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Abstract: Three-dimensional (3D) object detection is essential in autonomous driving. Three-
dimensional (3D) Lidar sensor can capture three-dimensional objects, such as vehicles, cycles, pedes-
trians, and other objects on the road. Although Lidar can generate point clouds in 3D space, it
still lacks the fine resolution of 2D information. Therefore, Lidar and camera fusion has gradually
become a practical method for 3D object detection. Previous strategies focused on the extraction
of voxel points and the fusion of feature maps. However, the biggest challenge is in extracting
enough edge information to detect small objects. To solve this problem, we found that attention
modules are beneficial in detecting small objects. In this work, we developed Frustum ConvNet and
attention modules for the fusion of images from a camera and point clouds from a Lidar. Multilayer
Perceptron (MLP) and tanh activation functions were used in the attention modules. Furthermore,
the attention modules were designed on PointNet to perform multilayer edge detection for 3D object
detection. Compared with a previous well-known method, Frustum ConvNet, our method achieved
competitive results, with an improvement of 0.27%, 0.43%, and 0.36% in Average Precision (AP) for
3D object detection in easy, moderate, and hard cases, respectively, and an improvement of 0.21%,
0.27%, and 0.01% in AP for Bird’s Eye View (BEV) object detection in easy, moderate, and hard cases,
respectively, on the KITTI detection benchmarks. Our method also obtained the best results in four
cases in AP on the indoor SUN-RGBD dataset for 3D object detection.
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1. Introduction

The detection of object instances in 3D sensory data has tremendous importance in
many applications. Three-dimensional (3D) technology can receive more abundant and
comprehensive environmental information. Therefore, it is widely used in robot navigation,
automatic driving, Augmented Reality (AR), and industrial detection.

Point cloud and RGB image fusion can simultaneously extract 2D and 3D features by
using a neural network. Objects can be detected with higher accuracy by simultaneously
considering 2D and 3D information. With the progress of point clouds [1,2], 3D object
detection methods [3,4] can resort to learning features directly from point clouds. For
example, PointNets [3,4] are capable of classifying a whole point cloud or predicting a
semantic class for each point in the point clouds. Three-dimensional (3D) point clouds
are usually transformed into images or voxel grids [5] before PointNet [3,4]. It shows
good performance in 3D object detection. However, the weakness of PointNet [3,4] and
PointNet++ [4] is that a 3D bounding box cannot be estimated with direction. A new
Frustum scheme was proposed by F-PointNets [2] and Frustum ConvNet [1], which use
RGB-D data and a multilayer 2D region proposal to help the point clouds’ segmentation
form the 3D space. The global features are obtained from the local feature combination.
F-PointNets used T-net [2] to determine the position and direction of a 3D bounding box.
The disadvantage of the Frustum is that objects with unclear boundaries and small-scale
instances are difficult to detect.
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To solve this problem, we would like to refer to the attention modules used in 2D object
detection methods. Guo et al. [5] proposed a method based on a Gaussian Mixture Model
(GMM), in which attention modules were improved by colour, intensity, and orientation
feature maps. The attention modules focused on interesting areas to enhance the features of
the edge information and small objects. Fan et al. [6] proposed a Region Proposal Network
(RPN) with an attention module, enabling the detector to pay attention to objects with high
resolution while perceiving the surroundings with low resolution. These works inspired
us to use attention modules for object detection in 3D point clouds.

In our work, we developed the images and 3D point clouds fusion method to improve
3D object detection. A new attention module was designed with Frustum ConvNet [1]
to enhance feature extraction and improve small object detection. We added attention
modules to the input layer of Multilayer Perceptron (MLP) in PointNet [3,4]. We used the
tanh activation function to extract and strengthen the attention of a small object, which can
improve small object detection effectively.

In this paper, we propose a Frustum ConvNet with attention modules for 3D object
detection, in which both images and point clouds are used. The contributions of the paper
are as follows:

1. In the PointNet of Frustum ConvNet, we added the Convolutional Block Attention
Module (CBAM) [7] attention module at the hidden layer of Multilayer Perceptron
(MLP) to improve the detection accuracy. The CBAM attention module can improve
the contrast between the object and the surrounding environment.

