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Abstract: Voice transformation, for example, from a male speaker to a female speaker, is achieved
here using a two-level dynamic warping algorithm in conjunction with an artificial neural network.
An outer warping process which temporally aligns blocks of speech (dynamic time warp, DTW)
invokes an inner warping process, which spectrally aligns based on magnitude spectra (dynamic
frequency warp, DFW). The mapping function produced by inner dynamic frequency warp is used
to move spectral information from a source speaker to a target speaker. Artifacts arising from this
amplitude spectral mapping are reduced by reconstructing phase information. Information obtained
by this process is used to train an artificial neural network to produce spectral warping information
based on spectral input data. The performance of the speech mapping compared using Mel-Cepstral
Distortion (MCD) with previous voice transformation research, and it is shown to perform better
than other methods, based on their reported MCD scores.

Keywords: voice transformation; dynamic warping; phase reconstruction; artificial neural networks

1. Introduction

Voice transformation (VT) refers to the process of changing speech so that speech
uttered by one speaker (the source speaker) sounds as if another speaker (the target speaker)
had spoken it, for example, transforming from a male voice to a female voice [1]. VT has
applications such as text-to-speech synthesis (ITS), international dubbing, health-care,
multi-media, language education, music, security-related usage, vocal restoration, speech-
to-speech translation, and preprocessing for speech recognition, etc. [2—4].

The general framework for VT is shown in Figure 1 [5]. In a training stage, performed
offline, features are extracted from both source and target speech sources. VT, which maps
information from the source speech to target speech, is trained to form conversion rules. In
the actual operation, these conversion rules are used to convert features from a source to
a target.

In this work, the spectral features computed using the DFT are transformed using
a neural network (NN). Speech signals are aligned using dynamic warping (DW) which
aligns both temporally and spectrally to produce training data which is used to train a
NN. The NN is trained to produce the spectral mapping functions determined by the
frequency-domain warping. Several NN structures (differing numbers of layers, and
differing numbers of neurons per layer) were examined to determine which had best
performance, as measured by mel-cepstral distortion (MCD). On the basis of MCD, this
method was compared with previously developed methods, and is shown to perform well.
The test set was based on transformation of a male speaker to a female speaker. Future
work will test this architecture transformations between different speakers.
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Figure 1. Typical voice transformation system.

2. Previous Voice Transformation Research

Early work on VT dates back to 1990, when the author in [6] proposed using a vector
quantization approach, where the vector-quantized speech features are mapped spectrally
via codebook mapping. The features transformed include acoustic features such as pitch,
formant frequencies and bandwidth, spectral tilt, etc. [7,8]. These features are extracted
and represented using vector quantized codebooks. Generally, codebooks are generated for
both source speakers and target speaker. DTW is used to find the correspondence between
these vectors. These correspondences are then accumulated to find a histogram, which
is used as a weighting function to compute the mapping codebook from source speaker
to a target speaker. In the synthesis step, the speech iwas quantized using the speaker’s
codebook, then all feature parameters are transformed with the mapping codebook from
the training step, and finally the speech is synthesized with LPC vocoder.

To improve this general approach, the authors in [9] propose a method of doing VT
based on Pitch Synchronous Overlap and Add (PSOLA) to improve the quality of the
converted speech signal. In this work, the authors introduced DFW to achieve VT.

Gaussian Mixture Models (GMMs) have been used for VT [10-17]. GMMs model the
source and target data with a GMM to produce transformation functions for each Gaussian
component [11]. Two approaches have been used for GMM-based VT techniques: first
modeling the source and target information separately using a GMM [18], and second
modeling the joint density GMM (JDGMM) between source and target speakers [10].
The conversion function is typical assumed to be probabilistic piecewise linear mapping
function for each Gaussian. The unknown parameters are calculated by solving the normal
linear conversion equations for a least squares solution [18]. The combination of the
spectral source aligned vectors and the corresponding target aligned spectral vectors
is used to estimate GMM parameters for the joint density model by using expectation
maximization algorithm [11]. Although this algorithm works effectively, its conversion
performance is still insufficient [19]. The performance of the standard GMM based VT
method have been improved by implementing sophisticated techniques, such as Gaussian
process regression [20,21], also using WaveNet vocoder in GMM-based voice conversion to
improve the naturalness of the synthetic voice [15,16]. An improvement can be achieved
by incorporating a trajectory-based conversion algorithm to achieve temporal correlation
in the conversion process [18]. Additional features were modeled in order to reduce the
over-smoothing effect of the transformed signal parameters, such us transformation based
on matrix variate GMMs, in which joint features from the source and target speakers
are represented as matrices using multiple frame features [14], global variance [22] and
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modulation spectrum [23]. Furthermore, a real-time conversion process has also been
successfully implemented for state-of-the-art GMM-based VT [24].

