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Abstract: Image denoising methods generally remove not only noise but also fine-scale textures and
thus degrade the subjective image quality. In this paper, we propose a method of recovering the
texture component that is lost under a state-of-the-art denoising method called weighted nuclear
norm minimization (WNNM). We recover the image texture with a linear minimum mean squared
error estimator (LMMSE filter), which requires statistical information about the texture and noise.
This requirement is the key problem preventing the application of the LMMSE filter for texture
recovery because such information is not easily obtained. We propose a new method of estimating
the necessary statistical information using Stein’s lemma and several assumptions and show that our
estimated information is more accurate than the simple estimation in terms of the Fréchet distance.
Experimental results show that our proposed method can improve the objective quality of denoised
images. Moreover, we show that our proposed method can also improve the subjective quality when
an additional parameter is chosen for the texture to be added.

Keywords: image denoising; image texture; Stein’s lemma; LMMSE filter; low-rank approximation;
image processing

1. Introduction

Image denoising methods that can estimate a noiseless, clean natural image (original
image) from a noisy observation are actively being studied [1–21]. Many previous works
have assumed that the noise in such a noisy observation is an additive white Gaussian
noise (AWGN). One popular approach for image denoising is to use nonlocal self-similarity
(NLSS), in which it is assumed that a local segment of an image (a patch) is similar to other
local patches [10–21].

Weighted nuclear norm minimization for image denoising (WNNM) [16] is an
optimization-based method based on an NLSS-based objective function. WNNM as-
sumes that a matrix whose columns consist of similar patches extracted from a clean image
is low rank and achieves state-of-the-art denoising performance among non-learning-
based methods.

Image denoising methods such as WNNM can estimate the original image well in
terms of the mean squared error (MSE) or the peak-signal-to-noise ratio (PSNR). However,
as shown in Figure 1, texture is often lost in the estimated image. Because the texture
carries important information about the aesthetic properties of the materials depicted in
certain parts of an image (such as the feel of sand, fur, or tree bark), the texture losses
severely degrade the subjective image quality.

On the other hand, it is difficult to obtain a good description of texture (we refer to such
a description as a texture model) and to estimate its parameters because of its stochastic
nature, and the performance of texture-aware image denoising methods [8,19–21] depends
on these models and parameters. Thus, we can classify texture-aware image denoising
methods based on the texture models they utilize.

The gradient histogram preservation (GHP) method [19] is a prominent texture model
for texture-aware image denoising. GHP describes texture features in the form of a his-
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togram of the spatial gradients of the pixel values (gradient histogram). GHP is based on
an image denoising method called nonlocally centralized sparse representation [15], and it
can recover texture by imposing the condition that the gradient histogram of the output
image must be close to that of the original image. The parameters of GHP can be estimated
from the observed image by solving an inverse problem.

However, GHP does not utilize the relationships between distant pixels. Nevertheless,
these relationships can carry important texture information because textures are often
repeated over long distances.

(a) Original image (b) Observation (c) Denoised image

Figure 1. Texture is lost via image denoising.

Zhao et al. addressed this problem by proposing a texture-preserving denoising
method [20] that groups similar texture patches through adaptive clustering and then
applies principal component analysis (PCA) and a suboptimal Wiener filter to each group.
The Wiener filter is a special case of a linear minimum mean squared error estimator
(LMMSE filter), and it requires an estimation of the covariance matrices of the original
signals. In this texture model, the relationships between distant pixels can be expressed by
the covariance matrices. The covariance matrices that are used in the suboptimal Wiener
filter are calculated from sample observation patches, which are chosen using a nonfixed
search window.

As another method of managing the distant relationships characterizing texture,
a denoising method using the total generalized variation (TGV) and low-rank matrix
approximation via nuclear norm minimization has been proposed [21]. In this method,
the TGV is used to avoid the oversmoothing that is typically caused by low-rank matrix
approximation methods [10,16]. The TGV and nuclear norm minimization are applied to
capture the relationships between nearby pixels and distant pixels, respectively. Liu et al.
claim that the latter are related to textures with regular patterns. The parameter of their
texture model is the weight parameter of the TGV term. An iterative algorithm is required
to estimate this parameter.

There is a trade-off between the complexity (or capacity) of a texture model and the
simplicity of parameter estimation. For example, GHP [19] is a simple texture model with
parameters that are easily estimated. However, this model cannot express textures in detail.
By contrast, the covariance in the PCA domain [20] and the combination of the TGV and
the nuclear norm [21] are complex texture models that can represent detailed textures well;
however, their parameter estimation is relatively difficult.

To resolve this problem, we employ a slightly different definition of texture in this
paper. We define texture as the difference between the original image and the corresponding
denoised image (as obtained from an existing denoiser). We use the covariances within
the texture component and between the texture and noise (covariance matrices) as our
texture model, thereby capturing information about the relationships between distant
pixels. Throughout this paper, we represent the covariance information in matrix form.
Thus, we refer to this information as covariance matrices. It would appear to be difficult to
estimate these matrices from a noisy observation. However, because we define the texture
as the difference between the original and denoised images, we can utilize the information
obtained in the denoising process to estimate the texture covariance matrices more easily.
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We propose to use Stein’s lemma [22] and several empirical assumptions to estimate
the covariance matrices. Then, we apply an LMMSE filter based on the covariance matrices
to estimate the lost texture information. In general, the Wiener filter assumes that the target
and the noise have zero covariance. However, in our case, there is nonzero covariance
between the texture, which is the difference between the original and denoised images,
and the noise because the denoised image depends on the noise. Thus, we propose to use
the LMMSE filter for the case in which there is covariance between the signal and noise.

