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Abstract: This paper presents a novel adaptive probabilistic algorithm to identify damage charac-
teristics by integrating the use of the frequency response function with an optimization approach.
The proposed algorithm evaluates the probability of damage existence and determines salient details
such as damage location and damage severity in a probabilistic manner. A multistage sequence is
used to determine the probability of damage parameters including crack depth and crack location
while minimizing uncertainties. A simply supported beam with an open edge crack was used to
demonstrate the application of the algorithm for damage detection. The robustness of the algorithm
was tested by incorporating varying levels of noise into the frequency response. All simulation
results show successful detection of damage with a relatively high probability even in the presence
of noise. Results indicate that the probabilistic algorithm could have significant advantages over
conventional deterministic methods since it has the ability to avoid yielding false negatives that are
quite common among deterministic damage detection techniques.

Keywords: frequency response function; structural health monitoring; damage identification; proba-
bilistic model; wavelet transform; optimization; structures

1. Introduction

Over the last few decades, there have been rapid advances in the use of damage
diagnostics and damage detection for structural health monitoring (SHM) [1]. These ad-
vances have emerged hand-in-hand with the development of sensor technologies and
data processing capabilities. The use of damage detection is crucial for the analysis and
maintenance of large and complex structural installations with a relatively long lifespan. In
the literature, several SHM methods have been developed for damage identification using
strain modes, ultrasonic waves, electromechanical impedance, frequency response func-
tions, and modal properties such as natural frequencies and mode shapes [2–7]. However,
most of the techniques presented in the literature have used deterministic models which
often exclude elements of uncertainty and variability that are inherent in environmental
conditions and measurements.

The use of the frequency response function (FRF) for damage detection and struc-
tural health monitoring has been widespread [8–10]. Recently, the use of FRF has been
augmented by using artificial neural networks (ANN) and genetic algorithms (GA) for
damage detection [11–13]. It has been specifically observed that ANN could be used for
the detection of nonlinear damage with a high level of accuracy [11]; however, most of the
techniques that use ANN require a large amount of training data. Some recent studies have
also used machine learning algorithms to detect damage under varying operational and
environmental conditions [14]. It is observed that the training data should cover the full
range of operational and environmental variability for the successful use of machine learn-
ing for damage detection, while developing a capability to identify a dynamic response
that is triggered by damage [14]. While FRF has been found to be very useful for damage
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diagnostics, it is widely acknowledged that signal processing and analysis are critical in
structural health monitoring due to the issues associated with sensor noise, measurement
inaccuracies, etc. [15]. Furthermore, a large amount of training data is required to capture
operational and environmental variability for machine learning algorithms.

Model properties of structures in conjunction with the wavelet transform and opti-
mization methods have also been used by many researchers for damage detection [16].
Wavelet-based methods are frequently used due to their ability to detect local discon-
tinuities or singularities due to small cracks and the associated properties [17,18]. The
use of wavelets in the literature includes the use of a global damage sensitivity trait by
using the Haar wavelet [19] or the use of a diagnostic technique to identify the magnitude
and location of a crack in beams by using skewness and kurtosis of mode shapes [20].
Another algorithm in the literature makes use of Symlets to detect mixed-mode cracks in
large warren truss structures by utilizing natural modes [17]; however, the use of coarse
sampling in large structures makes it challenging to use such an algorithm to accurately
detect the extent and location of damage. In general, it can be stated that mode shape-based
methods are highly sensitive to sampling and quality of sensor measurements [18], but
the availability of full-field methods such as 3D digital image correlation (3D-DIC) and
Continuous-scan laser Doppler vibrometry (CSLDV) have made it possible to measure a
large number of velocities and displacements with relatively high accuracy [21,22].

To investigate the sensitivity of overall damage detection to local and global damage,
many optimization-based methods have been used in the literature with the aim of min-
imizing sensor measurements. To demonstrate the robustness and capabilities of these
techniques, large and complex structural applications have been tested by using numerical
and experimental examples [23–26]. For instance, particle swarm optimization has been
used to develop a multi-stage optimization algorithm that makes use of natural frequencies
to detect multiple damages [23]. Damage is specifically detected by studying the rela-
tive elastic modulus reduction. A genetic algorithm has also been used to analyze and
identify structural damage by comparing the measured vibrational data to data acquired
before damage [24]. This approach has been tested on a cantilever beam and some frame
structures. While the actual damage was detected accurately in this study, two additional
incorrect damage locations were detected [24]. Other methods that have been used for
damage detection include the use of an optimum updating method for global damage
detection [25] and the use of sensitivity and optimization algorithms [26]. The location
and intensity of structural damage have been determined by using the difference between
stiffness matrices of an initial undamaged model and a test-adjusted damaged model [25].
The optimization algorithm in the literature uses an objective function that is defined as the
difference between calculated and measured frequency responses; this method has been
successfully used in a five-degree-of-freedom mechanical system to accurately predict the
location and intensity of damage [26]. In general, the optimization-based methods have
been observed to detect additional damage in some instances while finding it challenging
to detect relatively small amounts of damage.