As an alternative to the GMM, which relies on probabilistic mappings between the
source and target parameters, DFW seeks to warp the source spectral information in
frequency, in order to compensate for the differences between the spectral features of
the source and the target speakers, to most closely match that of the target speaker [25].
Cepstral information was extracted from both source and target speakers to do DFW [26,27].
In [15] a new framework was proposed by combining frequency warping and exemplar-
based method to achieve VT, where the target was represented by applying frequency
warping on the high-resolution spectrum. The warping function is generated by a sparse
interpolation from a dictionary of exemplar warping functions.

Neural networks have also been used for VT, where the NNs map the source speech
feature vectors into the feature vectors of the target speaker [28,29]. The work [2] is an
early effort using NN to transform the source speaker formants to target speaker formants
using a feedforward NN. In [30], the authors proposed a method for VT using NN with
three layers. This method is based on LPC spectral features using radial basis function
NN. In [31] the authors compared using a NN and GMM for VT. GMMs capture the joint
distribution of the source features and the target feature, while the work in [31] directly
maps the spectral source feature information onto the spectral target feature information.
Additionally, with GMM they use maximum likelihood parameters generation (MLPG) to
obtain a smooth trajectory of spectral features, while the mapping with NN provide best
transformation results without using MLPG.

Long short-term memory (LSTM) NNs have been used for VT [32]. The joint use of
deep bidirectional (DB) LSTM and identify vectors (i-vectors) [33], Kullback-Leibler diver-
gence and deep NN-based approach [34], and DBLSTM based Recurrent NNs [35,36], have
been recently used for VT. More recently, Generative Adversarial Networks (GAN) such
as VAW-GAN [37], CycleGAN [38,39], and many-to-many mapping with StarGAN [40]
further advance the state-of-the-art.

Previous methods generally work by extracting a parametric acoustic parameter
(such as pitch, MFCC, etc.) and transforming this parameter from one speaker to another
based on estimated joint densities. This introduces complexities associated with this
initial parameter estimation. The approach taken here avoids the need to find parametric
acoustic parameters, or to model the joint density, and instead deals directly with spectral
information. (That is, this is analogous to spectral estimation, where a parametric model
might be used, such as AR or ARMA, or the spectrum may be estimated directly using the
DFT.) NNs are used to learn the transformation which maps the spectral information of
one speaker to another speaker. We have found that this basic idea yields improvements
when the spectral information from the preceding and following speech segments are used
to provide context. The transformation is achieved using a two-level DW. Based on the
two-level DW it is straightforward to map the source speech to target speech when both
are available.

3. Voice Transformation Process
3.1. Two-Level Dynamic Warping

The transformation in our VT is accomplished using a two-level DW transformation
which aligns signals both temporally (DTW) and spectrally (DFW).

Let i = 1,2 denote the index of a speaker, with i = 1 representing the source speaker
and i = 2 representing the target speaker. Let / be the index of a segment of speech,
where successive segments may be overlapping. Let r;(¢, :) denote the time-domain signal
associated with the /th segment of speech. This is a vector of length 2K = 512. This was
transformed using a 512-point FFT. This was normalized as follows. Let D;(¢,j),i = 1,2,
¢=12,...,L;,j=1,2,...,KDbe the magnitude of the positive frequency coefficients in the
DFT of r;(¢, :). The feature vector is produced by
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si(4,]) = L_Di(g;(]) / ¢=12,...,L, j=12,...K
/Ty T Dt )2
A sequence of these feature vectors is denoted as
Sl‘:{Si(l,i),si(2,2>,...,Si(Li,Z)}, 121,2 (1)

