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Abstract: The paper considers the problem of tracking a moving target using a pair of cooperative
bearing-only mobile sensors. Sensor trajectory optimisation plays the central role in this problem,
with the objective to minimize the estimation error of the target state. Two approximate closed-
form statistical reward functions, referred to as the Expected Rényi information divergence (RID)
and the Determinant of the Fisher Information Matrix (FIM), are analysed and discussed in the
paper. Being available analytically, the two reward functions are fast to compute and therefore
potentially useful for longer horizon sensor trajectory planning. The paper demonstrates, both
numerically and from the information geometric viewpoint, that the Determinant of the FIM is a
superior reward function. The problem with the Expected RID is that the approximation involved in
its derivation significantly reduces the correlation between the target state estimates at two sensors,
and consequently results in poorer performance.

Keywords: cooperative tracking; trajectory optimisation; passive mobile sensors; bearings-only
tracking; Fisher information matrix

1. Introduction

Multiple passive sensors can be cooperatively used in a target tracking system to
achieve target observability. In general, the performance of such a tracking system is
correlated with the states of these sensors [1]. For example, a 2D moving target can be
observed by two cooperative bearing-only sensors, while they exhibit observability issues
individually [2]. In this case, the track accuracy is highly dependent on the locations of the
sensors when taking measurements. A crucial step in the tracking is to plan the moving
sensor trajectories ahead of measurement process in a way which will minimise tracking
error at a future time when the measurements taken by the two sensors on the planned
trajectories are used [3,4].

The sensor trajectory planning problem is also known as trajectory scheduling or
optimisation in the literature. It can be cast as a partially observed Markov decision process
(POMDP) [5,6], where the decision process is carried out by minimising the cost or max-
imising the reward against a measure criterion that is related to the Fisher information [7–9]
or mutual information [10,11]. Ghassemi and Krishnamurthy describe a method in [12],
where they use a set of orthogonal basis functions, i.e., the Chebychev polynomial series as
suggested in [13] for the control space parameterisation to replace the brute force search for
N-step planning ahead. Logothetis et al. proposed an information theoretic approach to
sensor scheduling in [10]. The sensor is steered so that the mutual information between the
posterior density of the target and the measurement sequence at a desired future time is
maximized. Practical algorithms for sensor scheduling were discussed in [11]. Morelande
et al. proposed an alternative approach in [14], which calculates the accumulated reward,
defined by the expectation of information divergence between the posterior and prior
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densities of target, for each possible sensor path and the sensor maneuvers are controlled
by the action that maximises the accumulated reward. In general, computing reward
functions require the evaluation of future measurements. Of course, it is impossible to
give an exact computation of the future reward function since future measurements are
inaccessible. One may mitigate this problem by using (conditionally) expected values of
the reward at future times, or by using Monte Carlo sampling to numerically evaluate
future measurements [15,16].

In this paper, we investigate the problem of tracking a moving target via cooperative
passive sensors, where the tracking error is a function of sensor trajectories. The focus
is on two statistical reward functions for passive sensing, both available in the analytic
form. They are referred to as the Expected Rényi information divergence (RID) and the
determinant of the Fisher information matrix (FIM). Being available analytically, they are
potentially useful for a longer horizon sensor trajectory planning, even on the platforms
with limited computational resources. The paper investigates the implications of the
approximations involved in derivation of the two reward functions. The analytic expression
for the Expected RID is derived assuming a linear-Gaussian case. We show that this
approximation significantly reduces the cross-correlation of the tracking error between the
two sensor locations, and consequently results in the performance similar to that of the
trace of the FIM. On the other hand, the determinant of FIM, where the ground truth is
approximated by the prediction of the target state, taking correctly into account the cross-
correlation between the two sensors. We also discuss this problem from the information
geometric viewpoint by illustrating the geometric properties of the FIM corresponding to
the statistical reward function. Finally, we compare the performance of the two reward
functions by a numerical example in which a (non-cooperative) target is being chased
by two cooperative bearing-only sensors. Preliminary work on this subject was reported
in [17].