Moreover, our approach yields a separate texture image, which allows us to emphasize
the texture with any desired magnitude. Such texture magnification can improve the
subjective quality of an image. Figure 2 presents our motivation.

Figure 2. Scheme of our proposed texture recovery method. In contrast to existing image denoising
methods [1–21], including texture-aware methods [8,19–21], our method recovers the texture from
both the observed image and the denoised image obtained via WNNM [16].

Our contributions are summarized as follows:

• We propose a new definition of texture for texture-aware denoising and a method of
recovering texture information by applying an LMMSE filter.

• We introduce several nontrivial assumptions to estimate the covariance matrices re-
garding the texture and noise that are used in the LMMSE filter based on Stein’s lemma.

• We show an effectiveness of our method in terms of the PSNR and subjective quality
(with texture magnification) through experiments. We also show similarities between
our estimated covariance matrices and the corresponding true covariance matrices in
terms of the Fréchet distance [23].

Recently, several image denoising methods based on neural networks have been
proposed [9,18]. These methods achieve excellent denoising performance. However,
understanding the process underlying such black-box methods is difficult. To the best of
our knowledge, WNNM is still the state-of-the-art among denoising algorithms that are
not based on machine learning approaches (i.e., white-box methods), and our proposed
method represents the first successful attempt to significantly improve the performance of
WNNM. Additionally, our method can explicitly extract the texture component from the
noisy image, enabling us to maximize the perceptual quality of the denoised images by
arbitrarily magnifying the obtained texture. In the pursuit of the inherent model of natural
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images, it is worthwhile to improve the denoising performance of white-box algorithms, as
accomplished with the proposed method.

This paper is organized as follows. Section 2 introduces WNNM as the background
to this study. Section 3 introduces our newly proposed method of texture recovery and
analyzes the texture and noise covariance matrices using Stein’s lemma. We propose a
linear approximation of WNNM to enable the application of Stein’s lemma. Section 4
compares our method with other state-of-the-art denoising methods. Section 5 concludes
the paper. Appendix A proves that our LMMSE filter can successfully estimate the texture
component of the original image. Appendix B shows experimental results to confirm our
several assumptions.

Please note that this work on texture recovery has been previously presented in
conference proceedings [24]. In this paper, we show the proof of the LMMSE filter and
experimental results to confirm some assumptions. We also analyze the estimation accu-
racy of our texture covariance matrix used for texture recovery and the effectiveness of
emphasizing the texture statistically. In conference proceedings, we only provided limited
experimental results (24 images of Kodak Photo CD PCD 0992). On the other hand, in this
paper, we show new experimental results obtained on two image datasets (contains 110
images in total) to confirm our method’s effectiveness.

2. Preliminaries and Notation

In this paper, R denotes the set of real numbers, small bold letters denote vectors,
and large bold letters denote matrices. We denote the estimates of a and A by â and
Â, respectively.

In this section, we describe WNNM [16] (a state-of-the-art denoising method based on
NLSS) because our method estimates the texture information lost via the denoising process
in WNNM.

In image denoising, a noisy observation is modeled as

y = x + n, (1)

where y ∈ R< is the noisy observation with < pixels, x ∈ R< is the original image that is
the target of estimation, and n ∈ R< is AWGN, of which the standard deviation is f.

In WNNM, the observed image y is first divided into � overlapping focused patches
(
√
! ×
√
! pixels). The � depends on the image size and the noise level. Our experiment

follows the default parameter of author’s implementation of WNNM. For example, in the
case of f = 20, the patch size is 6 × 6 pixels, and the focused patches are selected by 1 pixel
skip (stride 2). Therefore, when the image size is 256 × 512 pixels, the total number of
focused patches � is 32,004 (note that similar patches are selected from 6 × 6 pixels patches
extracted from the neighborhood (61 × 61 pixels) of the focused patch. The overlapping
focused patches are then vectorized. We denote the 8-th focused patch of y by y8 ∈ R!
(8 = 1, · · · , �). Then, a search is performed for the " − 1 patches that are the most similar to
each segmented patch y8 , and for each y8 , a patch matrix Ỹ8 ∈ R!×" is created that includes
y8 as its leftmost column, while the remaining columns of Ỹ8 are the patches that are similar
to y8 . For the 8-th patches of the other components x and n, we use similar notation, i.e., x8
and n8 . We denote their corresponding patch matrices by X̃8 and Ñ8 . Note that the indices
of the similar patches in X̃8 and Ñ8 are the same as those in Ỹ8 .

For simplicity, we subtract the columnwise average of the matrix Ỹ8 from each row
of Ỹ8 and denote the result by Y8 . The same columnwise average subtraction method is
used in the implementation provided by Gu et al.; however, this is not explicitly described
in [16]. Because we assume that n is AWGN, each columnwise average of the noiseless
matrix X̃8 is sufficiently similar to that of Ỹ8 . Thus, the objective of WNNM is to estimate X8
which is obtained by subtracting the columnwise average of X̃8 from X̃8 .



Signals 2021, 2 290

The core of the denoising process of WNNM is the following equation based on the
singular value decomposition (SVD) of the observed patch matrix Y8 :

X̂8 = U�(ΣY8
)V>, (2)

where X̂8 is the denoised patch matrix, Y8 = UΣY8
V> is the SVD and �(·) is a threshold

function. Each component (: , :) of the diagonal matrix �(Σ) is expressed as

�(Σ):,: =

{
0 if 22 < 0
21+
√
22

2 if 22 ≥ 0
, (3)

where
21 = Σ:,: − n , 22 = (Σ:,: + n)2 − 4f2�, (4)

� is an arbitrary parameter, and n is a small number. This process corresponds to a closed-
form solution of the iterative reweighting method applied to the singular value matrix of
Y8 [16].