2. We propose an improved attention module by adding Multilayer Perceptron (MLP)
and using the tanh activation function. The tanh function is used for average-pooling
and max-pooling layers to extract features. The mean of the tanh activation function
is 0. Furthermore, the tanh function can cope with cases when the feature values have
big differences. Finally, the feature information of the pooling layers is fused through
the sigmoid function.

3. We evaluated our approach on the KITTI [8] object detection benchmark. Compared
with the state-of-the-art method, our method achieved competitive results, with an
improvement of 0.21%, 0.27%, and 0.01% in Average Precision (AP) for 3D object
detection in easy, moderate, and hard cases, respectively, and an improvement of
0.27%, 0.43%, and 0.36% in AP for Bird’s Eye View (BEV) object detection in easy,
moderate, and hard cases, respectively, on KITTI detection benchmarks. Our method
also obtains the best results in four cases in AP on the indoor SUN-RGBD [9] dataset
for 3D object detection.

The rest of this paper is organized as follows. Section 2 introduces the previous 3D
object detection methods. Section 3 describes the architecture of Frustum ConvNet with
Attention Module (FCAM). Section 4 presents the results of our experiments. We conclude
in Section 5.

2. Related Works

This section briefly introduces the previous 3D object detection methods and related
attention works. We organize our reviews into three categories of technical approaches,
namely 3D object detection techniques from point clouds, attention modules in object
detection, and activation functions in a neural network:

2.1. Three-Dimensional (3D) Object Detection from Point Clouds

Three-dimensional (3D) voxel patterns (3DVPs) [10] employ a set of Aggregate Chan-
nel Feature (ACF) [11] detectors to perform 2D detection and 3D pose estimation. A
Multiview 3D Object Detection Network (MV3D) [12] proposed a sensory-fusion frame-
work that takes both Lidar point clouds and RGB images as inputs and predicts oriented
3D bounding boxes. Different from the MV3Ds [12], Li et al. [13] and Song et al. [14]
converted the features in point clouds into a voxel grid to improve accuracy at the cost of
a large amount of computation. VoxelNet [15] proposed a generic 3D detection network
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that unifies feature extraction and bounding box prediction into a single-stage, end-to-end
trainable deep network. In this method, 3D object detection can operate directly on sparse
3D points and capture 3D shape information effectively.

2.2. Attention Module in Object Detection

Recently, some methods have been put forward to incorporate attention processing
to improve the performance of CNNs in 2D-based large-scale classification tasks. Wang
et al. [16] proposed a Residual Attention Network, which can incorporate state-of-the-
art feed-forward network architecture in an end-to-end training fashion. This network
can extract a large amount of attention information without interruption. Hu et al. [17]
introduced a Squeeze-and-Excitation module that adaptively recalibrates channel-wise
feature responses by explicitly modeling interdependencies between channels. This method
has an improvement in calculation and speed. The Bottleneck Attention Module (BAM) [18]
and Convolutional Block Attention Module (CBAM) [7] added spatial attention to increase
accuracy. These attention models performed well for 2D object detection.

2.3. Activation Function in Neural Network

There is now a consensus that for deep networks, rectified linear units (ReLUs) are
easier to train than logistic or tanh units, which were used for many years [19,20]. However,
Le et al. [21] noticed that ReLUs seem inappropriate for RNNs because of the possibility
that large output values may explode out of the bounded values. Ang-bo et al. [22] noticed
that tanh alleviates the phenomenon of mean shift. Li et al. [23] noticed that the output of
the tanh function can enhance the values activated by ReLU units. This inspired us to use
the fusion activation function in the 3D object detection network.

Based on the Frustum architecture [1,2] and the attention module [7], we developed
a new 3D object detection network by integrating the attention modules with Frustum
ConvNet. Based on the advantages of the two functions, we fuse the ReLUs and tanh
functions in the attention module to achieve higher accuracy. Our proposed method
achieved competitive results in KITTI detection benchmarks.