The paper is organised as follows: the sensor trajectory scheduling problem of interest
is described in Section 2. The analytic expressions for the two reward functions, i.e., the
Expected RID and the determinant of FIM are derived and their performance discussed
in Section 3. In Section 4, we further compare the performance difference between the
two reward functions from the information geometric viewpoint. Simulation results are
presented in Section 5. Finally, the concluding remarks are given in Section 7.

2. Problem Definition

Let us consider the problem of two-dimensional target tracking using measurements
from two cooperative bearing-only sensors as shown in Figure 1.
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Figure 1. Illustration of the bearings-only tracking scenario, where the measurement covariance
depends on the locations of the two sensors.
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The target state, which consists of both target location (xk, yk) and velocity (ẋk, ẏk),
at time tk, k = 1, 2, · · · is

xk = [ xk, yk, ẋk, ẏk ]
′.

The system and measurement models are

xk = Fkxk−1 + wk, (1)

βk =

[
β1k
β2k

]
= h(xk) + vk, (2)

where the system transition matrix is

Fk =

[
1 tk − tk−1
0 1

]⊗
I2, (3)

and wk and vk are system and measurement noises, respectively. These are assumed to be
independent Gaussian distributions, that is,

ωk ∼ N (0, Qk), and vk ∼ N (0, Σk),

where Qk is assumed to be known and

Σk =

[
σ2

1 0
0 σ2

2

]
.

σ1 and σ2 are the standard deviations of measurement noises for sensors 1 and sensor 2,
respectively.

The measurement function in (2) is expressed as

h(xk, xS1
k , xS2

k ) =

 tan−1
(

xk−x
S1
k

yk−y
S1
k

)
tan−1

(
xk−xS2

k

yk−yS2
k

)
, (4)

where (xS1
k , yS1

k ) and (xS2
k , yS2

k ) are the locations of sensor 1 and sensor 2 at tk, respectively.
The objective of target tracking is to estimate the target posterior probability density

function (PDF) p(xk|β1:k) based on the bearings-only measurement sequence β1:k up to
current time tk and the prior PDF p(xk−1|β1:k−1). Clearly, the measurement model (4) is
sensor state dependent, and so tracking accuracy depends on where the two sensors take
measurements (i.e., on their motion). Our goal is to find the optimal future motion for
the two sensors within the limitations imposed by the sensor platform dynamics, so as to
minimize the future expected track error. This is a difficult problem because of the many
sources of uncertainty involved in decision-making: the uncertainty in the current target
state estimate as well as the uncertainty in the future target motion and measurements.

A practical way to implement the sensor trajectory optimisation procedure is to
assume that sensor platforms move at constant speeds, v1 and v2, respectively, and that
they have a small set U of admissible course corrections at time tk. Each element uk of U
is a pair uk = [u1,k, u2,k]

′, where ui,k represents the course correction of the ith sensor at k.
This results in the velocities of the two sensors in the local coordinates in the time interval
(tk, tk+1] as

ẋsi
k = vi sin ui,k, ẏsi

k = vi cos ui,k, i = 1, 2. (5)

The assumption of constant speeds between sampling intervals is a standard practice
for system analysis of discrete data sampling without loss of optimality. The analysis tends
to be optimal at a high sampling rate.

In summary, the underlying target tracking is a POMDP and involves an N-step
ahead process of sensor trajectory planning, which computes the optimal action sequence
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u∗k+1:N = {u∗k+1, · · · , u∗k+N} such that the tracking error is minimised at the future time
tk+N . A generic recursive process of sensor trajectory scheduling and target state estimation
at discrete-time k ≥ 1 involves the steps listed in Algorithm 1:

Algorithm 1 Sensor scheduling steps at discrete-time k

1: Inputs: The posterior at k, p(xk|β1:k); the sensor locations (xsi
k , ysi

k ) and course correc-
tions ui,k, i = 1, 2.