In summary, the literature on damage detection presents multiple techniques to
identify damage location and damage severity with varying levels of sensitivity and
robustness. Most of the existing literature, however, presents deterministic results for
damage diagnostics. This paper attempts to overcome this limitation by presenting a
probabilistic approach with an adaptive algorithm that can be used for damage diagnostics
by using the frequency response function. The approach presented in this paper allows an
evaluation of the probability of damage characteristics. The adaptive algorithm developed
in this study is presented in Section 2, while the analytical model for a beam that was
used for damage detection is briefly presented in Section 3. Section 4 presents several
simulations that are used to demonstrate the application of the proposed approach, while
Section 5 summarizes the main findings and draws overall conclusions.
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2. Probabilistic Optimization Algorithm

This section provides a detailed description of the algorithm for damage detection.
The proposed algorithm integrates the use of the frequency response function (FRF) with
optimization and a probabilistic model to identify the size of damage as well as the location
of damage.

The approach presented in this study uses the FRF to identify damage characteristics.
The optimization problem is formulated to find the crack depth and crack location ratios by
minimizing the difference between the measured FRF and the calculated FRF as follows:

Find : Y = [α, β]T

Minimize : Z(α, β) =
[

H1, H2, H3, . . . , Hk−1, Hk
]T

Subject to H(ωk) = |Hm(ωk)− Hc(ωk)|
0 ≤ α ≤ 1
0 ≤ β ≤ 1

(1)

In Equation (1), Hm(ωk) is the measured FRF, Hc(ωk) is the calculated FRF, α is the
crack size ratio, β is the crack location ratio, and H(ωk) is the absolute difference between
the measured and calculated FRFs over the frequency range, ωk for the kth segment.
The objective function is minimized by using sequential quadratic programming (SQP),
which is an iterative method suitable for constrained nonlinear optimization problems.
An extensive amount of detail on SQP can be found in [27]. Prior to this optimization
process, the measured FRF signals are de-noised by using the discrete wavelet transform
with Daubechies mother wavelet, at level four wavelet decomposition.

The frequency range and the number of samples in each segment are important factors
that provide details about damage features and can also affect the confidence level in signal
processing outcomes. Smaller segments can typically reveal more information but may be
computationally expensive. This trade-off may need to be carefully evaluated when the
data are being collected continuously, as is common in structural health monitoring. Thus,
the segment size is defined as:

Nk+1 = Nk + δN (2)

In Equation (2), Nk+1 is the next segment size, Nk is the current segment size, N is the
minimum segment size, and δ is the segment size factor. This factor controls the segment
size by increasing or decreasing the number of samples that should be added or subtracted
from the next segment depending on the magnitude of H(ωk) that represents the level of
agreement between the measured and calculated FRFs, i.e., the smaller H(ωk) is, the larger
the next segment will be. The segment size factor is defined as:

δ =


1 Hk < δlb
0 δlb ≤ Hk ≤ δub
−1 Hk > δub

(3)

The limits in Equation (3), δlb and δub, may vary from one application to another.
The limits can be determined by the user to evaluate the appropriate limits for increasing
and decreasing the segment size given the magnitude of error between measured and
calculated FRFs. Since the segments vary in size, a weighting factor wi is assigned to each
segment. Therefore, large segments are associated with large weighting factors, i.e., the
larger the segment, the higher the contribution it provides to the analysis of the damage
identification process. The calculated FRF is a function of two design variables with upper
bounds and lower bounds. By minimizing the objective function for each segment, the
algorithm provides two vectors for each design variable. The size of each vector is the
same as the number of segments created from the measured FRF.