3. Frustum ConvNet with Attention (FCAM)

The architecture of our 3D object detection network using Frustums and attention
modules is shown in Figure 1. This network connects discrete disordered points from
Frustums by using Fully Convolutional Networks (FCNs) [24], thus achieving 3D box-
oriented estimation in a continuous 3D space. We first describe the structure of Frustum
ConvNet in Section 3.1. Frustum ConvNet [1,2] uses PointNet [1,2] to extract and to
aggregate point-wise features as Frustum-level feature vectors. Section 3.2 describes our
improved attention modules by adding Multilayer Perceptron (MLP) and using the tanh
activation function in the PointNet architecture.

v

. Pointn‘et+ - Channel | | Spatial Channel Spatial
Attention Classification Attention Attention Attention Attention .
. - - - Pointnet
Attention / \ g \

. | Pointnet +

Attention

L i 0=

Frustum-level features 2D feature map Input Layer  Hidden Layer Hidden Layer Output Layer

(a) Frustum ConvNet (b) PointNet with attention modules

Figure 1. The architecture of the proposed 3D object detector by using Frustum ConvNet with attention modules. (a) The

whole framework of Frustum ConvNet; (b) the structure of PointNet with attention modules.
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3.1. Frustum ConvNet

We designed the 3D object detector based on the framework of Frustum ConvNet,
as shown in Figure 1a. At first, Frustum-level features are obtained from the Frustum
through PointNet and attention modules, which are re-formed as a 2D feature map. Next,
the PointNets are applied to each Frustum, and the PointNets with shared weights form
the parallel streams of Frustum ConvNet [1]. For point cloud classification, the PointNet
takes n points as the input, and the output comprises the classification scores for the d
classes. The coordinates of the 3D space point clouds minus the centre coordinates of the
Frustum to constitute a 1D vector and serve as the input of FCN. L-dimension vectors form
a 2D feature map F with the size L x d, which will be used as the input of a subsequent
FCN [24]. Finally, the 2D feature maps are used as the input of Fully Convolutional
Networks (FCNs) [24] for 3D prediction. Then, we use the detection head for classification
and regression.

In the PointNet, we apply our improved Convolutional Block Attention Modules
(CBAMs) in the hidden layer of Multilayer Perceptron (MLP), as shown in Figure 1b.
Output features of the CBAM attention module are multiplied with the input feature of the
MLP to obtain the final fused features.

3.2. The Improved CBAM Attention Model for Point Cloud Detection

The original CBAM attention model is shown in Figure 2a, and our improved CBAM
attention model is shown in Figure 2b. In this section, we briefly introduce the original
CBAM and then explain the improvement of our proposed attention model.
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Figure 2. The architecture of attention modules. (a) The architecture of the original CBAM attention module [4]; (b) the
architecture of our improved CBAM.

The original CBAM attention module consists of the channel attention and the spatial
attention blocks. In the channel attention block, the input feature F; passes max pooling
and average pooling and then through the MLP with a reduction ratio r; = 16. They are
followed by sigmoid activation to generate the final channel attention feature map. In
the spatial attention block, channel-based global max pooling and global average pooling
are connected on the input feature F,, and then F, through a convolution layer with 7 x 7
kernel size. After a convolution layer, the dimension is reduced to one channel. Finally, the
attention features are generated after calculation by the sigmoid function.
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The challenge of 3D object detection using PointNet [3,4] is the feature missing prob-
lem, especially when the characteristics are quite different. In the whole Frustum Con-
vNet [1], when a 2D proposal is converted into a 1D vector, some feature information may
be lost to some extent. To solve this problem, we designed a new kind of attention module
to improve the detection capability of our proposed 3D object detector.

If an input falls into the region where x < 0, the gradient of the neuron becomes 0. This
phenomenon is called the Dead ReLU problem [22]. It causes the regression of the model
not to converge. To solve the Dead ReLU problem of the ReLU function and enhance the
feature extraction ability of attention modules, the tanh function is used as an auxiliary
optimization function in our new structure.

