,13.05)

23

6.23
(4.50,9.91)

19

15.7
0.49

77.54

4
12.14

(9.26,17.48)
34

181.38
(116.58,407.3)

15

36.23
(22.22,96.03)

26

5.92
2.71

201.51

5
8.41

(6.90,10.72)
22

8.68
(5.82,16.44)

34

6.33
(4.57,10.04)

22

11.69
3.09

109.53

6
18.87

(14.55,26.72)
37

22.62
(12.90,85.89)

48

10.51
(7.69,16.39)

33

13.49
2.67

78.44

7
15.83

(12.10,22.75)
28

72.72
(43.60,216.39)

26

6.43
(3.91,16.19)

33

8.3
2.47

99.04

8
20.3

(15.58,28.97)
27

380.8
(231.25,1075.45)

6

7.92
(4.29,37.49)

47

17.17
2.49

54.15

9
10.76

(8.1,15.83)
25

5.94
(4.70,7.99)

15

6.42
(3.93,15.72)

25

16.65
3.03

59.89

10
25.37

(16.88,50.32)
35

44.89
(29.18,96.25)

25

6.39
(3.60,22.43)

41

10.08
2.7

98.01

(D) Sleep to Awake data.

For the sleep and sleep to awake data, the half-life estimates are higher than the pre-seizure and
awake data for all channels (Table 2c,d). The half-life CIs for RAST3 and RAST4 overlap a greater
number of non-seizure CIs in both datasets; however, in the sleep to awake data, both channels overlap
approximately half of the non-seizure CIs. The half-life values appear to be highest in the sleep data
relative to the other three datasets. For the non-seizure channels, the median half-life is higher for all
segments in both datasets, with the exception of the last segment of the sleep to awake data (Table 2d).
This particular segment is the second segment of awake data in the sleep to awake segment and has
a median half-life of 14.58, which is similar to the values for the segments of the awake data. Similar
behavior is seen for RMST4, which has similar half-life values to the awake data, but not in RAST3 and
RAST4, which both have half-life values greater than the median.

7. Random Starting Points

To assess whether the estimated models were dependent on the particular segment, 100 models
based on randomly selected starting points within each dataset were estimated for all 66 channels
and sample statistics calculated (Table 3). The average half-life for RAST3 (2.25 vs. 2.11) and RAST4
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(1.75 vs. 1.86) were similar to the average of the half-life from the six pre-seizure segments. The third
quartile score for each signal was also less than two; all half-life estimates for both channels were lower
than 75% of the estimates for the non-seizure channels. RMST4 had higher estimates than the other
two channels and at least 75% of the scores fell below the median for non-seizure channels. Similar
results can be seen for the awake data. For the sleep to awake and sleep data, the estimates are lower
on average, but without as large or noticeable differences as seen in the pre-seizure and awake data.

Table 3. Summary of half-life estimates based on random starting points.