The singular value thresholding described above is applied to each focused patch
and similar patches, and estimates of the original patches are obtained by adding the
columnwise average to Ỹ8 . Then, the estimated original patches are combined to obtain a
reconstructed image (overlapping patches are subjected to pixelwise averaging). In WNNM,
this process is iterated to estimate the original image. In each iteration, the denoising target
y(:) is updated by calculating a weighted sum of the most recently estimated image
x̂(:−1) and the original noisy observation y (where : is the index of the iteration) with a
weight parameter X, as follows: y(:) = x̂(:−1) + X(y − x̂(:−1) ). This process is called iterative
regularization, and the parameter X is fixed to 0.1 in [16]. The WNNM algorithm is given
in Algorithm 1. For additional details on WNNM, please consult [16].

Algorithm 1 Image denoising via WNNM.

Input: Noisy observation y
Initialize x̂(0) = y and y(0) = y
for : = 1 :  do

Iterative regularization: y(:) = x̂(:−1) + X(y − x̂(:−1) )
for 8 = 1 : � do

Find the similar patch matrix Y(:)
8

Estimate the corresponding original patch matrix X8 by applying Equation (2); the
result is X̂(:)

8

end for
Use the X̂(:)

8
to reconstruct the estimated image x̂(:)

end for
Output: Obtain the denoised image as x̂ = x̂( )

3. Recovering Texture via Statistical Analysis

In this section, we introduce our denoising method that recovers the texture lost by
denoising a noisy observation. In this paper, we define a structure (or cartoon) component
s = 5 (y) ∈ R<, where 5 (·) : R< → R< is a map corresponding to the denoising process of
WNNM. Then, in contrast to previous work [8,19–21], we define a texture component t as
the difference between the original image x and the structure s (i.e., t = x − s). Thus, we
obtain our extended observation model, i.e.,

y = s + t + n. (5)

Please note that the above equation is equivalent to Equation (1) since x = s + t. Our
goal is to estimate the texture component t that has been lost via WNNM.
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First, we denoise the observation y with WNNM. Following WNNM, we estimate
each texture patch matrix T8 from the corresponding structure patch matrix S8 , which is
obtained in the final iteration of the WNNM procedure, and the corresponding observation
patch matrix Y8 . Because we use an LMMSE filter to estimate T8 , we need the statistical
information on the relationship between the texture and noise; however, this information
cannot be calculated directly because t and n are not observable. Instead, we estimate this
information using Stein’s lemma and several assumptions, which are described below,
and then reconstruct the estimated texture patch matrices to obtain the estimated texture
component t̂. Finally, we obtain an estimate of the original image, x̂, by adding the
estimated texture component t̂ to the denoised image s.

3.1. LMMSE Filter for Texture Recovery

We use an LMMSE filter to estimate each texture patch t8 . The objective function of
the LMMSE filter, W∗

8
∈ R!×! is formulated as

W∗
8 = argmin

W
E[‖W(t8 + n8) − t8 ‖22], (6)

where E[·] denotes the expected value and ‖ · ‖2 is the ℓ − 2 norm. Because this formula is
quadratic, we can easily find the minimizer as follows:

W∗
8 = (Rt8t8 +Rt8n8

) (R(t8+n8) (t8+n8) )−1, (7)

where we adopt the following covariance matrix notation: Rab = E[(a −E[a]) (b −E[b])>]
(where a and b are some random vectors). The proof is given in Appendix A.

Unfortunately, the covariance matrices Rt8t8 and Rt8n8
cannot be directly obtained

because t and n are not observable. We solve this problem by using Stein’s lemma and
introducing several assumptions.

3.2. Estimation of the Covariance Matrices

As mentioned above, we need to estimate Rt8t8 and Rt8n8
. Since we define t as x − s,

and the value of s is changed with respect to the value of n, we can assume that t is the
output of a function that takes n as an input. n also follows a normal distribution. Thus,
we can estimate Rt8n8

using Stein’s lemma as follows:

Rt8n8
= Rn8t8

> = f2E
[
mt8
mn8

]
. (8)

The above equation shows that our desired covariance matrices can be obtained from
the effects of the n8 on the t8 . The texture patch t8 is equal to x8 − s8 according to Equation (5);
moreover, we assume that the effect of n8 on x8 is zero. Therefore, we can estimate the
covariance matrix Rt8n8

as

Rt8n8
= f2

[
mt8
mn8

]
= f2

[
m (x8 − s8)
mn8

]
= −f2

[
ms8
mn8

]
. (9)

We need to analyze the variations in the WNNM output as the noise varies. As
mentioned above, the WNNM process is complex. Thus, we need to approximate the
WNNM process with a linear filter to simplify the analysis.