The algorithm was further developed to optimize the probability of crack location and
crack size ratios while minimizing the uncertainty range to less than ηα and ηβ, respectively,
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such that ηα and ηβ have a range of (0,1). For the crack location, the optimization problem
is formulated as:

Minimize : Pβ = P
(

βlb ≤ β ≤ βub
)

Subject to βub − βlb ≥ 0
βub − βlb ≤ ηβ

(4)

Similarly, the optimization problem for the crack size can be expressed as:

Minimize : Pα = P
(

αlb ≤ α ≤ αub
)

Subject to αub − αlb ≥ 0
αub − αlb ≤ ηα

(5)

Eventually, these data are further processed to identify the status of a structure in
order to determine whether it is undamaged or damaged by using the probabilities of crack
location ratio and crack size ratio. The probability of the damage existence is calculated as:

Pd = (1− ηd)P(α > 0) + ηd

[
1−

(
βub − βlb

)]
Pβ (6)

In Equation (6), ηd is the weighting factor with a range of (0, 1) that is set by the user.
The probability of the optimal crack location and its corresponding range contributes ηd to
the probability of damage existence, whereas the probability of crack size ratio contributes
(1− ηd) to the probability of damage existence. As can be noted from Equation (6), when
the range of crack location ratio

(
βub − βlb

)
is too broad or close to unity, it renders the

contribution of crack location to the probability of damage existence to zero. The measured
FRF, Hm(ω), which is used to test the proposed algorithm was generated by adding random
noise to the calculated FRF, Hc(ω), as:

Hi
m = Hi

c

(
1 + εζ i

)
(7)

In Equation (7), ε is the relative magnitude of error, and ζ is the uniformly distributed
pseudorandom vector within the range of (0,1) [28]. This random noise represents different
sources of error such as the immediate working environment, instrument resolution,
and lack of exact modeling and absolute agreement between the actual structure and
simulations. While the noise model used in this study may be simplistic, it allows an
investigation of various levels of noise to simulate the worst-case scenario by varying the
magnitude of error.

Adaptive Multi-Stage Algorithm

A multi-stage algorithm has been developed for damage detection. The algorithm is
summarized in the following steps:

1. Import the measured FRF, Hm(ω) and set user inputs: δlb, δub, ηβ, ηα, ηd, ηq

2. De-noise using discrete wavelet transform.
3. Stage q: Define design variables and their respective constraints.
4. Provide an initial guess for each design variable, Y0.
5. Set the segment size to Nj, and the weighting factor to wj.
6. Use sequential quadratic programming (SQP) algorithm to minimize the difference

between FRFs for kth segment.
7. Store the optimal solutions for each design variable in Y vector.
8. Set the size of the next segment to Nj+1, and repeat steps 3 through 7 until all data

are processed.
9. Use SQP again to calculate the maximum probability of crack location and crack size,

while minimizing the uncertainty range using the data collected in step 7.
10. Save the computed crack size and crack location ranges and their respective probabilities.
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11. Calculate the probability of damage existence, Pd, using the available data of crack
size and crack location from step 10.

12. Stage q + 1: Update lower and upper bounds as well as the initial guesses in step 4
according to the results from step 10.

13. If the probability of damage existence is below a threshold, (Pd)q − (Pd)q−1 < ηq
where ηq is user input, move to step 15.

14. Repeat steps 4 through 13.
15. Save the optimal crack size and crack location ranges along with their probabilities

and report the results.

A flowchart of the algorithm is shown in Figure 1. The proposed algorithm was tested
for different damage scenarios for a simply supported beam. Details on damage modeling
and results from the algorithm are provided in the subsequent sections.

Figure 1. Flowchart for the adaptive multi-stage algorithm.

3. Modeling Method

This section provides a brief description of the analytical model that was used as the
baseline for a simply supported beam. More details about the model can be found in the
reference literature [29–31].

3.1. Analytical Modeling

A simply supported beam with an open crack was used to simulate the application of
the damage detection algorithm presented in Section 2. The proposed algorithm utilized an
optimization technique for detecting damage by using the frequency response. The beam
shown in Figure 2 has a transverse crack (with crack length, a) that is located at la. Damage
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is modeled as a torsional spring between the two sides of the beam. The simply supported
beam is subjected to a sinusoidal load with forcing frequency, ω located at l f . Parameters
such as crack depth and crack location have been varied to generate several damage cases
that were used to evaluate the effectiveness of the proposed algorithm.

Figure 2. Configuration of a simply supported beam.

