
signals

Article

Efficient Retrieval of Music Recordings Using Graph-Based
Index Structures

Frank Zalkow * , Julian Brandner and Meinard Müller

����������
�������

Citation: Zalkow, F.; Brandner, J.;

Müller, M. Efficient Retrieval of Music

Recordings Using Graph-Based Index

Structures. Signals 2021, 2, 336–352.

https://doi.org/10.3390/signals2020021

Academic Editors: Toshihisa Tanaka,

Shinnosuke Takamichi, Jordi

Solé-Casals, Kazuyoshi Yoshii, Egon

L. van den Broek, Sertan Şentürk and
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Abstract: Flexible retrieval systems are required for conveniently browsing through large music
collections. In a particular content-based music retrieval scenario, the user provides a query audio
snippet, and the retrieval system returns music recordings from the collection that are similar to the
query. In this scenario, a fast response from the system is essential for a positive user experience. For
realizing low response times, one requires index structures that facilitate efficient search operations.
One such index structure is the K-d tree, which has already been used in music retrieval systems. As
an alternative, we propose to use a modern graph-based index, denoted as Hierarchical Navigable
Small World (HNSW) graph. As our main contribution, we explore its potential in the context
of a cross-version music retrieval application. In particular, we report on systematic experiments
comparing graph- and tree-based index structures in terms of the retrieval quality, disk space
requirements, and runtimes. Despite the fact that the HNSW index provides only an approximate
solution to the nearest neighbor search problem, we demonstrate that it has almost no negative
impact on the retrieval quality in our application. As our main result, we show that the HNSW-based
retrieval is several orders of magnitude faster. Furthermore, the graph structure also works well with
high-dimensional index items, unlike the tree-based structure. Given these merits, we highlight the
practical relevance of the HNSW graph for music information retrieval (MIR) applications.

Keywords: indexing; music information retrieval; nearest neighbor search; efficiency; runtime

1. Introduction

Ongoing digitization efforts lead to increasingly large music collections. With growing
dataset sizes, it can become challenging to find relevant audio documents in such a
collection. A paradigm for searching music databases is known as query-by-example,
where the user provides an audio query, and the task is to find audio recordings from the
database containing parts or aspects similar to the query [1–3].

An example of a public query-by-example music retrieval service is the audio fingerprinting
application Shazam [4,5], where the user supplies a query audio snippet, which is then
identified by comparing the snippet’s fingerprint with fingerprints from a reference
database. One reason for Shazam’s popularity is the ability to provide music identification
results close to instantly. This short response time is possible because of the strict notion
of similarity (identity of recordings) between the query and relevant database recordings
in the audio identification task, combined with clever indexing techniques [1,2,6]. In our
paper, we address a cross-version retrieval scenario, where we aim to find all performances
or versions of a given piece of music, which is specified by a query audio snippet. In related
tasks, the user may provide the query by singing or humming a melody [7,8]. In such
cross-version retrieval scenarios, the notion of similarity is less strict (identity of the musical
piece underlying different recordings), which leads to higher response times compared to
fingerprinting services. In a previous study [9], the authors showed that the runtime of the
search procedure in a cross-version retrieval scenario is in the order of a few seconds, even
for a small database of about 16 h. With growing database sizes, this runtime also increases
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and becomes prohibitive for usage outside academia. In a query-by-example setting, it
makes a dramatic difference whether the user has to wait a fraction of a second or a couple
of seconds for the results after specifying the query. Efficiency is an important aspect of
usability and a critical requirement of information retrieval systems for being practically
relevant [10]. In this article, we show how to increase the efficiency for our cross-version
retrieval scenario by using a modern indexing approach.

Indexing procedures increase the speed of search operations in a database, using
specialized data structures, such as inverted file indices [11]. In our context, the nearest
neighbor search is essential, where one aims to find the closest item in a database to a
given query item. We can classify nearest neighbor search procedures into exact and
approximate search approaches. Exact nearest neighbor search procedures (such as K-d
trees [12,13]) guarantee to find the item in the database that is closest to the query. Other
approaches relax this requirement. Instead of finding exact nearest neighbors, they only aim
to find sufficiently nearby neighbors. In general, this is referred to as approximate nearest
neighbor search. A well-known approach of this category is, e.g., locality-sensitive hashing
(LSH) [14]. Beyond the distinction of approximate and exact solutions, nearest neighbor
search procedures can be categorized according to their algorithmic approach [15,16]. The
main catagories of this distinction are hashing-based, partition-based, and graph-based
search approaches. An example of hashing-based procedures is LSH [14], which has already
been used in music retrieval studies [17–20]. Grosche und Müller [17] found that LSH can
increase the retrieval efficiency compared to an exhaustive search. However, the retrieval
results can be negatively affected (because LSH is an approximate search approach), and
the LSH settings must be adjusted carefully to avoid a strong decrease in the retrieval
quality. Examples of partition-based approaches include K-d trees [12,13], which also have
been used in MIR [9,21,22]. For example, McFee and Lanckriet compared several K-d tree
variants in the context of music similarity search [22]. They found that the combination of
a tree variant for approximate search, known as spill trees [23], with principal component
analysis (PCA) [24] gives a favorable trade-off between accuracy and complexity. As an
alternative, in our contribution, we explore a modern graph-based index structure called
Hierarchical Navigable Small World (HNSW) graph [25], which provides an approximate
search solution, and already has been successfully used for, e.g., image retrieval [26].