Signal Channel Mean (s.d.) Min Q1 Med Q3 Max

Seizure

RAST3 2.11
(1.31) 1.18 1.45 1.70 1.89 5.56

RAST4 1.86
(0.68) 1.44 1.59 1.75 1.91 5.64

RMST4 22.49
(52.72) 6.28 6.39 6.45 8.11 276.91

Others 38.33
(73.79) 0.16 6.44 17.15 42.05 2310.14

Awake

RAST3 2.27
(1.49) 1.15 1.46 1.71 1.91 5.70

RAST4 2.61
(1.89) 1.29 1.43 1.56 2.17 6.62

RMST4 20.99
(20.92 6.17 6.51 8.51 36.66 97.28

Other 26.53
(83.71) 0.21 6.4 10.55 28.06 3465.39

Sleep

RAST3 12.92
(6.06) 5.20 9.19 11.62 15.61 50.25

RAST4 15.76
(6.96) 5.95 10.06 14.43 19.04 33.30

RMST4 18.39
(8.15) 5.84 11.72 17.8 23.03 36.52

Other 56.57
(188.78) 0.16 28.29 37.32 49.16 6931.13

Sleep/Awake

RAST3 22.20
(49.86) 5.35 9.05 13.93 20.34 494.76

RAST4 52.46
(114.55) 5.10 9.27 14.36 45.83 692.80

RMST4 14.99
(16.58) 5.87 6.38 6.44 12.24 74.99

Other 41.48
(152.17) 0.16 6.48 20.28 42.97 6931.13

8. Discussion

In examining the volatility of EEG signals, two of the three channels where seizures originated
(RAST3 and RAST4) had shorter volatility half-life relative to all other channels in the time leading
up to the seizure (6 min) and during an awake state. During a sleep state and a sleep-to-awake
state, the volatility half-life for the seizure channels were lower for most segments examined, but
the respective confidence intervals (constructed from both methods) overlapped a larger proportion of
non-seizure confidence intervals. The volatility also tended to persist longer in the sleep state than in
the pre-seizure and awake states, but the half-life varied more than in the pre-seizure and awake data.
The volatility half-life was similar to the non-seizure channels, especially in the awake data; however,
for the sleep data, the half-lives were lower for half the segments.

For all of the models, the GARCH coefficient was larger than the ARCH coefficient, indicating
larger volatility persistence. However, for some of models, the magnitudes of the coefficients could
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be an issue. While the coefficients were significant at the 5% level, some of the models had GARCH
coefficients greater than 0.95 and ARCH coefficients smaller 0.01. The small ARCH coefficients make
the effect of the past innovations negligible, which is an issue since GARCH models must have
at least one non-zero ARCH parameter for the GARCH parameters to be identified. Additionally,
the sum of the coefficients was greater than 0.99 (but less than 1.00), which is very close to being an
integrated model. These extreme cases may indicate structural changes occurring in the signals during
the one-minute interval, and a more dynamic model may be more appropriate.

The estimated confidence intervals for RAST3 and RAST4 constructed by both methods were
similar for all datasets; however, the confidence limits were more in agreement when the half-life
estimates were smaller (<10). The CIs for RMST4 were wider for similar half-life estimates, indicating
higher variability in the RMST4 estimates. The non-seizure channels also had higher variability, leading
to exclusion of some CIs because of negative confidence limits. It appears larger half-life estimates
yield much wider CIs. This may be due to a higher covariance between the ARCH and GARCH
parameters as their difference grows and/or their sum approaches unity.

The models estimated were based on one-minute segments of data, assuming that they were
stationary, which may not be the case. However, in the cases of RAST3 and RAST4, it appears that
the models were consistent across different segments for the pre-seizure and awake data, both in
the segments used in the analyses and when randomly selecting starting points. This may indicate that
these signals are ARMA–GARCH processes for these particular states. The differences in the estimates
for the sleep and sleep to awake data may also be indicative of an underlying ARMA–GARCH structure,
but they may have different lag structures. The non-seizure signals may also be ARMA–GARCH
processes with different lag structures, especially the cases where the ARCH parameter was less than
0.01. All of the signals may also show different volatility properties with shorter segments, indicating
possible regime changes.

The volatility half-life as a characteristic of epileptic EEG channels may be related to high frequency
oscillations (HFOs), which may be possible characteristics in epileptic EEG channels ([48]. HFOs
and their relationship to seizure onset zones have been studied using machine learning and deep
learning methods [48–50,52,70]. These studies have found various accuracy, sensitivity and specificity
in identifying under different conditions, but do pose another potential tool in studying EEGs.

9. Conclusions

To conclude, the use of ARMA–GARCH models to explore the volatility in the human EEG shows
promise as a method of identifying otherwise unobservable properties in the signals. In particular, we
suggest that identification of volatility properties may help in qualifying seizure dynamics.

This study modeled the innovations as GARCH(1,1) processes, which may be too simplistic—other
types of GARCH models may be appropriate, possibly an Integrated GARCH (IGARCH) model, or one
that takes leverage effects into account. Multivariate ARMA–GARCH models may also be considered
since the signals may be correlated. Other models for estimating volatility may also be used, such as
stochastic volatility models.

Supplementary Materials: The following are available online at http://www.mdpi.com/2624-6120/1/1/3/s1,
Table S1a: GARCH parameters for 6 segments of pre-seizure data; Table S1b: GARCH parameters for 9 segments of
awake data; Table S1c: GARCH parameters for 10 segments sleep-to-awake data; Table S1d: GARCH parameters
for 10 segments of sleep data.
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