Here, L; and L, denote the number of source and target feature vectors. Let dr(¢1, {2)
denote the minimum cost between the sequences 81 (source) and 8, (target), up to segment
indices #1 and ¢;, computed using DTW to align the segments in time. (The subscript T
refers to time warping.) As usual for DTW [41], dr(¥1, {») is recursively computed as

dr(€1,67) :d(sl (fl,:), Sz(£2,2))+min{dT(€1—1,42),dT(€1,€2—1),dT(£1—1, 52—1)}. (2)

Here, d(s1(¢1,:),s2(¢3,:)) is the distance between individual feature vectors at segments
¢1 and ¢;. This is computed using DFW, as described below. Conceptually, the dynamic
warping aligns the peaks and valleys between the source and target data, as suggested
by Figure 2. When ¢; = L; and ¢, = L, the temporal warping process determines an
overall warped metric distance dr (L1, L) between the sequences 8; and 8. DTW computes
a sequence of indices ar = (ar(1),a7(2),...,ar(Nr)) and by = (br(1),br(2),...,br(Nr)),
which are called the temporal warping function paths. The temporal warping function
paths define a time-aligned (TA) function s; 14 such that the sequence

Sl,TA(aT(j)I:) - Sl(bT(j)r:)/ ]: 112/~ . 'rNT

is as similar to 8, as possible.

dr(Ly, Lp)

\

> l

Figure 2. Distance measure for outer dynamic warping for VT.

The distance between two feature vectors in (2), d(s1(¢1,:),s2(¢2,:)), can itself be
computed using warping between the components of these individual vectors. Because
these vectors represent frequency information, this is DFW. DFW is computed in a way
similar to the DTW. Let s; = s;(¢;,:), i = 1,2 denote the spectral information vectors at
segment ¢; that is passed to the DFW function from the (outer) DTW function. The elements
of s; are denoted by s;(k). DFW is applied to calculate the distance between s; and s; as

dp(kl,kz) = diSt(Sl(kl),Sz(kz))+min{dp(k1—1,kg),dp(kl,kz—l),dp(kl—l,kz—l)}, (3)

where the subscript  refers to a frequency (or spectral) warping process, and dist(sy (k1),
so(k)) represents the metric distance between elements of the feature spectral vectors.



Signals 2021, 2

460

The metric distance, dist(s1(k1), s2(k2)), used looks only at the magnitude of the spectral
information, so

dist(sy(k1),s2(k2)) = (|[s1(kn)| = [s2(ka)] ])- @)

When there are low energy speech segments (such as from unvoiced speech) which have no
particular spectral information to match, the distance d(s1, s) is generally noninformative.
In order to downplay this effect the small energy segments, the minimimum energy
Emin = min(||s1]|, ||s2]|?), is used to scale the distance, as follows. At the end of frequency
warping process, the metric distance between spectral vectors to be used in (2) is computed
as d(Sl, Sz) = Emin dF(K,K)

The DFW on each feature vector produces a sequence of indices ar = (ap(1),ar(2),...,
ap(Ng)) and bp = (bp(1),bp(2),...,bp(Ng)). ap and b are called the spectral warping
function paths. Here NF is the length of the spectral warping paths, which may be different
from segment to segment.

The temporally aligned feature vector of speaker s, is transformed to spectrally
match the target spectrum information of speaker s, by creating a modified, spectrally-
aligned (SA), feature vector according to

81,7r(ap(i)) = s1,7a(br(i)),i = 1,2,..., NF. ®)

This SA map drags spectral components of source vectors to produce transformed voice
spectra. Each time-aligned and spectrally-aligned segment is inverse Fourier transformed
to produce the time signal for segment ¢, #,(¢,:). This time signal is windowed (we used
a Hamming window of length 512 with 16-ms overlapping when the sample rate was
16,000 samples/sec) and the overlapping segments are added together.

The combination of the inner and outer warping processes applied to speech signal is
portrayed in Figure 3. Starting at the bottom of the diagram, a speech signal is split into
different overlapping segments. Spectral features are computed for each segment. These
spectral feature vectors are passed through DTW for time alignment, and at every stage of
DTW, the metric between vectors is computed using DFW. The method for doing two-level
DW to achieve VT is given in Algorithm 1.