In our paper, we use a cross-version music retrieval task [9] as an example application
to explore the HNSW graph in practice. We conduct systematic experiments using
databases of different sizes to analyze the impact of the graph-based index on the quality
and speed of our retrieval system. As our main contribution, we show that we can increase
the efficiency of our music retrieval application by several orders of magnitude through the
usage of an HNSW graph as an index structure. Although the graph-based search belongs
to the category of approximate nearest neighbor search approaches, our experiments show
that, by and large, the retrieval quality is not negatively affected by using the graph in
our scenario. We also analyze several further aspects in our retrieval system, such as
the feature computation and the construction, saving, and loading of the index structure.
We want to emphasize that our results demonstrate huge advantages of the graph-based
indexing approach compared to previously used index structures. We expect similar
benefits for other MIR problems involving nearest neighbor search. Beyond cross-version
music retrieval, such search problems occur in diverse MIR tasks, such as cover song
retrieval [27,28], music similarity estimation [19], query-by-humming [20], or symbolic
music genre classification [29].

To make our results reproducible [30], we use open-source implementations of the
discussed index structures and provide code that shows how we use them, along with
pre-computed features for an example dataset (https://www.audiolabs-erlangen.de/
resources/MIR/2020_signals-indexing, accessed on 12 May 2021). In this way, we enable a
straightforward usage of the index structures in future MIR applications.

The remainder of this paper is organized as follows. In Section 2, we outline our music
retrieval application. Next, in Section 3, we describe graph-based search procedures in
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general and the HNSW graph in particular. Then, in Section 4, we present our systematic
experiments where we apply the HNSW graph for our music retrieval task. Finally, we
summarize our main findings in the concluding Section 5.

2. Music Retrieval Application

In this section, we describe our motivating retrieval scenario, our cross-version
retrieval approach, and our datasets, which are used later in our experiments. Readers
with a primary interest in indexing and our experimental findings may skip this section at
first reading.

2.1. Motivating Retrieval Scenario

In our article, we deal with a query-by-example retrieval scenario using a real-world
music collection from a music publisher. This collection consists of the complete audio
catalog of the Carus publishing house, a leading sheet music publisher of sacred and secular
choral music. Beyond sheet music, Carus also produces and publishes audio recordings,
mainly for choral pieces of Western classical music. Carus’ complete audio catalog is a
medium-sized music collection of nearly 400 h (more details in Section 2.3). Internally,
we implemented a web-based interface for browsing this dataset, as illustrated by the
screenshot shown in Figure 1. Here, the user can specify a query in the form of a YouTube
link of a music recording, e.g., an interpretation of Mendelssohn’s Verleih uns Frieden
(Grant us peace) by an amateur choir. Such YouTube videos are often poorly annotated.
Therefore, in our scenario, we use a content-based retrieval approach, where we take a
20-s audio snippet from the YouTube recording as a query. Then, the system retrieves
recordings from the Carus collection that are based on the same musical piece as the query.
Following [9,17], we denote different recordings of the same piece of music as “versions.”
In the case of the Mendelssohn piece, the retrieval system returns two CD articles from the
Carus catalog, which both include a version of that piece by professional musicians (the
Kammerchor Stuttgart under the direction of Frieder Bernius). The user may listen to the
retrieved versions or click on the cover images to access more information on the linked
webpage of the publisher. Rather than describing this web-based tool in further detail, it
serves as a motivating scenario for our retrieval experiments while indicating our study’s
practical relevance.

localhost:8888/Score-Follower

Score Follower

localhost:8000/

Carus Search

Carus Audio Search Demo

https://www.youtube.com/watch?v=NTt3-YzmjxI

Search# Shingles Offset Start (s) Offset End (s) Reduction

OK5 10 10 DNN (K=30) HNSW

Results (Ranked List)

Result 1 (distance: 0.085)

Piece Verleih uns Frieden gnädiglich

Composer Mendelssohn Bartholdy, Felix

Article Mendelssohn: Verleih uns Frieden. Kirchenwerke VI (Bernius)

Result 2 (distance: 0.086)

Piece Verleih uns Frieden gnädiglich

Composer Mendelssohn Bartholdy, Felix

Article Mendelssohn: Jauchzet dem Herrn, alle Welt. Geistliche Chormusik

Query Youtube Link

00:00 / 04:22

00:00 / 04:22

Figure 1. Illustrated screenshot of an internal version-retrieval web-interface for the Carus catalog.
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2.2. Cross-Version Retrieval System

We now describe our retrieval approach, closely following [9]. Given a database of
music recordings and a short query audio fragment, the aim is to identify all recordings
(versions) in the dataset based on the same musical piece as the query. To this end, we
compare the database and query recordings using chroma-based audio features, which
measure local energy distributions in the 12 chromatic pitch class bands [31,32]. Our
chroma features are computed by suitably pooling the frequency bins of a time–frequency
representation with a logarithmic frequency axis, where a frequency bin corresponds to
a semitone [33]. Following [9,17], we use a chroma variant called CENS (chroma energy
distribution normalized statistics) [34], which is adapted for the retrieval task using a
post-processing strategy involving logarithmic quantization, temporal smoothing, and
frame-wise normalization.

All database recordings are transformed into chroma sequences. We use a shingling
approach [1,9,17,35], where the database’s chroma sequences are subdivided into subsequences
(also referred to as “shingles”) of L = 20 chroma vectors, using a hop size of H = 1 frame.
The length of a shingle corresponds to 20 s of audio (using a feature rate of 1 Hz). As
for the retrieval, the query (in the form of a single shingle) is compared with all database
shingles. Figure 2 illustrates such a query (left) for our Mendelssohn example and the
set of overlapping shingles (right) for a database document (a track of a CD from the
Carus collection). As the first option to compare two shingles, we reshape each shingle of
dimension 12× 20 to a vector of dimensionality K = 240 and apply a distance function

d : RK ×RK → R≥0 . (1)

Throughout this paper, we use the squared Euclidean distance

d(x1, x2) =
K

∑
k=1

(x1(k)− x2(k))
2 (2)

between two vectors x1, x2 ∈ RK as the distance function.

…
…

Query: Shingle Database Document: Set of Shingles

Figure 2. Illustration of shingle-based query and database document.