Based on the FCN [24] and the thought of the U-net [25] fusion, we added a parallel
Multilayer Perceptron (MLP) architecture to the CBAM attention module and used the tanh
activation function to enhance the contrast between the object and background. Multilayer
Perceptron (MLP) can better fit the nonlinear region and performs well when dealing
with deep networks and large amounts of information. To prevent overfitting due to too
many parameters, we used different reduction ratios in two MLPs to reduce the input and
output channels. Here, the reduction ratios are r; = 16 and r, = 32. Furthermore, the tanh
function can alleviate the mean deviation problem in the ReLU function in [-1, 1], and the
tanh function performs better when the feature values are quite different. However, the
tanh function shows the gradient disappearance outside of [-1, 1], as shown in Figure 3a.
The gradient disappearance problem can be solved by the ReLU function when x > 0,
as shown in Figure 3b. To exploit the advantages of the two activation functions in the
attention modules, we fused the two average pooling vectors by element-wise summation
in the final step, as shown in Figure 3b. Because the sigmoid function has the scope of
[0, 1], we used the sigmoid function as the output layer activation function to represent
the prediction probability. It is used to filter the unimportant part and retain the important
part feature information.

$anh Re}LU
151 °
.
4
3
0 X
0 2 4 6
2
.5
1
L 4 & L & *—b X
1.5 -6 -4 -2 0 2 A 6
(a) The tanh function (b) The ReLU function

Figure 3. The activation function curves in attention modules.

In our improved CBAM attention module, feature maps of channel attention are
obtained by using max pooling and average pooling. The feature map then passes through
two MLPs consisting of two fully connected layers that use the ReLU activation function
and tanh activation function, as shown in the channel attention block of Figure 2b. The
output feature value F3 can be computed by using Equations (1)—(4), as follows:

Wer (F}) = Wi(Wo (Fagg) + Wa(Wo(Fuax)) M
WCZ (F%) = WS(WZ (Ftwg) + WB(WZ(qux)) (2)

F, = Sigmoid (Wa (F}) + Wea (B3 ) 3)
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F5 = Sigmoid (f7*7[Maxpool; Avgpool]) 4)
o cx & e cx& .
where WoeR"1 7, W1eR™ "1, WheR2 " and W3eR™ 2. Wy, Wy, W,, W3 are the weights
of the four fully connected layers in the two MLP networks. W, W, are the weights
of the 1-"% and I-’%. C is the number of channels. R is the real number field. FZ, I-’% are
the element-wise summation features by two different MLP networks. f”*’ represents a
convolution operation with a filter size of 7 x 7.

4. Experimental Results

We evaluated our 3D object detector on KITTI benchmarks [8] for 3D car detection.
We performed the experiment on a TITAN X GPU and developed the code with PyTorch
version 1.1. For each image, evaluation is required for 0.005 s. Our experiment was
based on Frustum ConvNet [1] and tested the vehicles using the KITTI dataset [8]. We
applied the attention module in PointNet and added a parallel Multilayer Perceptron
(MLP) architecture in the CBAM attention module with the tanh activation function. The
number of parameters in Frustum ConvNet [1] is 3,340,089, and the number of parameters
in FCAM is 3,351,353. To reduce the network’s model size and prevent overfitting, we used
two attention modules and increased the reduction ratios from 16 to 32. A larger reduction
ratio reduces parameter overhead and improves the speed of our method.

KITTI: The KITTI dataset [8] contains 7481 training pairs, 7518 testing pairs of RGB
images, and corresponding point clouds. Following an existing work [15], we split the
original training set into the new training and validation sets of 3712 and 3769 samples,
respectively. Learning rates start from 0.001 and decay by a factor of 10 every 22nd epoch
of the total 50 epochs.

Metrics: We evaluated 3D object proposals using 3D box recall as the metric. For 3D
localization, we projected the 3D boxes to the ground plane. We used 3D object detection
AP to evaluate the accuracy of the 3D object detection. We used BEV object detection AP to
evaluate the accuracy of the BEV object detection.

We will now explain the experimental ablation results. Tables 1 and 2 show the
detection performance of the improved CBAM on the KITTI validation set for 3D object
detection and Bird’s Eye View (BEV) object detection, respectively. T means the running
time to process each image. Compared with Frustum ConvNet [1] + CBAM [7], our results
showed improved AP by 0.09% in the BEV object detection of easy categories. For the 3D
object detection, our results showed improved AP by 0.15%, 0.13% in moderate and hard
categories. Because the attention model combines two activation functions, our attention
module has slightly improved the accuracy, but the running time is longer than before.
Figure 4 shows the convergence curves of Frustum, Frustum + CBAM, and Frustum +
Improved CBAM. Frustum + Improved CBAM can achieve the highest accuracy on average
among these three methods.

