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Abstract: This paper describes an automatic drum transcription (ADT) method that directly estimates
a tatum-level drum score from a music signal in contrast to most conventional ADT methods that
estimate the frame-level onset probabilities of drums. To estimate a tatum-level score, we propose
a deep transcription model that consists of a frame-level encoder for extracting the latent features
from a music signal and a tatum-level decoder for estimating a drum score from the latent features
pooled at the tatum level. To capture the global repetitive structure of drum scores, which is difficult
to learn with a recurrent neural network (RNN), we introduce a self-attention mechanism with
tatum-synchronous positional encoding into the decoder. To mitigate the difficulty of training the
self-attention-based model from an insufficient amount of paired data and to improve the musical
naturalness of the estimated scores, we propose a regularized training method that uses a global
structure-aware masked language (score) model with a self-attention mechanism pretrained from an
extensive collection of drum scores. The experimental results showed that the proposed regularized
model outperformed the conventional RNN-based model in terms of the tatum-level error rate and
the frame-level F-measure, even when only a limited amount of paired data was available so that the
non-regularized model underperformed the RNN-based model.

Keywords: automatic drum transcription; self-attention mechanism; transformer; positional encod-
ing; masked language model

1. Introduction

Automatic drum transcription (ADT) is one of the most important subtasks in auto-
matic music transcription (AMT) because the drum part forms the rhythmic backbone of
popular music. In this study, we deal with the three main instruments of the basic drum kit:
bass drum (BD), snare drum (SD), and hi-hats (HH). Since these drums produce unpitched
impulsive sounds, only the onset times are of interest in ADT. The standard approach to
ADT is to estimate the activations (gains) or onset probabilities of each drum from a music
spectrogram at the frame level and then to determine the onset frames using an optimal path
search algorithm based on some cost function [1]. Although the ultimate goal of ADT is to
estimate a human-readable symbolic drum score, few studies have attempted to estimate
the onset times of drums quantized at the tatum level. In this paper, the “tatum” is defined
as a tick position on the sixteenth-note-level grid (four times finer than the “beat” on the
quarter-note-level grid) and the tatum times are assumed to be estimated in advance [2].

Nonnegative matrix factorization (NMF) and deep learning have been used for frame-
level ADT [3]. The time-frequency spectrogram of a percussive part, which can be separated
from a music spectrogram [4,5], has a low-rank structure because it is composed of repeated
drum sounds with varying gains. This has motivated the use of NMF or its convolutional
variants for ADT [6–10], where the basis spectra or spectrogram templates of drums are
prepared and their frame-level activations are estimated in a semi-supervised manner.
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The NMF-based approach is a physically reasonable choice, but the supervised DNN-
based approach has recently gained much attention because of its superior performance.
Comprehensive experimental comparison of DNN- and NMF-based ADT methods have
been reported in [3]. Convolutional neural networks (CNNs), for example, have been used
for extracting local time-frequency features from an input spectrogram [11–15]. Recurrent
neural networks (RNNs) are expected to learn the temporal dynamics inherent in music and
have successfully been used, often in combination with CNNs, for estimating the smooth
onset probabilities of drum sounds at the frame level [16–18]. This approach, however,
cannot learn musically meaningful drum patterns on the symbolic domain, and the tatum-
level quantization of the estimated onset probabilities in an independent post-processing
step often yields musically unnatural drum notes.

To solve this problem, Ishizuka et al. [19] attempted to use the encoder–decoder
architecture [20,21] for frame-to-tatum ADT. The model consisted of a CNN-based frame-
level encoder for extracting the latent features from a drum-part spectrogram and an
RNN-based tatum-level decoder for estimating the onset probabilities of drums from the
latent features pooled at the tatum level. This was inspired by the end-to-end approach
to automatic speech recognition (ASR), where the encoder acted as an acoustic model to
extract the latent features from speech signals and the decoder acted as a language model
to estimate the grammatically coherent word sequences [22]. Unlike ASR models, the
model used the temporal pooling and had no attention mechanism that connected the
frame-level encoder to the tatum-level decoder, i.e., that aligned the frame-level acoustic
features with the tatum-level drum notes, because the tatum times were given. Although
the tatum-level decoder was capable of learning musically meaningful drum patterns and
favored musically natural drum notes as its output, the performance of ADT was limited
by the amount of paired data of music signals and drum scores.