Alternatively, we reduce the dimensionality (K < 240) of the shingles before computing
the distance. In particular, following Zalkow and Müller [9], we use classical PCA [24], or
deep neural networks (DNNs) trained with the triplet loss function [36] for dimensionality
reduction. The DNN is a convolutional neural network, having a relatively small amount
of parameters (e.g., about 6000 parameters for K = 10). The last network layer performs an
`2-normalization of the embedding. For more details, we refer to [9]. The authors showed
that the shingle dimension can be reduced from 240 to 15 without substantial loss in
retrieval quality for the given application (while PCA- and DNN-based embeddings yield
similar results). The DNN-based approach is beneficial for even smaller dimensionalities
(below K = 12), where we only have a moderate loss in retrieval quality.

The retrieval task is then solved by finding the database’s shingles with the smallest
distance to the query shingle, which is a nearest neighbor search problem. Zalkow and
Müller [9] compared the runtimes for this retrieval task using an exhaustive search and a
search approach using K-d trees [12,13]. Using a small dataset of 16 h of music, they found
that K-d trees are only beneficial for smaller dimensionalities (below K = 15). This finding
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agrees with the fact that K-d trees are inappropriate for high-dimensional data [21,37]. In
our paper, building upon these findings, we want to explore the potential of a graph-based
index structure for this music retrieval problem.

2.3. Datasets

We use two databases of different sizes in our experiments (see Table 1). Our first set
Dsm, which was already used as an evaluation set in the previous study [9] (there denoted
by D2), consists of 330 audio files and comprises about 16 h of music (corresponding to
more than 50,000 shingles). These recordings contain interpretations of orchestral and piano
pieces by Beethoven, Chopin, and Vivaldi. In our cross-version retrieval evaluation, we
consider a recording relevant for a query if it represents a version of the piece underlying the
query (e.g., Mendelssohn’s Verleih und Frieden or the first movement of Beethoven’s Third
Symphony). Since the dataset Dsm contains twelve “cliques” (works or movements), having
a different number of versions each (4 to 67), a query may correspond to 4 to 67 relevant
documents in our cross-version retrieval scenario. This dataset is well annotated and
corresponds to a controlled retrieval scenario. We make the annotations and shingles of the
dataset available on our accompanying website for reproducibility.

Table 1. Statistics for the used datasets. Duration format hh:mm:ss. Annotations refer to the
availability of complete annotations for the musical pieces underlying the recordings (required to
evaluate retrieval quality). Σ refers to the total, and � refers to the average.

# Audio Files Σ Duration � Duration Annotations # Shingles

Dsm 330 16:13:37 0:02:57 3 52,332
Dlg 7115 389:58:03 0:03:17 7 1,272,386

As a second dataset Dlg, we use the entire audio catalog of recordings offered by the
Carus label. The dataset Dlg contains 7115 audio files and about 390 h of professionally
produced music (corresponding to more than 1.25 million shingles), mainly of vocal
Western classical music. In contrast to Dsm, this dataset is less well annotated and
corresponds to a rather uncontrolled scenario “in the wild,” having real practical relevance.

3. Graph-Based Nearest Neighbor Search

We now outline the nearest neighbor search problem underlying our retrieval task and
a search procedure using graph-based data structures [38]. Then, we describe the HNSW
graph, which we use later as an index in our experiments.

3.1. Graph-Based Data Structures

In our search problem, we have a database D of items x ∈ D. The items are
K-dimensional vectors, thus D ⊂ RK. Figure 3 (initial situation) illustrates a dataset,
where the items are gray points. Given a query xq ∈ RK (colored in orange in Figure 3) and
some distance measure d (see Equation (1)), the aim is to find the ν ∈ N database items that
are nearest to this query. As an example, let us now assume ν = 1. Then the aim is to find
the closest database item

x∗ = arg min
x∈D

d(x, xq). (3)

A naive solution to this problem is to compute the distances between all database
items and the query for selecting the item with the smallest distance (exhaustive search).
With graph-based nearest neighbor search, we aim to find x∗ without evaluating all these
distances, but only a subset of them. In general, we have no guarantee of finding x∗ with
a graph-based search. Because of this reason, this strategy belongs to the category of
approximate nearest neighbor search methods.
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Initial situation
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Figure 3. Illustration of graph-based approximate nearest neighbor search.

In our graph-based approach, the database is organized as an undirected graph
structure, where the database items are nodes. Nearby nodes are connected by edges,
which are represented by connecting lines in Figure 3. In essence, the search in the database
consists in traversing along the edges of the graph. In the first step of the search procedure,
we select an entry point xe ∈ D of the database (colored in dark blue in Figure 3, first step),
e.g., by random choice. This entry point is our first active search node in the procedure.
We then compute the distance of the query to this node. Next, we compute the distance
between the query and all items that are connected to the active search node (colored in
light blue in Figure 3). If any of these distances are smaller than the distance between the
query and the active search node, we continue with the next step, where the node with the
shortest distance is the next active search node in the procedure. Otherwise, we terminate,
and our active search node is the final candidate for the nearest neighbor to the query. In
Figure 3, we perform four steps until the algorithm terminates. In our example, the final
candidate corresponds to the exact solution x∗.

3.2. HNSW Graphs

To date, we have described a search procedure using a data structure with a single
graph. Building upon such a structure, Malkov and Yashunin [25] introduced an improved
data structure with multiple levels, called Hierarchical Navigable Small World (HNSW)
graph, for approximate nearest neighbor search. Compared to search procedures for
single-layer structures (as described in the previous section), the multi-layer search procedure
has various benefits, such as improved search quality, higher efficiency (with a runtime
that increases logarithmically with the dataset size), and greater stability with respect to
the dimensionality K.