Table 1. Bird’s Eye View (BEV) object detection Average Precision (AP) (%) on the KITTI dataset. The
best result are in bold.

Method T(s) Easy Moderate Hard

Frustum ConvNet [1] 0.002 90.23 88.79 86.84

Frustum ConvNet [1] + CBAM [7] 0.003 90.35 89.06 86.88
Frustum ConvNet [1] + Improved CBAM 0.004 90.44 89.06 86.85

Table 2. Three-dimensional (3D) object detection AP (%) on the KITTI dataset. The best result are
in bold.

Method T(s) Easy Moderate Hard
Frustum ConvNet [1] 0.002 89.02 78.80 77.09
Frustum ConvNet [1] + CBAM [7] 0.003 89.35 79.08 77.32

Frustum ConvNet [1] + Improved CBAM 0.004 89.29 79.23 77.45
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Figure 4. The validation accuracy of Frustum, Frustum + CBAM, and Frustum + Improved CBAM.

Tables 3 and 4 show the detection performance of our proposed FCAM on the KITTI
validation set for 3D object detection and Bird’s Eye View (BEV) object detection, respec-
tively. Compared with Frustum ConvNet [1], our results showed improved AP by 0.21%,
0.27%, and 0.01%, respectively, in the BEV object detection of easy, moderate, and hard
categories. For the 3D object detection, our results showed improved accuracy in easy,
moderate, and hard cases by 0.27%, 0.43%, and 0.36%, respectively.

Table 3. BEV object detection AP (%) on the KITTI dataset. The best result are in bold.

Method Easy Moderate Hard
MV3D [12] 86.55 78.10 76.67
VoxelNet [15] 89.60 84.81 78.57
F-PointNet [2] 88.16 84.92 76.44
IPOD [26] 88.3 86.4 84.6
Frustum ConvNet [1] 90.23 88.79 86.84
FCAM (Ours) 90.44 89.06 86.85

Table 4. Three-dimensional (3D) object detection AP (%) on the KITTI dataset. The best result are

in bold.
Method Easy Moderate Hard
MV3D [12] 71.29 62.68 56.56
VoxelNet [15] 81.97 65.46 62.85
F-PointNet [2] 83.76 70.92 63.65
IPOD [26] 84.1 76.4 75.3
AVOD-FPN [27] 84.41 74.44 68.65
PointRCNN [28] 88.88 78.63 77.38
Frustum ConvNet [1] 89.02 78.80 77.09
FCAM (Ours) 89.29 79.23 77.45

However, it can be seen that our method did not achieve the best results in 3D hard
detection. The reason is that the attention model is targeted at objects with obvious image
features. When the features are not obvious and occluded, the detection results can be
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affected. By improving the channel attention block, accuracy is improved at the cost of
running time. However, our method is fast enough for real-time applications, being able to
process 200 images per second.

We also evaluated our 3D object detector on the indoor SUN-RGBD [9] test set for 3D
object detection. Table 5 shows the detection performance of our proposed FCAM on the
SUN-RGBD test set for 3D object detection. We tested 5198 images and compared them with
Frustum ConvNet [1]. Our method achieved competitive results, with an improvement of
0.46% in Average Precision (AP) for 3D object detection. In four cases, our method achieved
the best results in Average Precision (AP), such as the bed (1.67%), chair (0.92%), dresser
(1.41%), and sofa (0.3%) for 3D object detection. On average, our method shows the best
results, as can be seen in the last column of Table 5.

Table 5. Three-dimensional (3D) object detection AP (%) on the SUN-RGBD test set (IoU 0.25). The best result are in bold.