2: Propose the set of admissible sensor actions Uk+1:N

3: Perform scheduling based on an optimality criterion and obtain the optimal sequence
of future sensor actions u∗k+1:N ∈ Uk+1:N for a future time period (tk+1, tN).

4: Steer each sensor i = 1, 2 to the computed location (xsi
k+1, ysi

k+1) at speed vi and course
correction ui,k.

5: Take (bearings-only) measurements at time tk+1 and then compute the posterior PDF
of target p(xk+1|β1:k+1) via a suitable tracker.

6: Outputs: p(xk+1|β1:k+1); (xsi
k+1, ysi

k+1) and ui,k+1, i = 1, 2.

3. Reward Functions

The sensor trajectory scheduling is part of the underlying target tracking process,
involving the computation of a sequence of future actions (sensor course corrections)
based on the current target and sensor states. The key role in this process plays the
criterion for measuring the reward of the future action. The reward functions used in the
literature are based on the information theoretic measures. One criterion is the mutual
information between the posterior probability density of the estimated target state and the
measurement sequence, which we seek to maximize. A theoretic description is given in [18]
and sub-optimal strategies are discussed in [19]. An alternative criterion is to maximize the
information divergence between the prior and posterior probability densities of estimated
target state [14]. As the ultimate goal of sensor trajectory optimisation is to improve target
tracking accuracy, the posterior Cramer–Rao low bound [20] is also used as a cost function
to take the estimator performance into account as well. In addition, we can also maximize
the determinant or trace of the FIM [13]. All of these criteria are consistent in the sense that
they maximize the Fisher information of the underlying system.

In this work, we investigate two reward functions for the problem at hand, which can
be derived analytically: the Expected RID and the Determinant of the FIM. For the purpose of
comparison, we also introduce the reward function based on the Trace of the FIM. The goal
is to find a reward function which is both computationally efficient and reflects correctly
the information change associated with various sensor trajectory hypotheses.

3.1. Expected RID

The Rényi information divergence [21] is the information divergence for probability
densities f1(x) and f2(x), for α ≥ 0,

Iα( f1, f2) =
1

α− 1
ln
[∫

f1(x)α f2(x)α−1dx
]

. (6)

For the underlying system with one-step ahead sensor scheduling, f1 = p(xk+1|β1:k+1)
signifies the posterior density at k + 1 and f2 = p(xk+1|β1:k) signifies the predicted density
at k + 1, where βk+1 is the future measurement at time k + 1 given by (2). Thus, (6) becomes

Iα

(
p(xk+1|β1:k+1), p(xk+1|β1:k)

)
=

1
α− 1

ln
[∫

p(xk+1|β1:k+1)
α p(xk+1|β1:k)

α−1dxk+1

]
. (7)
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The evaluation of the integral (7) requires the future measurement βk+1, which may
be obtained numerically via Monte Carlo simulations [15,16]. A statistical solution in a
closed-form can be derived for the linear Gaussian case [14], where the dependence on the
future measurement βk+1 is removed by taking the expectation w.r.t. p(βk+1|β1:k).

The linear Gaussian case is described by the transition

xk|xk−1 ∼ N (xk; Fxk−1, Q), (8)

and measurement
yk|xk ∼ N (yk; Hxk, R). (9)

The predicted measurement distribution is then given by

yk−1|yk ∼ N (yk+1; ŷk+1, Sk+1). (10)

where Sk+1 = HPk|k−1H ′ + R.
Assume that the sequence of measurements y1:k has been collected so that the posterior

density is given by
p(xk|y1:k) = N (xk; x̂k|k, Pk|k), (11)

where Pk|k is the updated covariance at k.
For the properties of the Kalman filter, the divergence between the prior PDF and

posterior PDF at k + 1 is given by

Iα =
1

α− 1
ln

[
|2πR/α|1/2N (yk+1; ŷk+1, Sk+1 + R(1− α)/α)

|2πR|α/2N (yk+1; ŷk+1, Sk+1)α

]