Spectral Warping
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"= EL apath k1 (E A Warping
thm e Wectmm
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z
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[~ “Time"
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P
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-
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Figure 3. Inner/outer dynamic warping.
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Algorithm 1: Dynamic Warping (DW) for Voice Transformation.

Input:
First spectral sequence, 81 = {s1(1,1:n7),s1(2,1:n71),...,81(ng,1:n7)}
Second spectral sequence, 8o = {s»(1,1: m7),s1(2,1:mr),...,s1(mp,1:mr)}
window size wt for DTW process
window size wr for DFW process
Output:
Distance between 81 and 8,
Indices a(N) and b(N) for temporal alignment
Indices b(M) and b(M) for spectral alignment
Begin
Initialize DTW array, DTW = array[0...nr,0...mr]
Initialize DFW array, DFW = array[0...ng,0...mg]
Adapt window size, wy = max(wr,abs(nt — mr))
Forir =1tong
For jT = 1tomr
DTWlir, j] = o0
End For j7
End For it
Set DTW[0,0] =0
Forir = 1tonf
For jr =1tomr
DTWlig, jp] = oo
End For jr
End For i
Set DFW/[0,0] = 0
Forir =1tony
For j7 = max(1,it — wr) to min(mr, it + wr)
Adapt window size, wr = max(wr, abs(ng — mp))
Forir = 1tong
For jr = max(1,ip — wg) to min(mg, i + wr)
cost = abs(abs(81(it,ir))) — (abs(82(jr,jF)))
DFWI/ip, jr| := cost + minimum(DTW[ir — 1, jE|,
DFWlir, jr — 1],
DFWlip —1,jr —1])
End For jr
End For i
Searching minimum path through DFW/ir, j|, save af, br
COStpewy = DFW(ng, mg|
Minimum energy [s; and sp]
d = Epin cOStpew
DTW/ir, jr| := d + minimum(DTW[it — 1, j1],
DTWlir, jr — 1],
DTWlir —1,jr —1])
End For j
End For it
Searching minimum path through DTW/[ir, j7], save ar, by

3.2. Experiment Description and a Proof of Concept Result

Experiments were carried out on CMU ARCTIC database [42]. The database consisted
of seven primary sets of recordings, recorded by two US males, one Canadian male with
English accent, one Scottish male with English accent, one Indian male, and two US
females. Each speaker recorded a set of 1132 English utterances, most being between one
and four seconds long and between 5 to 15 words long. The prompt list was designed to be
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phonetically balanced American English and have diphone coverage representative of the
source material. The sound files were recorded in a soundproof booth at 16,000 samples/sec
with simultaneous EGG measurements (the speech needed to be clean, or else background
disturbances affected the transformed speech). The lexical and phonetic descriptions
derived from the US English front-end module. In experiments presented here, one US
male and one US female were chosen to do VT from male to female. While this was a
limited experiment, since the transformation process was general (being based on DW of
spectral features), this was considered a valid proof of concept for this initial experiment.

After identifying the starting point and ending point of the first 720 sentences of CMU
ARCTIC database, each sentence was temporally segmented into 32-ms segments, using
a Hamming window with 16-ms overlapping, zero-padded, then transformed using a
512-point FFT then normalized as described above. DW was applied on these features and
the features of the first 600 sentences were used to train the NN and a separate set of 120
sentences were used for testing the trained NN.

Figure 4a shows a typical spectrogram for a male speaker, using the phrase “Author of
the danger trail, Philip Steels, etc.” from the CMU ARCTIC database. Figure 4b shows the
spectrogram for a female speaker for the same phrase. Figure 4c shows the VT from male
speaker to female speaker. After transformation, the overall energy distribution looked
similar to the spectrogram of the female speaker. The fine-scale variations (the ripples in
frequency) evident in Figure 4a,b are due to pitch. These lines are also in Figure 4c, but
the pitch details are fuzzier. The resulting speech had very severe processing artifacts. (It
did not sound very good.) Since the transformation only involved shifting magnitude
spectral information, we were led to suspect that the problem might result from a mismatch
between the magnitude and phase information of the warped signal.