Method Bathtub Bed Bookshelf  Chair  Desk Dresser  Nightstand  Sofa Table Toilet  Mean
DSS [14] 442 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 421
COG [29] 58.26 63.67 31.80 62.17 45.19 15.47 27.36 51.02 51.29 70.07 47.63
2Ddriven3D [30] 43.45 64.48 31.40 48.27 27.93 25.92 41.92 50.39 37.02 80.40 45.12
PointFusion [31] 37.26 68.57 37.69 55.09 17.16 23.95 32.33 53.83 31.03 83.80 45.38
Ren et al. [32] 76.2 73.2 329 60.5 345 13.5 30.4 60.4 55.4 737 51.0
F-PointNet [2] 43.3 81.1 33.3 64.2 247 32.0 58.1 61.1 51.1 90.9 54.0
Frustum ConvNet [1] 61.32 83.19 36.46 64.4 29.67 35.10 58.42 66.61 53.34 86.99 57.55
FCAM (Ours) 57.18 84.86 36.04 65.32 32.40 36.51 57.62 66.91 54.87 88.36 58.01

5. Conclusions and Future Works

This paper proposed using Frustum ConvNet with an improved CBAM attention
model for 3D object detection. We propose an improved attention module by adding
Multilayer Perceptron (MLP) and using the tanh activation function to improve the contrast
between the object and the surrounding environment. We evaluate the proposed Frustum
ConvNet with the attention model (FCAM) in the KITTI dataset and achieve competitive
results with the state-of-the-art methods. This Frustum ConvNet with attention architecture
can provide applications such as autonomous driving and robotic object manipulation.

In the future, we plan to further improve the performance of our 3D object detector.
Our proposed attention model does not perform well when the network architecture is
relatively complex. It is difficult for the attention model to focus on occluded objects in a
complex environment. We plan to change the network architecture, reduce parameters,
and further improve the adaptability of attention modules.

Author Contributions: Conceptualization, Y.L.; data curation, Y.L.; formal analysis, Y.L.; funding
acquisition, H.S.; investigation, Y.L.; methodology, Y.L. and H.X.; project administration, H.S.;
resources, Y.L. and H.S.; software, Y.L.; supervision, H.X. and H.S.; validation, Y.L. and H.X.; writing—
original draft, Y.L., H.X., and H.S.; writing—review and editing, Y.L., H.X., and H.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are openly available in [KITTI and
SUN-RGBD dataset] at [doi: 10.1109/CVPR.2012.6248074 and 10.1109/CVPR.2015.7298655], reference
number [8,9].

Acknowledgments: This material is based on work supported by the Ministry of Trade, Industry
and Energy (MOTIE, Korea) under the Industrial Technology Innovation Program (10080619).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



Signals 2021, 2 106

References

1.  Wang, Z,; Jia, K. Frustum convnet: Sliding frustums to aggregate local point-wise features for amodal 3d object detection.
Computer Vision and Pattern Recognition (CVPR). arXiv 2019, arXiv:1903.01864.

2. Qi CR,;Liu, W; Wu, C; Su, H.; Guibas, L.J. Frustum pointnets for 3d object detection from rgb-d data. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-23 June 2018; pp. 918-927.

3. Qi,CR;Liu, W,; Wu, C.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017; pp. 652-660.

4. Qi, CR.;Yi, L; Su, H,; Guibas, LJ. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv
2017, arXiv:1706.02413.

5. Guo, W,; Xu, C.; Ma, S.; Xu, M. Visual attention based small object segmentation in natual images. In Proceedings of the 2010
IEEE International Conference on Image Processing, Hong Kong, China, 2629 September 2010; pp. 1565-1568.

6. Fan, Q.; Zhuo, W,; Tang, C.K,; Tai, Y.W. Few-shot object detection with attention-RPN and multi-relation detector. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13-19 June 2020; pp. 15-20.

7. Woo, S.; Park, J.; Lee, ].Y.; So Kweon, I. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8-14 September 2018; pp. 3-19.

8.  Geiger, A; Lenz, P.,; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16-21 June 2012; pp. 3354-3361.

9.  Song, S.; Lichtenberg, S.P.; Xiao, J. Sun rgb-d: A rgb-d scene understanding benchmark suite. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 567-576.

10. Xiang, Y.; Choi, W,; Lin, Y.; Savarese, S. Data-driven 3d voxel patterns for object category recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 1903-1911.