Figure 4 illustrates an HNSW graph with three layers. The bottom level (first layer)
is a graph containing the full database, similar to the graph structure described in the
previous section. In the figure, this layer contains 16 database items. The middle level
(second layer) contains a subset of these items (eight items). The top level (third layer)
contains a subset of the second layer’s items (four items). For illustration purposes, the
dashed red lines in the figure indicate the items that are available at all layers. Items that
are available only at the first two layers are indicated with dashed gray lines.

We now want to outline the search procedure for HNSW graphs. Given a query point
xq, searching in an HNSW graph starts at the top layer with a suitably selected entry point
xe (e.g., random selection, see [25] for details). A search procedure is then applied, similar
to the approach described in the previous Section 3.1, to find a candidate for the nearest
neighbor to xq in the top layer. Then, the search continues at the next layer, where the
entry point is the item corresponding to the nearest neighbor candidate from the upper
layer. This way, the search continues until we arrive at the bottom layer, where all database
items are available. The aim is to find the ν nearest neighbors in this layer as the search
procedure’s result. To stabilize the approximate search results, we may first search for more
than ν approximate nearest neighbors (using a graph-based search procedure as before).
We denote the number of “intermediate” candidates by ν′ ∈ N, where ν ≤ ν′ ≤ |D|.
Among the candidates, we then select the ν nearest neighbors (by exhaustive search) as the
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final result. The number ν′ is a free parameter that can be increased to improve the search
results (at the cost of an increased runtime).

Layer 2

<latexit sha1_base64="ZPIBt8ieeK4fTih1S8vrikZUkG0="></latexit>

Layer 3
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Layer 1

<latexit sha1_base64="tV8k5d3SlMiE+T4uutlPJm+O5hI="></latexit>

Figure 4. Illustration of HNSW graph.

Malkov and Yashunin [25] also proposed an algorithm for constructing HNSW graphs,
which we summarize briefly. During the construction process, the database items are
consecutively inserted into the graph. For each new item x ∈ D, we randomly decide
on its upper-most layer `(x) ∈ N according to an exponentially decaying probability
distribution. If the random process selects a higher layer `(x) than the highest existing
layer in the graph, the number of layers in the graph increases dynamically. The item
x is then inserted in all layers [1 : `(x)] := {1, . . . , `(x)}. Next, we want to connect the
new node x to M database items in each layer [1 : `(x)] by edges. The parameter M ∈ N
controls the minimum number of edges for each node of the data structure. We apply a
top-down search procedure, similar to the approach described above, to search for suitable
items in each layer [1 : `(x)]. To stabilize the search results, we may first search for more
than M candidates for inserting edges (using a graph-based search procedure as before).
Similar to the number ν′ of intermediate neighbor candidates in the search procedure, we
denote the number of intermediate candidates for inserting edges by M′ ∈ N. We select
M database items among the M′ candidates for inserting edges. In their paper [25], the
authors propose two options for this selection. As a first option, they select the nearest
neighbors to x by exhaustive search. As a second option, the authors propose a heuristic
to create connections to x from diverse directions, which is beneficial for highly clustered
data (see the original paper [25] for more details). In our experiments, we use the second
option. If any of the nodes turn out to have more edges than a predefined maximum (set
to 2M for the bottom layer and M for all other layers), the nodes’ surplus edges with the
highest distance are removed.
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In summary, we have various important parameters for the construction and search
procedure of an HNSW graph. Beyond the distance function d, these parameters are ν
(number of neighbors to search for), ν′ (number of neighbor candidates during search),
M (minimum number of edges for each node), and M′ (number of edge candidates
during construction). The authors recommend a range of M ∈ [5 : 48], where higher
M values imply better search results and higher memory consumption. Furthermore, they
recommend increasing M for higher dimensionalities K. In our experiments described
in the next section, we fix the squared Euclidean distance (see Equation (2)) as distance
function d as well as the default parameter settings of ν′ = M′ = 100 and M = 5. As we
will see later, a fine-tuning of these parameters is not necessary for obtaining good results
in our application.

4. Experiments

We now use the HNSW graph as an index structure in our music retrieval application.
Here, a node of the graph corresponds to a database shingle with or without dimensionality
reduction.

4.1. Experimental Setup

In the following, we analyze the possible decrease in retrieval quality and the improvements
of the retrieval runtime introduced by the HNSW graph. To this end, we consider
quantitative performance measures, which we list in Table 2. To evaluate the retrieval
quality, we use standard precision-based measures (more details in Section 4.2). To analyze
the impact of the index structures on the retrieval speed, we consider several steps that are
involved in our retrieval scenario. Some steps need to be computed offline when processing
the database documents, and other steps need to be computed online when processing a
query. In the offline phase, we need to compute features for all audio files of the database,
construct an index and save the index file to disk. These steps can be carried out at any
time and on any system (offline). When applying our index, we first need to load the index
into the computer’s main memory (RAM). This loading step can be considered as being
in-between the online and offline stages. The index loading needs to be performed on the
actual system where the retrieval service is provided. When the index structure can be
kept in the main memory, it does not have to be reloaded for each query. Therefore, we
still consider it as part of the offline stage. In the actual online phase, we need to compute
the query features and perform the nearest neighbor search procedure using our index
structure. In the following sections, we analyze these steps in the order given in Table 2.

Table 2. Considered performance measures.