Powerfrequency (dB/Hz)

Frequency (kHz)

Frequency (kHz)
Powerffrequency (dB/Hz)

1 15 2 25 3

! 0.5 1 15 2 25 3
Time (s) Time (s) Time (s)

(a) Male Spectrogram Information (b) Female Spectrogram Information (c) Spectrogram of warped Male to Female
Figure 4. Spectrogram for male, female and warped male to female.

Figure 5a shows the spectral feature information for one segment of speech for the
female speaker. Figure 5b shows the spectral feature information for one time-aligned
segment of speech for the male speaker. By applying the DFW, the peaks and valleys of the
male spectrum were generally aligned to the peaks and valleys of the female spectrum, as
portrayed in Figure 5¢c. In warping the spectral information, artifacts were introduced into
the signal which were not typical of speech. For example, Figure 5c shows that the warping
smeared some spectral values across several frequency bins (indicated with green circles)
in the plot, resulting in regions of the spectrum that had constant spectral magnitude.

We found that the quality of the speech was significantly improved by using a phase re-
construction algorithm on the warped speech. In this work, the Griffin-Lim algorithm [43]
was applied to do phase reconstruction after the spectral transformation has been accom-
plished [44].

Figure 6 shows the spectrogram for the warped speech after phase reconstruction.
The pitch lines were stronger (less fuzzy) after the GLA phase reconstruction. Figure 7
shows the spectral feature information for one segment of speech for the female speaker
with the time aligned spectral warped segment for male from the phrase mentioned above.
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The peaks and valleys were still aligned, but the regions where there were spectral flats
in Figure 5¢, denoted by the green circles, were replaced with more speech-like spectra.

0.7 T T T T T 35 T T T T T 25 T T T T T
Female Spectral Data Female Spectral Data
Warpped Male Spectral Data
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Figure 5. One spectral segment feature for male, female and warped male to female.
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Table 1 shows the MCD score obtained using warping with and without the GLA
phase reconstruction. The MCD was nearly 3 dB better when GLA phase reconstruction was
used. The audio file also sounded significantly better. This verified that the MCD was valid
as a measure of audio quality, and that the phase reconstruction was an important part of
the VT. Phase reconstruction was used in all transformation experiments described below.

Table 1. MCDs obtained for 2-Level DW with and without GLA.

No. Two-Level DW Method MCD [dB]
1 DW, with phase reconstruction 2.4
2 DW, without phase reconstruction 6.3

4. Spectral Warping Using NN

The proof-of-concept experiments above demonstrated that spectral mapping fol-
lowed by phase reconstruction produces effective VT. For a complete, viable VT system, it
is necessary to establish conversion rules for transforming speech when the target speaker
saying the desired phrase is not available. These conversion rules are represented using a
NN which is trained to accept spectral inputs from the source speech and to produce the
spectral warping function paths, ar and br. The process is outlined in Figure 8. The input
data for training the NN is the magnitude of the spectrum of a segment of speech that has
been time-aligned with the target speech. The spectral information for segments of speech
from source and target are used in DW to find the (ar, br) spectral warping information,
as suggested by Figure 8a. The NN is trained to produce this (ag(i), br(i)) information
when the magnitude spectrum for the segment sy, is the input. This is suggested by the
NN diagram in Figure 8b.

Training data
ap(i)  br(i)

R

Source spectral blocks DFW maps  Target spectral blocks — -
Source spectral __,| L .
{ block _— S
—_ P - . Neural | Output
\ — 114 /\/\/\/\/\ — Network — (aFer)estimated
\ / — —
(@) (b)
Training data
ap(i+1) bp(i+1)

Source spectral blocks

) s
sl
2

Neural

Output
Network P

ag, bF)estimated

(c)

Figure 8. Spectrogram for male, female and warped male to female. (a) Making DFW training data. (b) Training a neural

network—one input spectral vector. (c) Training a neural network—three input spectral vectors.

It was found that better VT was produced when the NN uses the spectral magni-
tude from the preceding segment sy, (i) and the following segment sq., (i + 1) as inputs,
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to provide context for the current segment s, (i +2). This configuration is suggested
in Figure 8c.