11.  Yang, B.; Yan, ], Lei, Z.; Li, S.Z. Aggregate channel features for multi-view face detection. In Proceedings of the IEEE International
Joint Conference on Biometrics, Clearwater, FL, USA, 29 September—2 October 2014; pp. 1-8.

12.  Chen, X;; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3d object detection network for autonomous driving. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 1907-1915.

13. Li, B. 3d fully convolutional network for vehicle detection in point cloud. In Proceedings of the 2017 IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24-28 September 2017; pp. 1513-1518.

14. Song, S.; Xiao, J. Deep sliding shapes for amodal 3d object detection in rgb-d images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 808-816.

15.  Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-23 June 2018; pp. 4490-4499.

16. Wang, F,; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Tang, X. Residual attention network for image classification. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 3156-3164.

17. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18-23 June 2018; pp. 7132-7141.

18. Park,].; Woo, S.; Lee, ].Y.; Kweon, 1.S. Bam: Bottleneck attention module. arXiv 2018, arXiv:1807.06514.

19. Nair, V,; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the International Conference
on Machine Learning (ICML), Haifa, Israel, 22-24 June 2010.

20. Zeiler, M.D.; Ranzato, M.; Monga, R.; Mao, M.; Yang, K.; Le, Q.V.; Hinton, G.E. On rectified linear units for speech processing.
In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada,
26-31 May 2013; pp. 3517-3521.

21. Le, Q.V,Jaitly, N,; Hinton, G.E. A simple way to initialize recurrent networks of rectified linear units. arXiv 2015, arXiv:1504.00941.

22.  Ang-bo, J.; Wei-wei, W. Research on optimization of ReLU activation function. Trans. Microsyst. Technol. 2018, 2. Available online:
https://en.cnki.com.cn/Article_en/CJFDTotal CGQJ201802014.htm (accessed on 11 February 2021).

23. Li, X;; Hu, Z.; Huang, X. Combine Relu with Tanh. In Proceedings of the 2020 IEEE 4th Information Technology, Networking,
Electronic and Automation Control Conference (ITNEC), Chongqing, China, 12-14 June 2020; pp. 51-55.

24. Long,].; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 3431-3440.

25. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5-9 October
2015; pp. 234-241.

26. Yang, Z.;Sun, Y.; Liu, S.; Shen, X;; Jia, ]. Ipod: Intensive point-based object detector for point cloud. Computer Vision and Pattern
Recognition (CVPR). arXiv 2018, arXiv:1812.05276.

27. Ku,].; Mozifian, M.; Lee, ].; Harakeh, A.; Waslander, S.L. Joint 3d proposal generation and object detection from view aggregation.
In Proceedings of the 2018 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1-5
October 2018; pp. 1-8.

28. Shi, S.; Wang, X.; Wang, H. PointRCNN Li. 3d object proposal generation and detection from point cloud. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16-20 June 2019; pp. 15-20.


https://en.cnki.com.cn/Article_en/CJFDTotalCGQJ201802014.htm

Signals 2021, 2 107

29.

30.

31.

32.

Ren, Z.; Sudderth, E.B. Three-dimensional object detection and layout prediction using clouds of oriented gradients. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 1525-1533.
Lahoud, J.; Ghanem, B. 2d-driven 3d object detection in rgbd images. In Proceedings of the IEEE International Conference on
Computer Vision, Venice, Italy, 22-29 October 2017; pp. 4622—4630.

Xu, D.; Anguelov, D.; Jain, A. Pointfusion: Deep sensor fusion for 3d bounding box estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-23 June 2018; pp. 244-253.

Ren, Z.; Sudderth, E.B. 3d object detection with latent support surfaces. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-23 June 2018; pp. 937-946.



	Introduction 
	Related Works 
	Three-Dimensional (3D) Object Detection from Point Clouds 
	Attention Module in Object Detection 
	Activation Function in Neural Network 

	Frustum ConvNet with Attention (FCAM) 
	Frustum ConvNet 
	The Improved CBAM Attention Model for Point Cloud Detection 

	Experimental Results 
	Conclusions and Future Works 
	References