Step Performance Measure Stage Section

Overall pipeline Quality (P@1, P@3, PR) Offline & online Section 4.2
Feature computation Time (ms) Offline & online Section 4.3

Constructing the index Time (s) Offline Section 4.4
Saving the index Disk space (MB) Offline Section 4.4

Loading the index Time (ms) Offline Section 4.4
Retrieval Time (ms) Online Section 4.5

If not mentioned otherwise, we always report on average time measurements (µ± σ)
for 100 iterations of the experiment. Note that runtime evaluation is a delicate topic on
its own [39]. For example, one may argue that it is more meaningful to report minimum
instead of average runtime measurements because other processes running in parallel
affect the mean more than the minimum. In our case, this is not a major issue because the
standard deviation σ is always relatively low. We want to highlight that we take a practical
perspective by measuring runtimes using distinct implementations of the respective index
structures, implemented in different programming languages. The absolute runtimes
obtained may vary when using different implementations or hardware systems. Our
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study gives practical insights into the runtimes obtained by specific implementations on
specific platforms for our specific application. In general, we are interested in the orders of
magnitude, the relative differences between the time measurements, and the relationships
between index size and runtime.

We compare three different search approaches: an exhaustive search approach (full
search, exact search solution), an indexing strategy using K-d trees (KD, exact search
solution), and the graph-based index structure (HNSW, approximative search solution). We
perform our experiments using Python 3.6.5 on a computer with an Intel Xeon CPU E5-2620
v4 (2.10 GHz) and 31 GiB RAM. We use the efficient pairwise-distance calculation of
scipy 1.0.1 [40] for the full search, which is calling a highly optimized implementation
in C. For the K-d trees (using a default leaf size of 30), we use the implementation
of scikit-learn 0.20.1 [41], which is written in Cython. For the HNSW graph, we use
the efficient hnswlib implementation in C++ by the authors of the original paper [25]
(https://github.com/nmslib/hnswlib, accessed on 12 May 2021), using the Python wrapper
version 0.4.0. We use librosa 0.7.1 [42] for the audio processing pipelines and TensorFlow
1.7.0 [43] for the deep neural network implementation.

4.2. Retrieval Quality

In contrast to the K-d tree approach, the HNSW graph only provides an approximate
search solution. To understand the impact of this approximation within our retrieval
scenario, we measure our retrieval system’s quality using the dataset Dsm, closely following [9].

We consider a document-level rather than a shingle-level retrieval. Here, the distance
between a query shingle and a document is given by the minimizing distance between the
query and all document shingles. We construct a single index structure for the entire dataset
Dsm (using either a K-d tree or an HNSW graph) and search for the 10,000 nearest items in
the database to a given query. Using the distances of the returned items, we create a ranked
list of documents, ordered by ascending distances. Note that we were not able to rank
all database documents as some documents may not have a corresponding item among
the items returned (this did not affect the evaluation measures in our experiments). For
evaluating the ranked list, we consider three standard retrieval evaluation measures [44].
First, we use precision at one (P@1), which is 1 if the top-ranked document is relevant (i.e.,
being a version of the same musical work as that of the query), and 0 otherwise. Note that,
for exact nearest neighbor searches, the top match is always identical to the query because,
in our experiments, the query is part of the database (which leads to a P@1-value of 1). We
still use this measure to check whether the approximate search approach is able to find the
“trivial” match. Second, we use precision at three (P@3), which is the proportion of relevant
documents among the top 3 documents of the ranked list. Third, we use R-precision (PR),
which is the proportion of relevant documents among the first R ranks, where R ∈ N
denotes the number of relevant documents for the given query (which may differ for each
query, between 4 and 67).

We generate 3300 query shingles from Dsm by an equidistant sampling of ten queries
from each recording of Dsm, resulting in 3300 queries. Each evaluation measure is finally
averaged over the 3300 query shingles used. Table 3 shows the resulting evaluation
measures. A row in this table specifies the dimensionality reduction approach (no reduction,
PCA-, or DNN-based embedding), the dimensionality K, and the search strategy (Full
Search, or HNSW). The retrieval results for the exhaustive search (Full Search) and the K-d
tree strategy (KD) are identical because both approaches are exact nearest neighbor searches
(with different properties in terms of runtime, as decribed in Section 4.5). For example,
without dimensionality reduction, we obtain a P@1-value of 1.0, a P@3-value of 0.9965,
and a PR-value of 0.9434. This result shows that the shingle-based retrieval approach is
able to identify most of the versions correctly, but there are a few false positives. Reducing
the shingle dimensions (which is important for some indexing approaches, such as K-d
trees) leads to further degradations of the retrieval quality, as already shown in previous
work [9]. For example, reducing the dimensionality from 240 to 30 with the PCA-based

https://github.com/nmslib/hnswlib
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embedding, we obtain a P@3-value of 0.9910. For smaller dimensionalities, the DNN is
beneficial over PCA for embedding the shingles, e.g., resulting in PR-values of 0.7350
(PCA) and 0.8333 (DNN) for K = 6. Using the HNSW graph as an index structure, we
obtain more or less the same evaluation metrics for all settings. This finding demonstrates
that the approximate search approach of the HNSW graph has almost no negative impact
on the retrieval results within our application scenario. When we analyze the runtime
improvements in the following sections, we can bear in mind that they come without
substantial loss in retrieval quality.

Table 3. Retrieval quality for various reduction approaches and search strategies using the dataset
Dsm. Note that the evaluation measures for the KD search approach are identical to the full
search approach.

Reduction K Search P@1 P@3 PR

— 240 Full Search 1.0000 0.9965 0.9434
HNSW 1.0000 0.9965 0.9434

PCA

30 Full Search 1.0000 0.9910 0.9130
HNSW 1.0000 0.9910 0.9130

12 Full Search 1.0000 0.9679 0.8294
HNSW 1.0000 0.9678 0.8294

6 Full Search 1.0000 0.8937 0.7350
HNSW 1.0000 0.8937 0.7350

DNN

30 Full Search 1.0000 0.9868 0.9344
HNSW 1.0000 0.9869 0.9345

12 Full Search 1.0000 0.9757 0.8989
HNSW 1.0000 0.9756 0.8989

6 Full Search 1.0000 0.9236 0.8333
HNSW 1.0000 0.9237 0.8333

4.3. Feature Computation

In this section, we report on the runtimes for the various steps involved in the feature
computation. This computation procedure has to be performed in the offline stage (for
the whole database) and online stage (for the query). In contrast to the document-based
analysis of the retrieval quality (evaluating a ranked list of documents), we now use an
item-based evaluation (runtime to process a database item). To compute our measurements,
we first load 20 s of an audio file (using librosa.load). In general, our audio files are
longer, but for our runtime experiments, we only use a 20-second segment, corresponding
to the length of a shingle. Then, we compute the spectral features [33] (with librosa.iirt).
Next, we compute the CENS features [34] (using librosa.feature.chroma_cens). This
step concludes the feature computation if no dimensionality reduction is applied. An
additional step is performed in the embedding-based retrieval approaches (PCA-based
embedding using sklearn.decomposition.PCA or DNN-based embedding as described
in [9]).