=
0.5

α− 1
ln
(
|R|1−α|Sk+1|α

|αSk+1 + (1− α)R|

)
+0.5

∫
(yk+1 − ŷk+1)

′[I − S−1
k+1(αR−1 + (1− α)S−1

k+1)
−1]

× S−1
k+1(yk+1 − ŷk+1)N (yk+1; ŷk+1, Sk+1)dyk+1. (12)

Taking the expectation of (12) with respect to p(yk+1|y1:k) and using the formula∫
(z−m)′Ω−1(z−m)N (z; µ, Σ)dz

= (µ−m)′Ω−1(µ−m) + tr(Ω−1Σ), (13)

we obtain the closed-form Expected RID function [22]:

Eyk+1|1:k Iα =
1

2(α− 1)
ln
(
|αΨk+1 + I|
|Ψk+1 + I|α

)
+

1
2

tr
(

I − (αΨk+1 + I)−1
)

(14)

where Ψk+1 = R−1HPk+1|k H ′ and Pk+1|k is the covariance matrix associated with the
predicted state estimate x̂k+1|k.

For the bearings-only problem described in Section 2, see Equations (1) and (2),
the Expected RID can only be approximated via linearisation, i.e., H in (14) is replaced by
the Jacobian of (4)

Hk = ∇xh(x)|x=x̂k+1|k . (15)

Note that Pk+1|k is obtained from the underlying tracker [23] and R is replaced by Σk
associated with (2).
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3.2. Determinant of Fisher Information Matrix

In general, it is non-trivial to derive the FIM or its determinant in a closed-form.
For this particular case, the measurement model (4) is independent of target velocity and
the resulting FIM is only of rank 2. In consequence, we only need to consider the target
position components in derivation of the FIM, and therefore the target state vector xk
in derivation will denote just the target position components ([xk, yk]

′). A closed form
expression for the determinant of the FIM is analytically tractable as follows.

Suppose that the posterior at k− 1 is p(xk−1|β1:k−1). Using the current sensor locations
and a proposed action uk, one can compute the one-step ahead sensor locations (xsi

k , ysi
k )

for i = 1, 2. The FIM Gk at time tk for the measurement (2) is defined to be

Gk
∆
= E

[(
∇x ln p(β|x)

)(
∇x ln p(β|x)

)′]
x=xk

, (16)

where ln p(β|x) is the log-likelihood, which is obtained from Equation (2), and Gk is a
2× 2 matrix with entries

Gk =

[
g11 g12
g21 g22

]
(17)

Under the Gaussian measurement noise assumption, we have

gij =

[
∂h(xk)

∂(xk)i

]T
Σ−1

k

[
∂h(xk)

∂(xk)j

]

+
1
2

tr

[
Σ−1

k
∂Σ(x)
∂(xk)i

Σ−1
k

∂Σ(x)
∂(xk)j

]
. (18)

Therefore,

g11 =
2

∑
i=1

1
σ2

i

(yk − ysi
k )

2

[(xk − xsi
k )

2 + (yk − ysi
k )

2]2
, (19)

g12 = g21 =
2

∑
i=1
− 1

σ2
i

(xk − xsi
k )(yk − ysi

k )

[(xk − xsi
k )

2 + (yk − ysi
k )

2]2
, (20)

g22 =
2

∑
i=1

1
σ2

i

(xk − xsi
k )

2

[(xk − xsi
k )

2 + (yk − ysi
k )

2]2
. (21)

The determinant of Gk is a function of σ1, σ2, xk, xs1
k and xs2

k . From the definition and
using (19)–(21), we have

Det{Gk}
∆
=

1
σ2

1 σ2
2

× [(xk − xs1)(yk − ys2)− (xk − xs2)(yk − ys1)]2

[(xk − xs1)2 + (yk − ys1)2]
2
[(xk − xs2)2 + (yk − ys2)2]

2 . (22)

Calculation of the FIM requires knowledge of the target location at future time k,
which in practice is approximated using the predicted target state x̂k based on the point
estimate from p(xk−1|β1:k−1) and the system dynamics (1).