Interpolating the Data to Achieve Constant Length

As noted above, the length of the warping path (ar, br) may vary among the different
segments of speech. This varying length poses a problem for a NN which has a fixed
number of outputs. Rather than zero-pad the outputs of the NN to produce a desired
length (which would create artifacts) the ar and b are interpolated to produce a modified
ar and br which is the same (maximum) length for all segments of the speech vector. In
our experiments the maximum length of the warping paths was 482 (as determined from
training data). The interpolation is described using Matlab-like notation and functions.
Let maxjngqex denote the maximum length of the interpolated vectors. The interpolation
procedes in two steps. First, interpolated indices are computed according to

length(a)

= [1 : maxindex} X ;
maXindex

Then interpolation among the a values using these interpolated indices is computed by
a = interpolate(a, [1 : length(a)], )

The sequence b is similarly interpolated. Figure 9 illustrates un-interpolated function paths
for a and b with interpolated paths (a and b respectively). The interpolated a and b have
the same general shape as the original a and b, but have length 482, as desired. The NN is
trained to produce the interpolated warping sequences at its output.

b path
b interploate path

0 100 200 300 400 500 0 100 200 300 400 500

(a) (b)
Figure 9. Un-interpolated and interpolated paths. (a) a and a. (b) b and b.

5. Mel-Cepstral Distortion as an Objective Measure

We use Mel-Cepstral Distortion (MCD) to evaluate the quality of the transformed
speech, and to be able to compare our work to other work in the literature. MCD has been
used as an objective error measure for evaluating the quality of synthetic voice [10]. It is a
measure of the difference between two sequences of mel-cepstra. It is computed as

25
MCD = (10/1n10), |2 Y (mc!" — mc(®)?2 )
i=1
where mcft) and mcl(w) represent the mel-cepstrum of the target speech and warped speech,
respectively.

We used MCD both as a way of evaluating the performance of different NN architec-
tures, as well as a tool for comparing with previous VT research which reports MCD scores.
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6. NN Architecture Experiments

A series of experiments was conducted to determine an effective NN structure. Two
different input models were considered. In the first model, a single input block of time-
aligned spectral magnitude data, sy 14 (:, i), is presented as the input of the NN. There
are 256 inputs in the block (corresponding to the positive frequencies of the DFT of a
512-sample segment of speech). The NN has 482 outputs for each element of a and b for a
total of 964 outputs. (482 is the largest length of the a, b data that was found among the
training data.) This architecture is referred to as the 1-IP/1-OP model.

In the second model, three consecutive time-aligned vectors (s174(:,7),81,74(:, 1 +
1),s1,74(:,i42)) were used as the input, for a total of 768 inputs. The three inputs provided
temporal/frequency context for the central block. There were still 964 outputs. This
architecture is called the 3-IP/1-OP model.

Training was performed by Tensorflow and Keras to estimate the warping paths. The
neural architecture was developed in a series of phases, as described below. Initialize
weights were selected at random. Each optimizer was trained for different learning rates
(1,0.1,0.01, 0.001, 0.0001 and 0.00001); we found that a learning rate of 0.001 achieved the
best results. Our NN models were trained with different optimizers (Gradient Descent,
Adam and RMS Prop). The best optimizer for this work was the Gradient Descent. The
NN architecture was developed in a series of phases, as described below.

6.1. Phase One

This phase was designed as a proof of concept: can a NN learn the spectral warping
function paths? For this phase, a single phrase was selected to be trained using the two
input models mentioned above. This phase also provided a basis for exploring different
NN architectures. For all these tests, the phrase, “Author of the danger trail, Philip Steels,
etc.” was selected from the CMU-ARCTIC database.

We experimented with both input models on different number of layers in order
determine a good architecture. Table 2 shows the number of nodes in each layer and the
output function used for that layer for both architecture. The notation 256L. 500R 900R
1000R 964L means that this NN had 5-layers with 256 inputs, 964 output nodes with 500,
900, and 1000 neuron nodes in the hidden layers. L and R represent “linear” and “ReLU”
activation output functions, respectively. This table also shows results for architectures
described in later phases of development.