Transfer learning [23–25] is a way of using external non-paired drum scores for
improving the generalization capability of the encoder–decoder model. For example,
the encoder–decoder model could be trained in a regularized manner such that the output
score was close to the ground-truth drum score and at the same time was preferred by
a language model pretrained from an extensive collection of drum scores [19]. More
specifically, a repetition-aware bi-gram model and a gated recurrent unit (GRU) model
were used as language models for evaluating the probability (musical naturalness) of a
drum score. Assuming that drum patterns were repeated with an interval of four beats
as was often the case with the 4/4 time signature, the bi-gram model predicted the onset
activations at each tatum by referring to those at the tatum four beats ago. The GRU
model worked better than the bi-gram model because it had no assumption about the
time signature and could learn the sequential dependency of tatum-level onset activations.
Although the grammatical knowledge learned by the GRU model was expected to be
transferred into the RNN-based decoder, such RNN-based models still could not learn the
repetitive structure of drum patterns on the global time scale.

To overcome this limitation, in this paper, we propose a global structure-aware frame-
to-tatum ADT method based on an encoder–decoder model with a self-attention mecha-
nism and transfer learning (Figure 1), inspired by the success in sequence-to-sequence tasks
such as machine translation and ASR. More specifically, our model involves a tatum-level
decoder with a self-attention mechanism, where the architecture of the decoder is similar to
that of the encoder of the transformer [26] because the input and output dimensions of the
decoder are the same. To consider the temporal regularity of tatums for the self-attention
computation, we propose a new type of positional encoding synchronized with the tatum
times. Our model is trained in a regularized manner such that the model output (drum
score) is preferred by a masked language model (MLM) with a self-attention mechanism
that evaluates the pseudo-probability of the drum notes at each tatum based on both
the forward and backward contexts. We experimentally validate the effectiveness of the
self-attention mechanism used in the decoder and/or the language model and that of the
tatum-synchronous positional encoding. We also investigate the computational efficiency
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of the proposed ADT method and compare it with that of the conventional RNN-based
ADT method.
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Figure 1. The supervised training of a neural transcription model (encoder–decoder model) with
global structure-aware regularization based on a pretrained language model.

In Section 2 of this paper, we introduce related work on ADT and language modeling.
Section 3 describes the proposed method, and Section 4 reports the experimental results.
We conclude in Section 5 with a brief summary and mention of future work.

2. Related Work

This section reviews related work on ADT (Section 2.1), global structure-aware
language models (Section 2.2), and evaluation metrics for transcribed musical scores
(Section 2.3).

2.1. Automatic Drum Transcription (ADT)

Some studies have attempted to use knowledge learned from an extensive collection
of unpaired drum scores to improve ADT. A language model can be trained from such
data in an unsupervised manner and used to encourage a transcription model to estimate
a musically natural drum pattern. Thompson et al. [27] used a template-based language
model for classifying audio signals into a limited number of drum patterns with a support
vector machine (SVM). Wu et al. [28] proposed a framework of knowledge distillation [29],
one way to achieve transfer learning [30], in which an NMF-based teacher model was
applied to a DNN-based student model.

Language models have been actively used in the field of ASR. In a classical ASR
system consisting of independently trained acoustic and language models, the language
model is used in combination with the acoustic model in the decoding stage to generate
syntactically and semantically natural word sequences. The implementation of the decoder,
however, is highly complicated. In an end-to-end ASR system having no clear distinction
of acoustic and language models, only paired data can be used for training an integrated
model. Transfer learning is a promising way of making effective use of a language model
trained from huge unpaired text data [23]. For example, a pretrained language model is
used for softening the target word distribution of paired speech data such that not only
ground-truth transcriptions but also their semantically coherent variations are taken into
account as target data in the supervised training [25].