Surprisingly, the linear approximation of the WNNM process also provides us with
an empirical method of estimating Rt8t8 , which is more difficult to estimate than Rt8n8

. In
the next subsection, we describe how to approximate WNNM with a linear filter and how
to estimate Rt8t8 .
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3.3. Linear Approximation of the WNNM Procedure

To simplify the analysis and determine the covariance matrix Rt8n8
by using Stein’s

lemma, we assume that we can precisely approximate the whole process of WNNM as a
linear filter:

S8 = F8Y8 . (10)

The SVDs of Y8 and S8 are formulated as

Y8 = UY8
ΣY8

V>Y8
and S8 = US8

ΣS8
V>S8

. (11)

If we ignore the fact that the patch matrices are updated in WNNM via a similar patch
search, reconstruction and iterative regularization in each iteration, then the SVDs of Y8
and S8 will have common right and left singular matrices. We assume that UY8

and VY8
are

equal to US8
and VS8

, respectively. Thus, we can obtain the approximate WNNM filter F8
as follows:

F8 = US8
ΣS8

Σ−1
Y8

U>S8
. (12)

The partial derivative of the columnwise average of Ỹ8 with respect to n is considered
to be very small because n is Gaussian and because the average of n is zero. Note that Y8 is
obtained by subtracting the columnwise average of Ỹ8 from Ỹ8 .

If this approximation of WNNM is sufficiently accurate, then ms8
mn8
≈ F8 . From Equation (9),

we can estimate Rt8n8
as

R̂t8n8
= −f2F8 . (13)

Additionally, we use the approximate WNNM filter F8 to estimate Rt8t8 . We assume
that Rt8t8 can be estimated as

R̂t8t8 = 2f2F8 . (14)

This assumption is founded on preliminary experiments. The details of these prelimi-
nary experiments are presented in Appendix B.3.

3.4. Recovering the Texture of a Denoised Image

Based on the above discussion, we can calculate the LMMSE filter and estimate
t8 . However, R(t8+n8) (t8+n8) is not invertible in practice because the number of patches
" is smaller than !. Although an equivalent estimate of R(t8+n8) (t8+n8) appears to be
R̂t8t8 + R̂t8n8

+ R̂n8t8 + f2I (where I is the identity matrix), this choice does not provide good
recovery performance. Instead, substituting Rt8t8 + f2I into the sample covariance matrix
R(t8+n8) (t8+n8) was found to yield the best results in our preliminary experiments. Thus, we
calculate the LMMSE filter as

W∗
8 = (Rt8t8 +Rt8n8

) (Rt8t8 + f2I)−1. (15)

Substituting Equation (13) and (14) into (15), we can estimate T8 as

T̂8 = (f2F8) (2f2F8 + f2I)−1 (Ỹ8 − S̃8). (16)

Then, we can obtain the desired estimated texture image t̂ that is obtained by combin-
ing each T̂8 in the same manner used to reconstruct an image from the patches obtained in
WNNM. Finally, we can obtain the final estimated image x̂ with enhanced texture as

x̂ = s + t̂. (17)

We use the LMMSE filter to obtain t̂; however, minimizing the MSE often causes t̂ to
lose clarity. We can obtain a clearer texture-enhanced image as follows:

x̂ = s + Ut̂, (18)
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where U is an arbitrary parameter used to control the magnitude of the texture that is
added. Note that U = 1 means the proposed method applies the LMMSE filter and we can
expect to obtain the denoised images with best PSNR if all of our assumptions hold. The
entire proposed process is presented in Algorithm 2.

Algorithm 2 Texture recovery using the proposed method.

Input: Noisy observation y
Initialize s(0) = y and y(0) = y
for : = 1 :  do

Iterative regularization: y(:) = s(:−1) + X(y − s(:−1) )
for 8 = 1 : � do

Find the similar patch matrix Y(:)
8

Estimate the corresponding original patch matrix X8 via Equation (2); the result is
denoted by S(:)

8

if k=K then
Estimate Rt8t8 and Rt8n8

using Stein’s lemma via Equation (13) and (14)
Calculate W∗

8
via Equation (9)

Estimate T8 via Equation (16) to obtain T̂8
end if

end for
Use the S(:)

8
to reconstruct the estimated image s(:)

end for
Use the T̂8 to reconstruct the estimated texture component t̂

Output: Obtain the final estimated image as x̂ = s(K) + Ut̂

4. Experimental Results

In this section, we discuss our experimental results. First, we present performance
of our denoising method and compare it to other non-learning-based state-of-the-art
denoising methods, namely, block matching and 3D filtering (BM3D) [11], GHP [19], and
WNNM [16]. For comparison with learning-based denoising methods, we compare the
denoising performance of the proposed method with that of a denoising convolutional
neural network (DnCNN) [9]. We also confirm the effects of the parameter U. Moreover,
we present a histogram of the Fréchet distance to confirm the assumption of Equation (14).

We used two image datasets for validation. One dataset consists of ten grayscale
natural images from [21], as shown in Figure 3 (dataset I). The other dataset contains 100
grayscale natural images from the Berkeley segmentation dataset [25] (BSD100). In all
experiments, we used MATLAB R2018b for the implementation, and all noisy observations
were simulated by adding noise generated by a pseudorandom number generator to the
original images.

Image01 Image02 Image03 Image04 Image05 Image06 Image07 Image08 Image09 Image10

Figure 3. Dataset I: The ten test images from [21] used in the experiments.