Figure 10 shows how the NN learned warping paths at various segments of the
selected speech signal for different training iterations. In this figure, each subplot represents
the mapping for one spectral segment of speech. In each of these, the blue plots shows the
“truth” from DW the paths; the NN-learned paths are in orange. In this figure, the horizontal
axes are the sequence of indices (1-468) and the vertical axes are the values of the ar, truth
and learned. Figure 10a uses the 19-layers-1-IP/1-OP architecture. There was fairly good
matching between the training data and the NN output, but Figure 10b, produced using
the 19-layers-3-IP/1-OP architecture showed better results, with the training data being
virtually indistinguishable from the NN outputs. Figure 10c,d shows how the NN learned
a b warping path at various segments of the selected speech signal after 5000 training
iterations. Again an excellent match was achieved with 3-IP/1-Op architecture. Not
only was the NN better trained as demonstrated by these figures, but the quality of the
audible transformed signal was significantly better when the three-input NN was used.
Figure 11 shows the MSE between the true and estimated warping paths for the selected
architecture (3-1P/1-OP) with 5000 training iterations, demonstrating that the learning
essentially converged by that point.
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The use of three input blocks provided results superior to the single input block model.
On the basis of the MCD values from Table 2 and Figure 10b,d, we concluded that the NN used
in the phases of this experiment should be based on the 19-layers-3-IP/1-OP architecture.
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Figure 11. Mean squared error (I curve), phase one.

Table 2. MCDs obtained for different architectures.

Phase No. Input Model Architecture Type NN Architecture ?:1[]?]1)
5 256L 600R 1200R 1000R 964L 20.5
- 6 2561 600R 1000R 1500R 1000R 964L 18.01
z 7 256L 600R 1000R 1500R 2000R 1500R 964L 18.002
= 500L 1500R 2500R 3500R 4500R 5040R 6459R 7459R 33
o 19 8459R 9459R 10459R 8459R 7939R 6939R 5500R 4500R :
~ 3500R 2500R 964L
500L 1500R 2500R 3500R 4500R 5040R 6459R 7459R 55
20 :
= 8459R 9459R 10459R 9459R 8459R 7939R 6939R 5500R
& 4500R 3500R 2500R 964L
o 5 768L 4500R 6500R 6939R 964L 16.85
3 6 768L 4500R 6500R 7040R 6939R 964L 153
" 7 768L 4500R 6500R 8040R 8939R 6939R 964L 12.92
z 9 768L 4500R 6500R 7040R 9459R 8939R 7939R 6939R 964L 75
- 10 768L 4500R 6500R 7040R 9459R 10459R 8939R 7939R 6939R 964L 47
c'% 1500L 2500R 3500R 4500R 6500R 7040R 8459R -
19 9459R 10459R 10459R 9459R 8459R 7939R 6939R 5500R 4500R :
3500R 2500R 964L
1500L 2500R 3500R 4500R 6500R 7040R 8459R 9459R 35
20 10459R 11459R 10459R 9459R 8459R 7939R 6939R 5500R 4500R :
3500R 2500R 964L
1500L 2500R 3500R 4500R 6500R 7040R 8459R 9459R
Phase Two  3-IP-1-OP 19 10459R 9459R 8459R 7939R 6939R 5500R 4500R 3500R 48
2500R 964L
Phase Six-Clusters.Each  1500L 2500R 3500R 4500R 6500R 7040R 8459R 9459R 10459R ”g
3-IP-1-OP Cluster trained for ~ 10459R 9459R 8459R 7939R 6939R 5500R 4500R 3500R 2500R :
Three
19 layers 964L
Phase Four | 1P-1-OP 7 256L 64R (k = 3) 100R (k = 3) 150R (k = 3) 100R (k = 3) FL D100R 964L  13.33
3-IP-1-OP 5 768L 64R (k = 3) 100R (k = 3) FL D100R 964L 135

6.2. Phase Two

After validating from Phase One that the NN was able to produce good transformed
speech for a single phrase, the NN was trained to deal with multiple phrases. In this phase,
training was conducted using 600 phrases from a single speaker for training, and a separate
set of 120 phrases from a single speaker was used to test. The selected NN architecture was
trained for 10,000 iterations.