The modal properties of a uniform beam can be obtained by using the equation of
motion (EOM) derived from the Euler–Bernoulli formulation [29] as follows:

EI
∂4y
∂x4 (x, t) + ρA

∂2y
∂x2 (x, t) = f (x, t) (8)

In Equation (8), E is the Young’s modulus of the material, ρ is the material density,
y(x, t) is the lateral displacement at time t and location x, f (x, t) is the external load, A is
the cross-sectional area of the beam, and I is the moment of inertia. The system response is
determined by finding the steady-state solution and the transient solution of the beam. The
general solution of Equation (8) including the steady-state solution as well as the particular
solution, yp, is:

y1(x, t) =
[
C1 cos γx + C2 sin γx + C3 cosh γx + C4sinhγx + yp

]
sin ωt 0 ≤ x ≤ la (9)

y2(x, t) = [D1 cos γx + D2 sin γx + D3 cosh γx + D4sinhγx] sin ωt la ≤ x ≤ L (10)

The coefficients, C1, C2, . . . D3, D4 in Equations (9) and (10) can be determined by ap-
plying the boundary conditions and the compatibility conditions. The frequency response
function is defined as the ratio of the output amplitude, y(ω) to the input amplitude f (ω).
Therefore, the frequency response function is expressed as:

H(ω) =
y(ω)

f (ω)
(11)

3.2. Damage Modeling

Using linear elastic fracture mechanics, an edge crack is simulated by a non-dimensional
compliance, φ. The non-dimensional compliance was used to model the local flexibility in
the form of a torsional spring. It is defined as:

φ =
EI

KtL
(12)

In Equation (12), Kt is the torsional stiffness of an opening crack under a bending
load. Since the ratio of the beam length to the lateral length is large, it can be assumed
that the contribution of mode-II to the total strain energy is negligible as compared to the
contribution of mode-I. Thus, only the opening mode is considered for analysis. The local
flexibility is captured by calculating the change in strain energy near the crack tip [30] and
can expressed as:



Signals 2021, 2 481

1
Kt

=
6πh
EI

α∫
0

αq(α)2dα (13)

In Equation (10), q(α) is the non-dimensional geometrical factor, and α is the relative
crack size, defined as the ratio between the crack size, a, and the beam height, h. The non-
dimensional factor for an opening mode crack is determined empirically [31] as follows:

q(α) = 1.122− 1.4α + 7.33α2 − 13.08α3 + 14.0α4 (14)

It may be noted the FRF of an undamaged beam can be obtained by setting the
non-dimensional compliance to zero.

4. Results and Discussion

Three damage cases of a simply supported beam with different characteristics and dif-
ferent levels of noise have been considered to evaluate the effectiveness of the probabilistic
optimization algorithm. The details of the three cases are provided in Table 1.

Table 1. Damage cases of a simply supported beam.

Noise Level Sensor Location
(mm)

Crack Size
(mm)

Crack Location
(mm)

Case 1 1% 350 3.0 400
Case 2 9% 500 3.0 725
Case 3 15% 350 2.8 500

User inputs for the adaptive algorithm are listed in Table 2. The user input values are
subject to change and could vary with applications of interest, quality of measurements,
and the precision required in the detection of damage characteristics. The segment size
limits in Equation (3) are set to 0.1 and 0.5 for δub and δlb, respectively. Thus, the segment
size increases when the absolute difference between measured and calculated FRFs, H(ωk),
is less than 0.1, and decreases when H(ωk) is greater than 0.5.

Table 2. User inputs for the adaptive algorithm.

δlb δub ηα ηβ ηd ηq

0.1 0.5 15% 15% 60% 5%

The probability constraints in Equations (4) and (5) are set to 15%. This implies that
the probabilities of crack size ratio and crack location ratio are optimized such that the
predicted values are within 15% of the beam dimensions. A 60% weighting factor is
assigned to ηd in Equation (6) for the probability of damage existence. This implies that the
probability of crack location contributes 60% to the probability of damage existence and the
remaining 40% is assigned to the probability of non-zero crack size. The adaptive algorithm
is set to terminate when the difference between the current stage probability of damage
existence (Pd)q and the previous stage probability (Pd)q−1 is less than 5%. For the sake of
simplicity, algorithm results were limited to two stages only for each case considered in
the study.