Table 4 shows the time measurements. The loading of the audio segment only takes
44.8 ms. The next step is the spectral feature computation, which needs more than a second
(1171.5 ms). The time required for the CENS computation is not significant (0.9 ms). In the
table, we list the times to embed the shingle for some selected dimensionalities. In general,
the PCA-based embedding is faster than 0.1 ms, and the DNN-based embedding does not
take more than 2 ms.
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Table 4. Time measurements (in ms) for various steps involved in the feature computation of 20 s
of audio.

Step Time (ms)

Audio Loading 44.8 ± 1.4
Spectral Feature Computation 1171.5 ± 34.3
CENS Feature Computation 0.9 ± 0.5

Embedding PCA (K = 30) 0.05 ± 0.0
Embedding PCA (K = 12) 0.05 ± 0.0
Embedding PCA (K = 6) 0.05 ± 0.0

Embedding DNN (K = 30) 1.6 ± 0.1
Embedding DNN (K = 12) 1.5 ± 0.1
Embedding DNN (K = 6) 1.4 ± 0.1

The numbers of the table show that the major bottleneck of the feature computation is
the spectral transform. Compared to this, the times of the other steps are not significant.
The runtime for the query feature transform is not our focus in this paper. Obviously, it only
scales linearly with the query length, which is usually short (i.e., no scalability issue). The
runtime for computing the database documents’ features is also not critical because it can
be computed offline. A possible future research direction could be to compute embeddings
from spectral representations that are less expensive to compute, e.g., using the short-time
Fourier transform (STFT) with the FFT. Having the same window and hop length settings
as the spectral transform used, computing the magnitude STFT for the 20-s audio snippet
only takes 19.2 ms on average. However, using the STFT-based features may go along with
a decrease of feature quality, which may affect the retrieval results.

4.4. Constructing, Saving, and Loading the Index

We now address various performance measures for the offline stage, i.e., for constructing,
saving, and loading the index structures. For these steps, we restrict our analysis to one
embedding technique (PCA) because the specific embedding strategy used has only a minor
influence on these measures. The first step is to construct the index structure (either a K-d
tree or an HNSW graph). We report on the times required to construct the index, given
that the data to be indexed is already in the computer’s main memory (i.e., pre-computed
shingle embeddings, without having any distances pre-computed). When this data needs
to be read from disk, it will cause some additional overhead. For example, loading all
pre-computed shingle embeddings (K = 12) of Dsm takes 0.9 ms on average. Loading the
full shingles (K = 240) of Dlg requires one second on average.

Columns 4 and 5 of Table 5 show the time needed to construct the index structures
for various dimensionalities. We include time measurements for the smaller dataset Dsm
and the larger dataset Dlg. The first row in the table refers to the K-d tree index for shingles
without dimensionality reduction (K = 240). This setting leads to construction times of
0.54 s for Dsm and 43.03 s for Dlg. For lower dimensions, this time decreases. For example,
constructing the K-d tree index for Dlg takes 3.89 s, 1.66 s, and 0.99 s for the dimensionalities
of 30, 12, and 6, respectively. Constructing an HNSW graph for K = 240 requires 0.65 s
for the smaller dataset Dsm and 26.66 s for the larger dataset Dlg. For this large dataset
and a high dimensionality of K = 240, constructing an HNSW graph is faster (26.66 s)
than constructing a K-d tree (43.03 s) in the implementations used. However, this is not
the case for lower dimensions. For example, constructing the index structures for the
larger dataset Dlg using K = 30 requires 3.89 s for the KD and 16.38 s for the HNSW
approach. In general, the construction time grows approximately in a linear fashion with
the dimensionality K for lower dimensions. Only for large dimensionalities, the time for
constructing a K-d tree explodes, which agrees with the fact that K-d trees are not suited
for high-dimensional data [21,37]. In contrast, the HNSW approach behaves stable for all
considered dimensionalities. In all our settings, constructing an index takes less than a
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minute. We do not consider this duration critical in our application because the step is
performed offline.

The next step is to save the index structure to the hard disk, where it requires disk
space. In the case of the K-d tree, we use scikit-learn’s [41] recommended default persistence
format based on the Python package joblib without compression. In the case of the HNSW
graph, we use the default storage format of hnswlib, which is a custom binary format (also
without compression). Columns 6 and 7 of Table 5 show the required disk space used
for storing the index structures. Without dimensionality reduction (K = 240), storing the
K-d tree requires 209.7 MB and 5161.2 MB of disk space for Dsm and Dlg, respectively. The
HNSW graph takes 53.9 MB and 1310.9 MB for the same data. In general, the required disk
space scales roughly linearly with the dataset size as well as with the dimensionality in both
indexing approaches. Furthermore, the graph-based index is generally more space-efficient
than the tree-based structure in the given formats.

Table 5. Performance measures for constructing, saving, and loading the index structure.