4.1. Image Denoising

The PSNR and structural self-similarity (SSIM) [26] results for the denoised images
from dataset I with different noise levels f are given in Tables 1–3. Note that higher PSNR
and SSIM values mean that the reference image is more similar to the original image. We
highlight the highest PSNR and SSIM in each row in bold. We set the texture scaling
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parameter to U = 1 because we wish to measure how much improvement is achieved in
terms of the PSNR. We recover the texture using the LMMSE filter; thus, the MSE is likely
to be low, meaning that the PSNR should be high. These tables show that our denoising
method outperforms the other state-of-the-art methods in terms of both the PSNR and
SSIM. The largest difference in the PSNR between WNNM and our method is 0.15 dB.
Additionally, the averages of the denoising results on BSD100 at each noise level are shown
in Table 4. This table shows that the performance improvement achieved with our method
is independent of the dataset. For each image in BSD100, we performed one-tailed paired
t-tests on the difference of each PSNR and SSIM between the proposed method and WNNM.
In this test, the null hypothesis is that the PSNR/SSIM values obtained by proposed method
are not greater than the corresponding values obtained by WNNM. The p-values are also
shown in Table 4. From the results, since the p-values are small enough, we confirmed
statistically significant differences between our proposed method and WNNM.

Moreover, we show the averages of computational time of WNNM and the proposed
method in Table 5. The computational times were measured on 10 distinct observed images
(the noise value of each observation is different) for each test image from BSD100. The
additional computational time of our texture recovery is 7–13% of the computational time
of WNNM. The PSNR/SSIM gain obtained by our texture recovery method is considered
to be sufficient for the users to accept this additional cost.

Table 1. The PSNR [dB] and SSIM results obtained after denoising on dataset I (with a noise standard
deviation of f = 10).

BM3D GHP WNNM Proposed

Image01 34.31/0.932 34.31/0.925 34.70/0.935 34.74/0.937
Image02 32.99/0.887 32.97/0.884 33.12/0.889 33.23/0.896
Image03 31.64/0.907 31.79/0.909 31.86/0.910 31.95/0.916
Image04 30.58/0.898 30.66/0.904 30.76/0.900 30.80/0.905
Image05 32.59/0.946 32.52/0.932 32.88/0.948 32.89/0.949
Image06 33.61/0.917 33.61/0.905 33.90/0.921 33.99/0.925
Image07 34.19/0.898 34.11/0.894 34.41/0.902 34.48/0.906
Image08 31.48/0.908 31.51/0.907 31.73/0.912 31.80/0.917
Image09 35.12/0.946 34.96/0.934 35.30/0.946 35.35/0.948
Image10 31.71/0.912 31.76/0.907 31.84/0.913 31.92/0.917

Average 32.82/0.915 32.82/0.910 33.05/0.918 33.11/0.922

Table 2. The PSNR [dB] and SSIM results obtained after denoising on dataset I (with a noise standard
deviation of f = 20).

BM3D GHP WNNM Proposed

Image01 30.47/0.868 30.58/0.869 30.81/0.872 30.91/0.875
Image02 29.55/0.765 29.67/0.778 29.64/0.765 29.77/0.777
Image03 27.82/0.796 28.10/0.816 28.06/0.802 28.21/0.815
Image04 26.61/0.793 26.74/0.803 26.80/0.798 26.91/0.809
Image05 28.30/0.881 28.48/0.884 28.58/0.883 28.70/0.888
Image06 29.96/0.828 30.21/0.841 30.25/0.833 30.38/0.841
Image07 30.97/0.812 31.00/0.816 31.03/0.811 31.11/0.817
Image08 27.22/0.806 27.41/0.818 27.54/0.815 27.69/0.827
Image09 31.35/0.895 31.39/0.896 31.52/0.895 31.60/0.896
Image10 27.82/0.803 27.98/0.813 27.96/0.807 28.11/0.819

Average 29.01/0.825 29.16/0.833 29.22/0.828 29.34/0.837
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Table 3. The PSNR [dB] and SSIM results obtained after denoising on dataset I (with a noise standard
deviation of f = 30).

BM3D GHP WNNM Proposed

Image01 28.51/0.817 28.57/0.818 28.75/0.822 28.83/0.824
Image02 28.03/0.688 28.03/0.700 28.07/0.684 28.13/0.694
Image03 26.08/0.719 26.21/0.738 26.29/0.727 26.39/0.740
Image04 24.57/0.703 24.68/0.718 24.81/0.714 24.92/0.729
Image05 26.04/0.813 26.28/0.819 26.38/0.823 26.51/0.831
Image06 28.22/0.762 28.43/0.778 28.50/0.770 28.59/0.776
Image07 29.37/0.756 29.24/0.757 29.43/0.755 29.45/0.759
Image08 25.13/0.724 25.34/0.744 25.46/0.738 25.60/0.751
Image09 29.48/0.854 29.47/0.855 29.65/0.856 29.70/0.855
Image10 26.00/0.718 26.09/0.733 26.14/0.725 26.25/0.738

Average 27.14/0.755 27.24/0.766 27.35/0.761 27.44/0.770

Table 4. The PSNR [dB] and SSIM results obtained after denoising on BSD100. The p-values were
calculated by one-tailed paired t-tests on the difference of each PSNR and SSIM between the proposed
method and WNNM.

BM3D GHP WNNM Proposed p-Value

f = 10 33.13/0.913 33.10/0.911 33.36/0.916 33.42/0.920 5.3 × 10−16/3.8 × 10−20

f = 20 29.42/0.824 29.49/0.832 29.64/0.829 29.74/0.837 4.6 × 10−26/3.3 × 10−19

f = 30 27.56/0.759 27.58/0.769 27.78/0.766 27.84/0.773 1.7 × 10−16/6.8 × 10−13

Average 30.03/0.832 30.06/0.837 30.26/0.837 30.33/0.843 –

Table 5. The averages of computational time (in seconds) of WNNM and the proposed method.