3.3. Trace of Fisher Information Matrix

In view of (19)–(21), the trace of the FIM is given by

tr(G)k
∆
=

2

∑
i=1

gi,i =
2

∑
i=1

1
σ2

i

1
(xk − xsi

k )
2 + (yk − ysi

k )
2

. (23)
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The trace of the FIM is a widely used objective function for sensor information max-
imisation [24], but it is more conservative than the determinant of the FIM since it does not
take into account the off-diagonal terms of FIM. It will be used to explain the behaviour of
the Expected RID function.

3.4. Remarks on the Reward Functions

Both the Expected RID and the Determinant of FIM involve approximations: the
former using linearisation, the latter using the predicted target state in place of the true
state. The following analysis highlights the difference between the two reward functions
after approximation.

To compare the performance difference of the reward functions, we fix the loca-
tion of Sensor 1 at S1 = (50, 300), and plot the reward of one step ahead versus the
location of Sensor 2. In the simulation, P is set to be a constant, σ1 = 0.175 (rad) and
σ2 = 0.2618 (rad). The contour plots for the Expected RID and Determinant of FIM are in
Figure 2a,b, respectively.

 

 

Sensor 1

Target

x

y

Expected Renyi Divergence vs Sensor 2 Location

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

Sensor 1

Target

x

y
Determinant of FIM vs Sensor 2 Location

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) (b)

 

 

Sensor 1

Target

x

y

Trace of FIM vs Sensor 2 Location

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)

Figure 2. Reward function performance comparison—Normalised values of reward functions for the location of sensor 2
when the locations of sensor 1 and target are fixed. (a) expected RID; (b) determinant of FIM; (c) trace of FIM. The normalised
value of colorbar indicates the relative amount of Fisher information gained by the sensor system.
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In view of these figures, we can make the following observations:

• While Figure 2a shows an increasing reward as Sensor 2 approaches the target, there
is no information change observed when Sensor 2 moves around the target in a circle.
This indicates that the Expected RID changes only with respect to the distance from
individual sensors to the target rather than with respect to the relative locations of
the two sensors. This is in contrast to the value of the Determinant of FIM shown
in Figure 2b.

• Figure 2b shows a straight line across the two sensor locations, where the values of
FIM are singular. This indicates a subspace corresponding to the singular points on
which the target state is unobservable. On the other hand, neither the expected RID
nor the trace of the FIM take this singular subspace into account.

• We observed that the contour plot of the Expected RID in Figure 2a is virtually the
same as that of the Trace of FIM shown in Figure 2c. The latter is independent of the
two sensor locations as long as their distances to the target remain unchanged and this
is verified by (23). This suggests that the Expected RID does not preserve the observed
information structure with respect to the two sensor locations after linearisation.

Note that we fix the location of sensor 1 in Figure 2 for a clear visualization of the differ-
ence in comparison, given that both sensors are movable in the sensor trajectory optimisation.

4. Geometric Interpretation on Reward Function

The above argument on the selection of a reward function in cooperative sensing can be
described using information geometry. It is well known that the FIM can be used as a metric
tensor defining a Riemannian manifold, called the statistical manifold [25]. Riemannian
geometrical concepts, thereby, can inform in problems such as ours. For instance, the Fisher
Information distance, defined in terms of the Riemannian metric, can be used to compare
parameterised distributions.

For the problem at hand, the family of probability distributions S = {p(β|x)}, pa-
rameterised in the target location space x ∈ R2, forms a 2D statistical manifold where x
plays the role of a coordinate system of S. The Fisher information distance (FID) between
p(β|x(t1)) and p(β|x(t2)) is defined as the integral along the curve x(t):

DF
(
x(t1), x(t2)

) 4
=

min
x

∫ t2

t1

√(dx(t)
dt

)T
G
(
x(t)

)(dx(t)
dt

)dt, (24)

where the minimizing curve is a geodesic in the Riemannian manifold. In local coordinates,
the geodesic equations are given by the Euler–Lagrange equations as [25]

d2xl
dt2 +

n

∑
i=1

n

∑
j=1

Γk
ij

dxi
dt

dxj

dt
= 0, l = 1, 2. n = 2. (25)