Search Reduction K Construction Time (s) Save Size (MB) Load Time (ms)
Dsm Dlg Dsm Dlg Dsm Dlg

KD — 240 0.54 ± 0.0 43.03 ± 0.1 209.7 5161.2 131.5 ± 0.4 3209.1 ± 25.4
KD PCA 30 0.06 ± 0.0 3.89 ± 0.2 27.0 664.8 17.5 ± 0.3 405.1 ± 8.8
KD PCA 12 0.03 ± 0.0 1.66 ± 0.1 11.3 279.4 3.5 ± 0.1 167.0 ± 6.9
KD PCA 6 0.02 ± 0.0 0.99 ± 0.1 6.1 150.9 2.1 ± 0.3 86.3 ± 2.2

HNSW — 240 0.65 ± 0.0 26.66 ± 0.0 53.9 1310.9 108.1 ± 0.4 2680.0 ± 42.8
HNSW PCA 30 0.51 ± 0.0 16.38 ± 0.0 9.9 241.8 85.1 ± 2.1 2095.3 ± 6.6
HNSW PCA 12 0.43 ± 0.0 11.58 ± 0.0 6.2 150.2 82.9 ± 0.4 2071.5 ± 43.8
HNSW PCA 6 0.42 ± 0.0 10.20 ± 0.0 4.9 119.6 82.6 ± 0.6 2049.1 ± 22.8

To apply a pre-computed index for retrieval, we need to load it into the computer’s
main memory. We perform this step of loading the index with the functions required
for the respective file formats used in the previous step (using functions from joblib and
hnswlib, respectively). Columns 8 and 9 of Table 5 show the required time to load the
index files. Loading a K-d tree without dimensionality reduction requires 131.5 ms for Dsm
and 3209.1 ms for Dlg. Using the same data, loading an HNSW graph takes 108.1 ms and
2680.0 ms, respectively. For smaller dimensions, loading a K-d tree is faster than loading an
HNSW graph (e.g., K = 12 and Dlg: 167.0 ms for KD and 2071.5 ms for HNSW). The time
to load an index scales linearly with the dimensionality in both KD and HNSW approaches
(with a much flatter slope for HNSW).

With our system (see Section 4.1 for specifications), we did not have any issues with
loading the index structures into the main memory (31 GiB RAM) in all settings. On other
systems with less memory (8 GiB RAM), we could not fully load the index structures into
the main memory for K = 240. In this case, dimensionality reduction becomes crucial for
practical reasons.

4.5. Retrieval Time

In this section, we report on our runtime experiments for searching the nearest
neighbors in our datasets. Regarding efficiency, these experiments refer to the most critical
part of the retrieval pipeline because this step is part of the online stage (where the runtime
affects the user experience). An efficient search is of major importance for scalability
because, in general, the search runtime scales with the dataset size. The aim of our index
structures is to improve the efficiency of this step.

We can also consider the complexity of the search approaches from a theoretical
perspective (which is not the focus of this paper, being a practice report). The runtime of
the full search increases linearly with the dataset size. In other words, its search complexity
is in the order of O(|D|). The expected search complexity for K-d trees is in the order
of O(log |D|) [13]. However, it is well known [45] that the actual performance may be
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equivalent or worse than an exhaustive search, depending on the data distribution (which
influences the tree structure). Especially for high-dimensional data, the search performance
degenerates. According to [25], the overall complexity scaling of the search for the HNSW
graph is O(log |D|), which does not degenerate for high-dimensional data.

For the experiments of this section, we search for the ν nearest items in our dataset
(either Dsm or Dlg) to a given query, where we consider ν ∈ {1, 10, 100, 1000}. We again use
3300 queries (as in Section 4.2) and perform several repetitions of this experiment. Then,
we normalize the measured runtimes with respect to the number of queries and repetitions,
such that the reported measures refer to the time needed for a single query. Table 6
shows the results of our experiments. Let us first consider the PCA-based dimensionality
reduction using K = 30 for the smaller dataset Dsm. The exhaustive search requires
4.803 ms. The indexing approaches are much faster, taking 0.009 ms using a K-d tree and
0.007 ms using an HNSW graph. In this setting, there is no large difference between the
indexing approaches. When we search for more neighbors (increasing ν), the KD approach
slows down substantially (0.621 ms, 1.001 ms, and 2.025 ms for ν values of 10, 100, and
1000, respectively). The runtime does not increase to the same extent for the HNSW
approach (0.007 ms, 0.007 ms, and 0.056 ms). Searching in the larger dataset Dlg shows
the potential of the HNSW index even more clearly. For example, using the PCA-based
embedding (K = 30), for ν = 100, the K-d tree requires 66.499 ms and the HNSW graph
needs only 0.019 ms. While the increased dataset size only has a minor effect on the runtime
for the HNSW approach, it dramatically increases the KD strategy’s runtime. For lower
dimensionalities, the runtime differences between the K-d tree and the HNSW graph are
less extreme. For example, the KD approach requires 0.201 ms for K = 6 (Dlg, ν = 100).
Still, the HNSW graph is much faster (0.011 ms). Without dimensionality reduction, the
KD approach breaks down (more than 700 ms for Dlg), which is a known fact [21,37].
However, the HNSW graph still facilitates fast retrieval (e.g., 0.021 ms for ν = 100). This
substantial decrease in retrieval time shows the power of the graph-based search approach.
In general, the tendencies discussed for the PCA reduction are similar when using the
DNN-based embedding.

Table 6. Search runtimes (in ms) using a single query for various dimensions K and search strategies.