WNNM
Proposed

(WNNM + Texture Recovery)

f = 10 149 169
f = 20 148 167
f = 30 311 334

We also compare the denoising performance of the proposed method with that of the
DnCNN [9] on dataset I. The noise level f was set to 15 and the texture scaling parameter
U was set to 1. We used the PyTorch implementation of DnCNN and the pretrained
model parameters for noise level f = 15, which is published by the authors of [9]. The
experimental results are shown in Table 6. The improvement of DnCNN over WNNM is
0.30 dB in the average of PSNR while that of the proposed method is 0.10 dB. Note that the
proposed method requires no training process and is fully explainable while the denoising
mechanism of DnCNN is black box.

Next, to observe the effect of the parameter U, we searched for the value of this
parameter that would maximize the SSIM of the output image, denoted by USSIM. We
obtained USSIM via a line search in the range from 0 to 8 in increments of 0.01. For several
examples, the original image, the noisy observation, the output image obtained via GHP,
the output image obtained via WNNM, and an output image obtained with our method are
shown in Figure 4. From this figure, we can observe that the subjective quality and SSIM
can be drastically improved by properly choosing the parameter U. For example, as shown
in Figure 4p–t for the image named 196073, the SSIM value obtained with our method is
0.073 higher than that achieved via WNNM. Moreover, we show t and Ut̂ of each image
of Figure 4 in Figure 5. Please note that the pixel value of each image is multiplied by a
factor of 3. This figure shows that t̂ is similar to t in each textured region such as surface of
a stone, a coral, the skin of a snake, and the surface of the sea.
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(a) Original (Image08)
(PSNR/SSIM)

(b) Noisy image
(f = 30)

(c) GHP
(25.34 dB/0.744)

(d) WNNM
(25.46 dB/0.738)

(e) Proposed (U = 2.62)
(25.40 dB/0.759)

(f) Original (41069)
(PSNR/SSIM)

(g) Noisy image
(f = 20)

(h) GHP
(26.18 dB/0.775)

(i) WNNM
(26.07 dB/0.754)

(j) Proposed (U = 3.15)
(25.89 dB/0.797)

(k) Original (156065)
(PSNR/SSIM)

(l) Noisy image
(f = 20)

(m) GHP
(26.98 dB / 0.750)

(n) WNNM
(26.92 dB/0.733)

(o) Proposed (U = 3.12)
(26.79 dB/0.767)

(p) Original (196073)
(PSNR/SSIM)

(q) Noisy image
(f = 20)

(r) GHP
(28.00 dB/0.616)

(s) WNNM
(27.76 dB/0.547)

(t) Proposed (U = 5.10)
(27.16 dB/0.620)

(u) Original (241048)
(PSNR/SSIM)

(v) Noisy image
(f = 20)

(w) GHP
(27.58 dB/0.800 )

(x) WNNM
(27.57 dB/0.791)

(y) Proposed (U = 2.68)
(27.50 dB/0.812)

Figure 4. Performance comparison of GHP, WNNM, and the proposed method.

A histogram of the USSIM values obtained on BSD100 is shown in Figure 6. We note
that this histogram shows the frequency under three noise levels (f = 10, 20, 30). This
figure indicates that there is no single optimal value of USSIM that is common to all images.
Nevertheless, the figure also shows that choosing U = 2 will almost always increase the
expected value of the SSIM. Moreover, as with USSIM, we searched for the value of U that
would maximize the PSNR of the output image, and denoted it by UPSNR. We obtained
UPSNR for each image via a line search in the range from 0 to 8 in increments of 0.01. Figure 7
shows a histogram of the values of UPSNR. We confirmed that U = 1 produces the denoised
images with the best PSNR in most cases.
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Table 6. Comparison of non-learning-based methods (WNNM and the proposed method) and a
learning-based method (DnCNN). The PSNR [dB] and SSIM results obtained after denoising on
dataset I (with a noise standard deviation of f = 15). Note that the proposed method does not
require any training and is fully explainable. The bold value means the highest PSNR or SSIM in
non-learning-based methods.

WNNM Proposed DnCNN

Image01 32.38/0.902 32.45/0.905 32.70/0.911
Image02 31.00/0.824 31.13/0.834 31.38/0.845
Image03 29.53/0.853 29.67/0.864 29.89/0.872
Image04 28.37/0.847 28.45/0.856 28.59/0.860
Image05 30.30/0.916 30.37/0.919 30.53/0.922
Image06 31.69/0.876 31.81/0.882 31.82/0.886
Image07 32.37/0.852 32.45/0.858 32.68/0.867
Image08 29.20/0.862 29.32/0.871 29.58/0.877
Image09 33.00/0.919 33.08/0.921 33.35/0.927
Image10 29.47/0.858 29.60/0.867 29.79/0.874

Average 30.73/0.871 30.83/0.878 31.03/0.884

(a) t (Image08) (b) t (41069) (c) t (156065) (d) t (196073) (e) t (241048)

(f) Ut̂
(Image08, U = 2.62)

(g) Ut̂
(41069, U = 3.15)

(h) Ut̂
(156065, U = 3.12)

(i) Ut̂
(196073, U = 5.10)

(j) Ut̂
(241048, U = 2.68)

Figure 5. True texture t and estimated texture t̂ of the proposed method. The pixel value of each image is multiplied by a
factor of 3.

Figure 6. Histogram of the U values that maximize the SSIM for each output image.
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Figure 7. Histogram of the U values that maximize the PSNR for each output image.