For convenience, we use the subscript i of x to represent its ith component and thus
xi, i = 1, 2 are the coordinates of the curve x(t), Γl

ij, i, j = 1, 2 are the Christoffel symbols of
the second kind, and we can use the Levi–Civita connection coefficients,

Γl
ij =

1
2

2

∑
k=1

glk

(
∂gik
∂xj

+
∂gjk

∂xi
−

∂gij

∂xk

)
, i, j, l = 1, 2. (26)

where [glk] signifies the inverse of G = [glk] and Einstein notation for summation is used.
The geodesic equations in (25) are ordinary differential equations for the coordinates

xi, i = 1, 2. A unique solution x(t) can be found for given initial conditions x(0) and ẋ,
which is analogous to an initial position x(0) and the “speed” ν ∈ T xS in the sense of the
classical mechanics, where T x denotes the tangent vector of S at x.
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Assume that a geodesic is projected onto the parameter space R2 with a starting point
x(0) and a tangent vector ν. The exponential map of the starting point is then defined
as [26]

expν[x(0)]
4
= Ψ

(
1; x(0), ν

)
. (27)

where the notation Ψ
(
t; x(0), ν

)
is used to signify a geodesic with a starting point x(0),

a tangent vector ν and end point x(t).
It can be shown that the length along the geodesic between x(0) and Ψ

(
1; x(0), ν

)
is

|ν| [26,27]. Thus, for a fixed ν, the plot of geodesics along all directions at x produces an
FID circle centered at x in S. Intuitively, the projection of an equal FID circle from statistical
manifold to the parameter space, which is generally not isotropic in magnitude, reflects the
observability of the underlying sensors at given states. With the FIM corresponding to a
sensible reward function, the projection will vary as the state of a sensor changes.

To highlight the difference between the two statistical reward functions in question,
we plot the projection of FID circles in parameter space under the scenario where two fixed
targets are observed by the two bearing-only sensors. These circles are centred at a target
state with the same radius ν in the statistical manifold spanned by the FIM corresponding
to the two statistical reward functions, respectively.

We examine the changes of FID circles before and after the Sensor 2 move circularly
around one target.

The FID circles, shown in Figure 3a,b, have changed significantly as Sensor 2 moves
circularly around the target on the left. This indicates that the amount of target information
which may be observed by the two sensors varies with sensor states. On the other hand,
if we plot the FID circles in the statistical manifold spanned by the FIM without off-
diagonal elements which correspond to using the trace of FIM as a statistical reward
function, as shown in Figure 4a,b, the FID circle centered at the target on the left does not
change as the Sensor 2 moves circularly around the target.

We emphasize that sensor 2 moves close to the target on the right while keeping the
same distance to the target on the left. The FID circles on both left and right targets change
in Figure 3 under the Determinant of FIM, but the FID circle on the left remains the same
as shown in Figure 4 after the movement of sensor 2 when the Trace of FIM criterion is
used. This result indicates that the Fisher information will not be fully explored if trace
rather than determinant of the FIM is used as a statistical reward function. The Expected
RID performs similarly to the trace of FIM.
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Figure 3. Illustration of the circles of statistical manifold spanned by FIM for given sensor locations (a) sensor 1 is at (1500,
400) and sensor 2 (973, 387); (b) sensor 1 is at (1500, 400) and sensor 2 moved to (1219, 544) in a circle around the target on
the left. Colorbar value represents the changes of the amount of information gained by the sensor system if the target moves
between the center and a manifold circle boundary.
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Figure 4. Illustration of the circles of statistical manifold spanned by the FIM with constant valued off-diagonal elements for
given sensor locations (a) sensor 1 is at (1500, 400) and sensor 2 (973, 387); (b) sensor 1 is at (1500, 400) and sensor 2 moved
to (1219, 544) in a circle around the target on the left. Colorbar value represents the changes of the amount of information
gained by the sensor system if the target moves between the center and a manifold circle boundary.