The beam used for analysis made of aluminum has a rectangular cross-section with a
length of 1000 mm and cross-sectional dimensions of 5 mm × 10 mm. A Young’s modulus
of 70 GPa and a density of 2800 kg/m3 are used for analysis. The forcing frequency range
for each case was kept unchanged throughout the analysis. The excitation force has a
frequency ranging from 1 Hz to 32 Hz. Similarly, the applied force is located at 300 mm
from the left end of the beam. The random noise level that is added to the simulated
frequency response is increased from Case 1 to Case 3, using 1%, 9%, and 15%, respectively.
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Figure 3 shows the frequency response signal collected from a node located at 350 mm
from the origin.

Figure 3. Simulated frequency response of a simply supported beam.

Case 1
In Case 1, a 3 mm open crack (α = 0.3) was inflicted in the simply supported beam

at 400 mm from the left boundary, as shown in Figure 2. The frequency response signal
was collected from a node located at 350 mm. The proposed algorithm provided salient
information about the damage characteristics in terms of damage location and severity.
Table 3 shows the adaptive algorithm outputs including the probability of damage existence,
probability of crack size, and probability of crack location for each stage. In stage 1, the
algorithm predicted the existence of damage with a probability of 66.1%. The depth of
the crack was predicted to be between 6.33 mm and 6.93 mm with an approximately
50% probability. The predicted crack size was more than twice the actual crack size.
However, the crack location was predicted within 20 mm of the damage location with a
55% probability.

Table 3. Results summary for Case 1.

Stage ε Pd
Crack Size (mm) Crack Location (mm)

Actual Predicted Pα Actual Predicted Pβ

1
1%

66.1%
3.0

6.23–6.93 50.4%
400

365–387 55.0%
2 89.0% 2.73–3.42 73.6% 377–408 90.7%

The frequency diagrams of crack size and crack location for two stages are plotted
in Figure 4. The y-axis represents the number of occurrences, n. The frequency diagram
of crack location suggests that the crack location is within ±40 mm range from 450 mm.
In stage 1, however, the frequency diagram of crack size in Figure 4b indicates that there
were three potential crack depths with average values of 0.5 mm, 3 mm, and 6.5 mm. The
optimal range of crack size reported by the algorithm represents the occurrences falling
within that range, making 6.5 mm a strong candidate in stage 1.
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Figure 4. Frequency diagrams (probability density) of (a) crack location and (b) crack size for Case 1.

In stage 2, the algorithm yielded a significant improvement in the probabilities and
the predicted ranges for crack size and crack location. As can be seen from Table 3, the
probability of damage existence increased to about 89%. The actual crack location was
detected with a high probability. The damage was predicted between 377 mm and 408
mm with a probability of 90.7%. Crack location range increased slightly from 2.2% in
stage 1 to 3.1% of the beam length in stage 2. However, the range remained within the
design constraint (ηβ), which was set at 15% of the beam length. The probability improved
significantly, and the actual crack location was included within the predicted range in
stage 2. The probability of crack size also improved by more than 20%, and the predicted
crack size was much closer to the actual value.

It is worth noting that the frequency diagrams for both stages in Figure 4b show no
occurrences of crack size greater than 7.5 mm, as well as other smaller ranges around
1.5 mm and 4.5 mm. Likewise, all occurrences of damage location in both stages fell
between 300 mm and 450 mm. This demonstrates that the adaptive algorithm can also be
used to eliminate regions that might be less likely to be damaged and consequently assist in
directing inspection resources to more likely regions of expected areas. Limiting potential
solutions to a few scenarios is an appreciable advantage of the probabilistic approach over
the deterministic approach.

This case was repeated with the same damage characteristics and zero noise. The
results which were not included here yielded the exact crack location and crack size as
the predefined values in the simulation model with about 100% probability. Furthermore,
several trials of this case have been repeated with a noise level of 30%. The probability of
damage existence was never reported below 53%. Similarly, the actual position of damage
was within the predicted range of crack location for most trials. The crack size, however,
was consistently underestimated.
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Case 2
In this case, the noise level was increased to 9% and the crack size was kept unchanged

at 30% of the beam thickness. The crack was introduced closer to the left boundary at
725 mm from the origin. The sensor location was moved to the middle of the beam, i.e.,
data collected from a node located at 500 mm with the crack size being 30% of the beam
thickness. The results of the adaptive algorithm are summarized in Table 4.

Table 4. Results summary for Case 2.