Reduction K Search Dsm Dlg
ν = 1 ν = 10 ν = 100 ν = 1000 ν = 1 ν = 10 ν = 100 ν = 1000

— 240
Full Search 13.912 13.912 13.824 13.875 — — — —

KD 0.072 23.136 24.463 25.269 771.623 775.116 770.461 772.946
HNSW 0.008 0.008 0.009 0.072 0.020 0.020 0.021 0.205

PCA 30
Full Search 4.803 4.757 4.768 4.812 — — — —

KD 0.009 0.621 1.001 2.025 36.825 48.145 66.499 88.849
HNSW 0.007 0.007 0.007 0.056 0.010 0.009 0.019 0.123

PCA 12
Full Search 4.354 4.418 4.322 4.360 — — — —

KD 0.004 0.087 0.233 0.713 0.907 1.698 4.414 10.280
HNSW 0.007 0.007 0.007 0.056 0.009 0.009 0.009 0.067

PCA 6
Full Search 4.123 4.115 4.124 4.159 — — — —

KD 0.003 0.019 0.074 0.346 0.031 0.065 0.201 0.852
HNSW 0.007 0.007 0.006 0.048 0.007 0.007 0.011 0.072

DNN 30
Full Search 4.899 4.897 4.883 4.930 — — — —

KD 0.009 0.459 1.019 2.498 30.021 46.611 75.748 117.543
HNSW 0.007 0.007 0.007 0.057 0.011 0.011 0.011 0.077

DNN 12
Full Search 4.439 4.434 4.433 4.480 — — — —

KD 0.004 0.064 0.177 0.709 0.377 0.829 2.498 7.240
HNSW 0.008 0.008 0.009 0.068 0.006 0.007 0.007 0.056

DNN 6
Full Search 4.165 4.162 4.171 4.220 — — — —

KD 0.002 0.014 0.062 0.310 0.019 0.039 0.141 0.663
HNSW 0.006 0.007 0.007 0.054 0.007 0.007 0.007 0.057
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Note that the exhaustive search involves computing all pairwise distances between
the query and the database items. As a consequence, the parameter ν does not influence the
search time. Furthermore, we did not perform the full search for Dlg because of excessive
memory requirements.

Figure 5 shows the search runtimes for various dimensionalities K. We observe that
the runtime increases more than linearly with dimensionality K for the K-d tree. In contrast,
the runtime for the HNSW graph increases only slightly with increasing dimensionality K.
Note the different scales of the vertical axes, which again underline the substantial search
time improvements caused by the HNSW graph. We see that the HNSW approach requires
nearly the same time for searching 1, 10, or 100 database items (resulting in overlapping
curves). The reason for this is the parameter setting ν′ = 100 (number of intermediate
neighbor candidates, described in Section 3.2), which leads us to search internally for
100 neighbors anyway.
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Figure 5. Search runtimes (in ms) for the DNN- and PCA-based embedding approaches. Note the
different scale of the vertical axes. The solid lines show the mean and the light areas show ± the
standard deviation around the mean for the repetitions of our experiment. Search using (a) the KD
strategy and Dsm, (b) the HNSW strategy and Dsm, (c) the KD strategy and Dlg, and (d) the HNSW
strategy and Dlg.

To summarize, we can conclude that the dimensionality reduction approach (PCA or
DNN) has only a minor influence on the runtime, which is expected. The dimensionality K
of the index items has a substantial impact on the runtime. Still, the indexing approach
(KD or HNSW) has the most important effect on the runtime. Our experiments show that,
compared to K-d trees, the HNSW index is much faster and more stable concerning the
dimensionality and the number of items to be indexed. This increase in retrieval efficiency
comes without substantial loss in retrieval quality (as shown in Section 4.2), which makes
the HNSW graph a powerful tool for music retrieval.
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5. Conclusions

In our study, we compared various search techniques for a cross-version music
retrieval task, where we aim to find the closest shingles in a database to a given query
shingle. In particular, using datasets of different sizes, we applied indexing approaches
with exact (exhaustive search, K-d tree) and approximate (HNSW graph) solutions. Our
results showed that the approximate solution of the graph-based index has almost no
negative impact on the retrieval quality in our music scenario. As our main finding, we
obtained dramatic speed-ups by several orders of magnitude for the search operations
involved in our retrieval system. We verified that HNSW graphs are robust with respect to
the dimensionality of the items to be indexed, unlike K-d trees. As another contribution,
we explored the impact of the HNSW index on several further steps in our pipeline, such
as constructing, saving, and loading the index structure.

We based our work on a previous study [9] that used shingles with highly specialized
features for a cross-version music retrieval task. The authors aimed to reduce the shingle
dimensionality with different embedding strategies to make the retrieval application more
efficient. They found that it is possible to substantially reduce the shingle dimensionality
with only a moderate loss in retrieval quality, where a DNN-based embedding is beneficial
over a PCA-based reduction for small dimensionalities below K = 12. This reduction in
dimensionality was essential for using K-d trees. Our experiments with HNSW graphs
demonstrated that the shingle dimensionality is not as relevant to efficiency as good
indexing approaches since the runtimes obtained with the HNSW approach are generally
lower than those obtained with other search approaches, even with a strong dimensionality
reduction. Still, dimensionality reduction may be important, e.g., to reduce disk space
and memory requirements. Given our results, the remaining bottleneck of the retrieval
pipeline is the feature computation for the query. In future research, one may employ
feature representations that are less expensive to compute, e.g., using the STFT. Here,
the embedding techniques may be useful to adapt and further enhance these “raw”
representations for the retrieval task.

As for future work, one may also explore alternative approaches to accelerate the
nearest neighbor search in our cross-version retrieval scenario. One possibility is to apply
an appropriate prototype selection method [46,47], where the dataset is reduced by selecting
representative prototypes. Another option is the use of pivot-based methods [48,49], where
pre-computed distances between the database items to some selected items (the pivots) are
exploited for excluding some database items during the search.

As basis for further research in this direction, we make our work reproducible by using
open source implementations in all steps and by providing example code that shows how
to apply these implementations, along with feature representations for an example dataset.
Given our strong improvements in retrieval runtime without quality loss, we consider the
HNSW graph a powerful tool that deserves more attention in the MIR community.
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