5. Simulation Example

In this section, we illustrate the effectiveness of sensor scheduling using an example
of tracking a maneuvering target by two bearing-only sensors. Target motion follows a
hidden Markov process which contains the states of a left turn (−5◦), a right turn (5◦)
and straightline (0◦), and it is moving at a constant speed of 10 m/s. The initial target
state is x0 = [600, 560, 10 ∗ cos(30◦), 10 ∗ sin(30◦)]′. In the first 50 of a total of 100 scans,
the target is in the left turn state and it shifts to a right turn state for the rest of scans.
Initially, the two bearing-only sensors are moving at a constant speed of 10m/s from the
locations S1 = (1900, 560) m and S2 = (1950, 560) m heading in the directions 0◦ and
60◦, respectively. They acquire bearing measurements of the target at a sampling rate of
T = 5 s. During each scan, they will be steered to one of five directions with respect to their
current headings according to the trajectory optimisation decision. The 5 directions are
−90◦, −45◦, 0◦, 45◦ and 90◦.

Therefore, for a N-Step ahead decision process, the number of action hypotheses
yielded for the two cooperative sensors are (52)N . For example, the number of action
hypotheses for N = 1 is 52 = 25 and for N = 3 is (52)3 = 15, 625. We illustrate this
example in Figure 5.

In practice, the maximum number of hypothesis histories allowed to steer future
measurement at each epoch is constrained by a fixed number “MaxH” to provide a feasible
computational overhead for real-time operation. In our simulation, we set MaxH = 1000
and such a choice does not affect the comparison of the optimisation performance under
different reward functions. We observed from simulation that under this constraint the track
error difference between N > 3 and N = 3 is statistically close to zero and thus is negligible.
Therefore, in the performance comparison versus Monte Carlo runs, we only consider
N ≤ 3.
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Figure 5. Illustration of sensor trajectory hypothesis trees under a joint sensor scheduling. For N = 3
steps ahead calculation at time k, two sensors with five possible directions yields a total of 15,625
possible trajectory hypotheses. The color scheme signifies the accumulated reward values (under
DetFIM) with red the highest and dark blue the lowest.

An EKF tracker [28] is implemented to estimate the posterior density of target state
from the target bearing measurements taken by the two sensors. We assume that the target
bearing measurements are corrupted with a Gaussian noise of zero-mean with standard
deviation of two degrees.

Figures 6 and 7 show the typical trajectories of the two bearing-only sensors in
the target tracking experiment under the Determinant of FIM (DetFIM), the Expected
RID (ExpReward), and the Trace of FIM (TrFIM), respectively. By maximising DetFIM,
the two sensors move in a way such that the angle formed by sensor 1, target, sensor 2
is approximately π/2 while approaching the target. Thus, the measurements taken by
the two sensors along these computed trajectories minimise the error covariance of the
underlying tracker (Figure 6). On the other hand, the sensor trajectories scheduled by
maximising ExpReward (or TrFIM) show no cooperative movement between the sensors
while they are approaching the target. This is because none of correlations between the two
sensors with respect to the target are used in the evaluation of either ExpReward or TrFIM
criterion as discussed in Section 3. By maximizing either of these two reward functions,
the two passive sensors move independently (at identical speeds) in the way to minimize
their own distances-to-target (Figure 7), which clearly yields larger errors than that of the
DetFIM result shown in Figure 6.
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Figure 6. Illustration of the estimated target trajectory and the motion trajectories of the two bearing-
only sensors optimized under DetFIM plotted from a single run, along with target ground truth
trajectory. Colorbar value signifies sampling time (scan).
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Figure 7. Estimated target trajectories with ground truth trajectory and the motion trajectories of the two bearing-only
sensors optimized under (a) ExpReward; (b) TrFIM, plotted from a single run. Colorbar value signifies sampling time (scan).