Stage ε Pd
Crack Size (mm) Crack Location (mm)

Actual Predicted Pα Actual Predicted Pβ

1
9%

67.3%
3.0

2.5–3.0 50.4%
725

683–779 72.1%
2 65.8% 2.5–2.9 53.5% 713–831 67.4%

The results in Table 4 strongly suggest that the simply supported beam is damaged
with a probability of approximately 66% at a location between 713 mm and 831 mm.
There was a noticeable reduction in the probability of damage existence in comparison to
Case 1, which could be attributed to the increase in the level of noise and the locations
of damage. The sensor location also was expected to have a significant impact on the
analysis of damage identification, which is a research topic that has been pursued by many
researchers [32–34]. The crack size range in stage 2 was underestimated and slightly below
the actual value, and the probability saw a moderate increase of about 3%. On the contrary,
the ranges of crack location predicted by the algorithm in both stages included the actual
crack position, but the probability sustained a drop of approximately 5%, resulting in a
decrease in the probability of damage existence in stage 2.

The predicted range of crack size was about 5% of the beam thickness. However,
the crack location in stage 2 was further shifted to the right and the actual crack location
moved closer to the lower bound of the predicted range. It can be concluded that the
algorithm produced less favorable results in stage 2, especially for crack location with a
drop in the probability accompanied by an increase in the predicted range. Given that the
algorithm was designed to yield the most probable scenario rather than optimization of
the probability of damage, this behavior may be considered to be realistic for a structural
health monitoring system. Despite a decline in the probability of damage existence in
stage 2, all parameters have been reported with a probability greater than 50% indicating
the structure could potentially be damaged.

In Figure 5, the frequency diagrams of crack size and crack location from both stages
are superimposed. The 9% noise added to the signal has introduced short side bars spread
out around the main bars in the frequency diagrams of crack location. Despite a small
drop in the probability of damage location as reported in Table 4, it is worth noting from
Figure 5a that the algorithm yields better results for damage location by virtually limiting
100% of occurrences within 50% of the beam length. Likewise, the frequency diagrams
of crack size in Figure 5b show noticeable improvements in stage 2 with a higher peak
around 2.5 mm and a significant reduction of occurrences at both extremes. Finding a
false negative in damage detection is quite common from deterministic methods because
damage detection is an ill-posed problem with no unique solution, making a probabilistic
approach more appropriate to provide meaningful results in such problems. Despite
several damage scenarios presented in Figure 5, the algorithm successfully determined the
optimal solution representing the status of the structure.
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Figure 5. Frequency diagrams of (a) crack location and (b) crack size for Case 2.

Case 3
This case further examines the ability of the adaptive optimization approach de-

veloped herein to provide probabilistic details for damage characteristics in a simply
supported beam. A noise of 15% was introduced into the simulated frequency response of
a damaged beam with a smaller crack of 2.8 mm inflicted at the middle of the beam. To
avoid overlap of damage and sensor locations, the frequency response data were collected
from a node at 350 mm, identical to the sensor location of Case 1. A direct comparison can
be made between the two cases due to the sensor location. The results of both stages for
Case 3 are presented in Table 5.

Table 5. Results summary for Case 3.

Stage ε Pd
Crack Size (mm) Crack Location (mm)

Actual Predicted Pα Actual Predicted Pβ

1
15%

71.6%
2.8

2.5–3.0 51.9%
500

486–579 70.5%
2 72.7% 2.2–2.9 55.0% 432–564 78.3%

As can be seen from the results in Table 5, the probability of damage existence is more
than 70% in both stages. This percentage is significant enough to declare the status of the
damage. The algorithm successfully predicted the range of the crack size between 2.2 mm
and 2.9 mm with the actual crack size being within the predicted range, but the range was
slightly shifted and increased in stage 2. However, the algorithm improved the probability
of crack size noticeably in the second stage to 55% and the probability of crack location
increased to more than 78%. The ranges of crack location were also predicted within the
design constraints of 15%.
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The probability distributions shown in Figure 6 provide meaningful details about
damage characteristics even in the presence of significant noise while the crack size is rela-
tively small. Despite the modest improvement observed in Figure 6a, several occurrences
for damage location beyond 800 mm were eliminated in stage 2, with most occurrences
predicted within ±100 mm range from the actual damage location. In Figure 6b, there
are three potential crack sizes substantially apart in value at about: 0.25 mm, 3 mm, and
8.5 mm. However, the candidate solution calculated by the algorithm was in the vicinity of
3 mm. The algorithm has made a major shift of the 3 mm peak with a minor increase in
the number of occurrences. In order to test the algorithm’s ability to predict undamaged
status, this case was repeated with no damage. In this case, the adaptive algorithm yielded
a crack size of nearly zero with about 90% probability.