4.2. Accuracy of Texture Covariance Matrix Estimation

In this section, we compare the accuracy of two texture covariance matrices. One is
our estimated texture covariance matrix, and the other is a simply sampled estimate that is
calculated as

R̂smp
t8t8 = ℎ((T8 +N8) (T8 +N8)> − f2I), (19)

where ℎ(·) is a function that replaces any negative eigenvalues of the input matrix with
zero; this is equivalent to metric projection to a positive-semidefinite matrix.

We calculate the Fréchet distance to evaluate the accuracy of the texture covariance
matrix. Dowson and Landau introduced the calculation of the Fréchet distance between
multivariate normal (MVN) distributions [23]. The Fréchet distance is also used to measure
the similarity between generated and real images [27]. We assume that the texture compo-
nent t follows an MVN distribution. Consider a random MVN-distributed variable a ∈ R3
whose mean vector is -a = E[a] ∈ R3 and whose covariance matrix is Raa (a ∼ N3 (-a, Raa));
its probability density is denoted by

?(a) = 1

(
√
(2c)3 det(Raa)

exp(−1
2
(a − -a)>R−1

aa (a − -a)). (20)

Additionally, the Fréchet distance between the MVN distributions N3 (-0, Raa) and
N3 (-1 , Rbb) is calculated as

‖-a − -b‖22 + tr(Raa +Rbb − 2(RaaRbb)
1
2 ). (21)

We assume that the mean vector of the texture is 0. Thus, we can calculate the
Fréchet distance between the estimated texture covariance matrix R̂t8t8 and the true texture
covariance matrix Rt8t8 from the ground truth as follows:

Fréchet(Rt8t8 , R̂t8t8 ) = tr(Rt8t8 + R̂t8t8 − 2(Rt8t8 R̂t8t8 )
1
2 ). (22)

We can similarly calculate the Fréchet distance between the simply sampled estimate
R̂smp

t8t8 and Rt8t8 by replacing R̂t8t8 with R̂smp
t8t8 in Equation (22).

Figure 8 shows histograms of these Fréchet distances. Note that we calculated the
Fréchet distance for each patch matrix from dataset I. However, we ignored the very few
outliers caused by numerical errors. This figure shows that R̂t8t8 is more similar to Rt8t8
than R̂smp

t8t8 is at each noise level.
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(a) f = 10 (b) f = 20 (c) f = 30

Figure 8. Histogram of two Fréchet distances: one calculated between the proposed estimated texture
covariance matrix and the oracle sampled texture covariance matrix and the other calculated between
the simply sampled estimate determined from the observation and the same oracle covariance matrix.
Note that only a few of the values in these histograms lie outside of the range displayed on the x-axis.

5. Conclusions

In this paper, we have proposed a method of recovering texture information that has
been oversmoothed by the denoising process in WNNM. For texture recovery, we apply an
LMMSE filter to a noisy image. Because our filter requires covariance matrices between the
texture and noise, we have also proposed a method of estimating this information based
on Stein’s lemma and several key assumptions.

Experimental results obtained on various image datasets show that our method can
improve PSNR and SSIM of WNNM and also outperforms other state-of-the-art methods
with respect to both criteria. Moreover, we confirmed statistically significant differences
between our method and WNNM. With our method, SSIM values can be further improved
by choosing a suitable value for a scaling parameter that controls the magnitude of the
added texture. Moreover, blurred edges and texture can be enhanced through a proper
selection of this scaling parameter. Additionally, our estimated texture covariance matrices
are more similar to the corresponding oracle covariance matrices in terms of the Fréchet
distance than are simply sampled estimates obtained from the observed images. Finally, an
additional computational time of our texture recovery is 7–13% of the computational time
of WNNM. We consider the additional cost is acceptable considering the gain of PSNR
and SSIM.

In the experiments, we chose almost all the parameters of the proposed method based
on the default setting of WNNM. The only parameter that the user needs to choose is U.
When the user wants to maximize the PSNR, U = 1 gives the best result in most cases. If
the user would like to enhance the texture, the user should choose the U larger than 1. In
addition, our experimental results show that U = 2 almost always improves the SSIM.
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Appendix A. Proof of Texture Estimation Using the LMMSE Filter

A special case of an LMMSE filter that can estimate x from y when x is independent
of the noise n is well known as the Wiener filter. However, because the texture t is highly
dependent on the noise in the problem considered here, a simple Wiener filter is not
the solution for Equation (6). In this section, we present the closed-form solution for
Equation (6).

We adopt the following notation:

� (W) B E[‖W(t8 + n8) − t8 ‖22]
= E[(W(t8 + n8))>W(t8 + n8)]
−2E[(t8 + n8)>W>t8] +E[t>8 t8]. (A1)

Additionally, we assume that E[t8] and E[n8] are 0. Thus, the first and third terms on
the right-hand side in the above equation can be expressed as

E[(W(t8 + n8))>W(t8 + n8)]
= tr(WR(t8+n8) (t8+n8)W

>), (A2)

E[t>8 t8] = tr(Rt8t8 ). (A3)

The second term on the right-hand side of Equation (A1) can be expanded to

− 2E[(t8 + n8)>W>t8] = −2E[t>8 Wt8] − 2E[n>8 W>t8]. (A4)

Because E[a>Ab] = tr(A>Rab) (where E[a] and E[b] are 0), the right-hand side of the
above equation can be expressed as

− 2E[t>8 Wt8] − 2E[n>8 W>t8] = −2tr(W>Rt8t8 ) − 2tr(WRt8n8
). (A5)

Accordingly, the partial derivative of � (W) with respect to W can be expressed as

m� (W)
mW

= 2WR(t8+n8) (t8+n8) − 2Rt8t8 − 2Rt8n8
. (A6)

With m� (W)
mW = 0, we can finally obtain the solution for Equation (6) as follows:

W∗
8 = (Rt8t8 +Rt8n8

) (R(t8+n8) (t8+n8) )−1. (A7)

This is identical to Equation (7).