The statistical results averaged over 100 Monte Carlo runs for each case are shown
in Figure 7, where the root-mean-squared position error comparison of the tracker under
different reward functions for N = 2 is presented in Figure 8a, and the RMS errors
under DetFIM for N = 1, 2, 3, 4 are in Figure 8b. In summary, the simulation results
demonstrate that

• the tracker yields a smaller error but significantly more computational overhead as N
increases. We observed that the computational complexity for N = 1, 2, 3, 4 is roughly
at a ratio of 1 : 41 : 2890 : 2905 when MaxH = 1000. Both computational overhead and
RMS errors are bounded by MaxH, which is the maximum number of sensor trajectory
hypotheses to be maintained. As shown in Figure 8b, the RMS error performances for
N ≥ 3 are almost identical. This reflects the trade-off between error performance and
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computational load as the limited MaxH leads information loss due to the hypotheses
pruning process:

• the sensor scheduling under DetFIM yields a significantly small error, which is consis-
tent with our analysis.

• the RMS error under ExpReward is quite similar to that under TrFIM. The latter
completely ignores the correlation between the two sensor states.

• The major computational complexity of the simulation comes from the computation of
N-Step ahead decision process when N > 2. For example, the average computational
overhead per scan are 0.7 s when N = 2 and 5.5 s for N = 3 (on a machine with
an Intel 2 Core i7-4600U CPU 2.10GHz processor (Intel: Mountain View, CA, USA)).
The computational complexity difference between DetFIM, TrFIM and ExpReward
are 1 : 1.02 : 1.45.
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Figure 8. (a) RMS errors of the estimated target trajectory with sensor trajectories optimized under different reward methods
for a N = 2-step ahead decision process; (b) RMS errors of the estimated target trajectory with sensor trajectories optimized
under DetFIM for N = 1, 2, 3, 4. Statistically, there is little difference between N = 3 and N = 4 due to the bound on the
number of hypotheses kept at each step by MaxH.

6. Further Discussion

From the analysis in Sections 3 and 4 and simulation results in Section 5, we may
conclude the following points, which highlight the outcome from the major contribution of
this paper.

• The measurement Equation (4) suggests that the optimisation of sensor trajectories is
required to reduce state estimation error (or maximize FIM) of the underlying system.

• The three closed-form reward functions derived by approximation are applicable for
the optimisation aiming to maximize Fisher information. Identical performances may
be achievable when (4) describes a single sensor case (S1 = S2).

• Only the determinant of FIM should be used for the case where cooperative sensing
from multiple sensors is involved.

• Since the target state in the FIM calculation can only be approximated by the estimate
from tracker, the reward calculated by DetFIM can be senseless if the track error is
significantly large.

• In the N-Step ahead sensor trajectory optimisation process described in this paper,
computational load can become intractable if a large number of sensors are jointly
considered or a large N is chosen. Researchers are investigating other solutions,
such as the Rapid Random Exploring Tree numerical sampling method [29], in order
to address the computation issue.
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7. Conclusions

In this paper, we investigated the problem of sensor trajectory optimisation for tracking
a moving target using multiple cooperative passive sensors. The problem is formulated
as POMDP, and a N-step ahead sensor trajectory scheduling is considered to steer the
measurement decision process that maximises a reward function. Two statistical reward
functions, the Expected RID and the determinant of FIM, both of which are derived in
closed-forms, are considered. We show that the Expected RID function approximated
through linearisation effectively yields a much weaker correlation between the two sensor
states and thus the trajectory scheduling performance using it is as poor as using the Trace
of FIM. On the other hand, the Determinant of FIM is an appropriate statistical reward
function to be used. This conclusion is confirmed by the simulation results presented.
Although this work is based on tracking a moving target by two bearing-only sensors
scenario, the results can also be applied to other types of sensors which are required to be
used jointly to observe the underlying target state, such as Doppler radars. The underlying
application areas may consist of those whose decision-making performances depend on the
cooperation of multiple dependent sensors such as smart cites, energy and robotics [30–32]
and practice of game theory [33].
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