Figure 12 shows the warping paths for some of the segments, where the DW path
(truth) is shown in blue and the learned path is in orange. The NN learned some of the
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warping paths well. Figure 12b, which was produced using the selected architecture after
10,000 training iterations, showed more matching between the ar warping path and the
learned path than Figure 12a, which was produced at 2500 training iterations. Figure 12d,
which was produced at 10,000 training iterations, showed more matching between the
br warping path and the learned path than Figure 12c, which produced at 2500 training
iterations. By 10,000 training iterations, many of the warping functions were learned well,
but there was still a significant number that were not learned well. Figure 13 shows the
MSE between the true values of the warping paths and the estimated one.
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Figure 13. Mean squared error learning curve, Phase Two.

6.3. Phase Three

While the results of Phase Two were promising, there was still significant error in the
estimates of the warping functions. To further improve the performance, it was determined
to assist the NN by decomposing the problem into smaller pieces by clustering. To this
end, several NNs were trained, each to be responsive to data pertaining to a particular
cluster, where clustering was accomplished using k-means clustering. Different numbers
of clusters were tried: k = 4,5, 6,10, 15,20. It was found that k = 6 clusters gave good
performance. Figure 14 shows the k = 6 clusters for the selected spectral data from the
600 training phrases. The six clusters are shown using different colors.

H Cluster 1
I Cluster 2
H Cluster 3
I Cluster 4

Cluster 5
I Cluster 6

Magnitude Spectra
£

] 50 100 150 200 250
Frequency bin

Figure 14. Clustering of spectral information from 600 phrases (k = 6).

In the training stage, data from each of the k clusters were used to train k NNs. In
the synthesis stage, for each segment of speech data it was determined which cluster the
associated feature vector best matched, and the (ar, br) warping functions were obtained
from the corresponding NN. These were used to provide the spectral warping.

Figure 15a,b show how the clustering NN learned the paths a and b, respectively, at
5000 training iterations. The DW path (truth) is shown in blue and the NN-learned path is
in orange. At this point, the final sound at the 5000 training iterations is much better than
the final sound produced from Phase Two, with little signal processing artifacts. Figure 16
shows the MSE between the true values of the warping paths (a and b) and the estimated
paths for each of the six clusters. Interestingly, the learning demonstrated by the MSE
varied from cluster to cluster. The MCD value for this phase is reported in Phase Three
row of Table 2.
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Figure 16. Mean squared error (learning curve) using cluster method.

6.4. Other NN Structures

The fully connected NN structures described above were shown to produce the
warping functions with good fidelity. However, they took a lot of training and a lot of
memory. In the interest of reducing the NN complexity, we examined convolutional NN
structures (CNNs). However, CNNss failed to produce good acoustic results. The MCD
scores for CNN architectures are reported in Table 2 as Phase Four. The CNN structures
performed significantly worse than the fully connected NN structures.
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7. Comparison

From Table 2 the average MCD across the test data was MCD = 2.8 dB. By contrast,
in [32], the MCD for male to female conversion was 5.5 dB. The performance of our method
was better than reported in [5], which used NN and reported an average MCD of 6.55.
The work of VT using NN in [31] reported MCD of 6.1 dB. In all comparisons made, our
method was significantly better (as measured by MCD) than previous work. Table 3 shows
more comparison between this work and other works, mentioned in the references part,
that used MCD scores to evaluate their works. The method presented here worked better
than all previous work that reported performance using MCD.

Table 3. Comparative MCDs from previous work.

Reference Number Reference Year MCD [dB]
This Works 2020 2.8
[30] 2002 5.6
[32] 2015 5.9
[33] 2016 5.1
[16] 2019 5.09
[29] 2020 411

8. Summary and Conclusions

VT has been achieved by employing two-level DW in combination with NN struc-
tures. The DW does both temporal and spectral alignment. The path warping functions
from DFW are used to train a NN to produce the warping functions. These warping
functions were interpolated to provide vectors of constant length. The warped amplitude
spectra are shaped by phase reconstruction, which was shown to dramatically improve the
speech quality.

To provide sufficient representation capability on larger training data sets, we found it
necessary to cluster the training data, training each segment separately then combining the
results. This produced low error in the representation of the warping functions.

Based on comparisons with mel-cepstral scores, the VT approach provides perfor-
mance competitive with previous works.

The primary focus of this work has been on the development of the two-level DW and
design of a NN architecture to do VT. Future work will consider transformation among
different classes of speakers, including dealing with speakers with different accents.
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