Figure 6. Frequency diagrams of (a) crack location and (b) crack size for Case 3.

It should be noted that the sensor location must be carefully identified in order to avoid
vibrational nodes, especially when high frequencies are being considered. Sensor location
plays a significant role in accuracy and precision during structural health monitoring.
Sensor placement is often informed by several factors, including system dynamics, types
of expected defects, number and type of sensors, etc. Given the extensive attention that
this topic has received in recent years, several optimization techniques for optimal sensor
placement have been devised and applied to various engineering applications [35,36]. It is
expected that augmenting this algorithm with an optimal sensor location approach could
have positive implications, especially when dealing with complex structures. The results
produced herein have been collected from a single sensor. Thus, integrating the proposed
approach with a data fusion technique to process data from multiple sensors and sources
to produce more accurate, consistent, and useful information about incipient damage in
structures is necessary to develop a robust tool for SHM systems.
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Computational Time
The adaptive probabilistic algorithm involved employing the SQP to calculate the

crack size and crack location in a form of vectors. This step was found to account for
the majority of the computational iterations performed by the algorithm, and the average
number of iterations for all cases was about 600. The number of iterations was found to be
directly related to the level of noise added to the frequency response. In Case 3, the number
of iterations reached 830, while the number of iterations for Case 1 was limited to 320.
Other signal processes such as those in which SQP was used to minimize the probability
of crack location and crack size only accounted for a relatively small percentage of the
total computations. Figure 7 shows a summary of the computational time of all the cases
considered in the study.

Figure 7. Computational time of simulated cases.

The mean and standard deviation of computational time and probability of damage
existence is shown in Table 6 and were calculated for ten trials of each case. In Case 1, the
computational time of stage 1 was largely consumed by SQP and was moderately higher for
stage 2. This may be related to the significant improvement in the results achieved by the
algorithm for the probability of damage existence as reported in Table 6. Additionally, there
was a substantial reduction in the standard deviation of the probability of damage existence
in stage 2 by about 10%. The algorithm, in Case 2, consumed higher computational time
in stage 1 and reported a lower probability of damage existence in stage 2. The mean and
standard deviation of computational time for Case 3 were reported relatively close, with a
slight improvement in the probability of damage existence in stage 2.

Table 6. Computational time and probability of damage existence: x—sample mean, Sx—sample
standard deviation.

Stage 1 Stage 2

Time (s) Pd(%) Time (s) Pd(%)

x Sx x Sx x Sx x Sx

Case 1 6.70 0.5 75.2 10.5 6.97 0.43 89.2 0.5
Case 2 7.65 0.19 74.6 2.4 6.40 0.32 70.5 2.3
Case 3 6.64 0.69 69.6 2.3 6.57 0.68 70.9 3.0

The analysis presented herein was performed by limiting the number of optimization
stages in the algorithm to two. The results strongly suggest that two stages may be sufficient
for the application investigated in this paper. However, it may be necessary to consider the
proposed algorithm with multiple stages for other structural applications.

5. Summary and Future Work

An adaptive damage detection algorithm has been presented in this paper to identify
damage characteristics by using the frequency response function. The main conclusions
from this study can be summarized as follows:
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• The algorithm has been specifically used to calculate the probability of damage ex-
istence along with the probabilities associated with the crack size, as well as crack
location.

• The adaptive algorithm developed in this study has been evaluated for robustness
through three simulated cases with various damage characteristics and different levels
of noise.

• In all three cases, the algorithm has been successful in predicting damage even in the
presence of a high level of noise and even for relatively small damage.

Multiple variables associated with the algorithm such as the weighting factor, con-
straint levels, etc. can be established by the user based on prior data or experience with
the structure that is being evaluated for SHM. It should be mentioned that this study has
been limited to the use of the frequency response data from a single location on a simply
supported beam with only one type of defect. Future work will include the application of
the probabilistic algorithm that has been developed in this study to large and complex truss
and frame structures, as well as structures made of composite materials. Other common
types of defects such as disbonds, kissing bonds, voids, and delamination will also be
investigated in the future. Since sensor location is expected to play a substantial role in
the identification of damage characteristics, sensor placement will be integrated into the
framework of the proposed algorithm in future studies.
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