Appendix B. Experimental Results to Confirm the Adopted Assumptions

Appendix B.1. The Texture Follows an MVN Distribution

We assume that t follows an MVN distribution. Based on this assumption, we calculate
the Fréchet distance between the true texture covariance matrix Rt8t8 and its estimation. We
confirm this assumption by considering the true texture patch matrix T8 .

Unfortunately, the number of patches contained in T8 is fewer than the number of
pixels in t8 . Simply testing whether the texture vector t8 follows an MVN distribution
in such a situation would be overly optimistic. Therefore, in this experiment, we em-
ployed the Kolmogorov–Smirnov test to confirm that each pixel of t8 follows a (univariate)
normal distribution.
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To determine each index of t8 corresponding to T8 , 20 images from BSD100 and
40 patch indices from each image were randomly selected. The noise level f was set to 20.

The results of our Kolmogorov–Smirnov test at a significance level of 0.05 show that,
for 97% of the pixel values of the texture component, there is no clear evidence that they do
not follow a normal distribution.

The reader might suppose that the fact that each pixel of t8 follows a normal distribu-
tion does not necessarily imply that t8 follows an MVN distribution. However, the former
strongly implies the latter in practice.

Appendix B.2. An Observed Patch Matrix and the Corresponding WNNM Output Patch Matrix
Have Similar Singular Matrices

In this subsection, we confirm that Y8 and S8 have similar right and left singular matri-
ces. We implicitly apply this assumption when introducing the simple linear approximation
of the WNNM denoising process.

To confirm this, we evaluate how close the two matrices Σ̂Y8
and Σ̂S8

, which are
defined as

Σ̂Y8
= U>S8

Y8VS8
and Σ̂S8

= U>Y8
S8VY8

, (A8)

are to diagonal matrices. Note that if Y8 and S8 have identical right and left singular
matrices, then Σ̂Y8

and Σ̂S8
must be diagonal matrices.

To evaluate the diagonality of a matrix, we introduce an evaluation function dm(·) that
is defined as

dm(A) =
1
|% |

∑
(8, 9) ∈% (A8, 9 )2

1
|% |

∑
(8, 9) ∈% (A8, 9 )2 + 1

|� |
∑
(8, 9) ∈� (A8, 9 )2

, (A9)

where % and � are the sets of the indices of the nondiagonal and diagonal elements of
A ∈ R<×; , respectively. Note that dm(A) = 0 means that A is a diagonal matrix and that
dm(A) = 1 means that A is a matrix whose diagonal elements are all zero.

For this experiment, we used the same images and patches and the same noise level
described in Appendix B.1. The experimental results show that the average values of
dm(Σ̂Y8

) and dm(Σ̂S8
) are 0.0768 and 0.0480, respectively.

Note that when the maximum singular value of S8 is small, no elements of Σ̂Y8
affect

the estimation accuracy of T8 because the LMMSE filter W∗
8

becomes an almost zero matrix.
Thus, when the maximum singular value of S8 is 0.1 or less, we exclude dm(Σ̂Y8

) from the
calculation of the average value as given above.

The results show that Σ̂Y8
and Σ̂S8

are both similar to diagonal matrices; thus, it is
experimentally proven that our assumption is valid.

Figure A1 shows six residual images, y − s, y − ŝ, y − s − t̂, s − ŝ, t̂, and t (where ŝ is
obtained by applying our simple linear approximation F8 to Y8), which were generated for
the original image ‘69015’ (shown in Figure 1) from BSD100. The noise level f was set to
20. These results show that the linear approximation is almost valid since ŝ is similar to s.
Additionally, t̂ is similar to t in strongly, moderately, and weakly textured regions such as
the fur, the tree bark, and the black background, respectively.
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(a) y − s (b) y − ŝ (c) y − s − t̂

(d) s − ŝ (e) t̂ (= x̂ − s) (f) t (= x − s)
Figure A1. Six residual images for the image named 69015 in BSD100. To increase the visibility, each
residual value is multiplied by a factor of 3.

Appendix B.3. Assumption Regarding the Estimate of the Texture Covariance Matrix

In Section 3.3, we assume that Rt8t8 can be estimated as R̂t8t8 = 2f2F8 . We performed
an experiment to experimentally prove this assumption. With some abuse of notation, we
define R̂t8t8 = Vf

2F8 in this subsection and experimentally confirm a relationship between
the parameter V and the denoising performance.

We used the 10 images of dataset I and set the noise level f to 20. In this experiment,
the parameter V was varied in the range of 0 to 3 in increments of 0.1, and the noisy images
were denoised using the proposed method with R̂t8t8 = Vf

2F8 . We calculated the PSNR
from all output images x̂ of the proposed method and x for each V. Note that this PSNR is
not the average of the PSNR of each image but rather is calculated as the average of the
squared error of each image. The experimental results are shown in Figure A2.

This figure shows that the denoising performance is highest when V is approximately
2. Thus, we assume that R̂t8t8 = 2f2F8 .

Figure A2. The relation ship between the parameter V and the denoising performance of the proposed
method when the V is applied to R̂t8t8 = Vf

2F8 .
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