A frame-level language model has been used in AMT. Raczyǹski et al. [31] used a
deep belief network for modeling transitions of chord symbols and improved the chord
recognition method based on NMF. Sigtia et al. [32] used a language model for estimating
the most likely chord sequence from the chord posterior probabilities estimated by an
RNN-based chord recognition system. As pointed out in [33,34], however, language models
can more effectively be formulated at the tatum level for learning musically meaningful
structures. Korzeniowski et al. [35] used N-gram as a symbolic language model and
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improved a DNN-based chord recognition system. Korzeniowski et al. [36] used an RNN-
based symbolic language model with a duration model based on the idea that a frame-level
language model can only smooth the onset probabilities of chord symbols. Ycart et al. [37]
investigated the predictive power of LSTM networks and demonstrated that a long short-
term memory (LSTM) working at the level of 16th note timesteps could express musical
structures such as note transitions.

A tatum-level language model has also been used in ADT. Ueda et al. [10] proposed
a Bayesian approach using a DNN-based language model as a prior of drum scores.
Ishizuka et al. [19] proposed a regularized training method with an RNN-based pretrained
language model to output musically natural drum patterns. However, these tatum-level
language models cannot learn global structures, although the drum parts exhibit repetitive
structure in music signals.

2.2. Global Structure-Aware Language Model

The attention mechanism is a core technology for global structure-aware sequence-
to-sequence learning. In the standard encoder-decoder architecture, the encoder extracts
latent features from an input sequence and the decoder recursively generates a variable
number of output symbols one by one while referring to the whole latent features with
attention weights [38,39]. In general, the encoder and decoder are implemented as RNNs to
consider the sequential dependency of input and output symbols. Instead, the self-attention
mechanism that can extract global structure-aware latent features from a single sequence
can be incorporated into the encoder and decoder, leading to a non-autoregressive model
called the transformer [26] suitable for parallel computation in the training phase.

To represent the ordinal information of input symbols, positional encoding vectors in
addition to the input sequence are fed to the self-attention mechanism. Absolute positional
encoding vectors are used in a non-recursive sequence-to-sequence model based entirely on
CNNs [40]. Predefined trigonometric functions with different frequencies were proposed
for representing absolute position information [26]. Sine and cosine functions are expected
to implicitly learn the positional relationships of symbols based on the hypothesis that
there exists a linear transformation that arbitrarily changes the phase of the trigonometric
functions. There are some studies on relative position embeddings [41–43].

Recently, various methods for pretraining global structure-aware language models
have been proposed. Embeddings from language models (ELMo) [44] is a feature-based
pretraining model that combines forward and backward RNNs at the final layer to use
bidirectional contexts. However, the forward and backward inferences are separated, and
the computation is time-consuming because of the recursive learning process. Generative
pretrained transformer (GPT) [45] and bidirectional encoder representations from trans-
formers (BERT) [46] are pretrained models based on fine tuning. GPT is a variant of the
transformer trained by preventing the self-attention mechanism from referring to future
information. However, the inference is limited to a single direction. BERT can jointly learn
bidirectional contexts, and thus, the masked language model (MLM) obtained by BERT is
categorized as a bidirectional language model. As the perplexity is difficult to calculate,
the pseudo perplexity of inferred word sequences is computed as described in [47].

In music generation, music transformer [48] uses a relative attention mechanism to
learn long-term structure along with a new algorithm to reduce the memory requirement.
Pop music transformer [49] adopts transformer-XL to leverage longer-range information
along with a new data representation that expresses the rhythmic and harmonic structure
of music. Transformer variational autoencoder [50] enables joint learning of local represen-
tation and global structure based on the hierarchical modeling. Harmony transformer [51]
improves chord recognition to integrate chord segmentation with a non-autoregressive
decoding method in the framework of musical harmony analysis. In ADT, however, very
few studies have focused on learning long-term dependencies, even though a repetitive
structure can uniquely be seen in drum patterns.
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2.3. Evaluation Metrics for AMT

Most work in AMT have conducted frame-level evaluation for the detected onset
times of target musical instruments. Poliner et al. [52] proposed comprehensive two metrics
for frame-level piano transcription. The first one is the accuracy rate defined according to
Dixon’s work [53]. The second one is the frame-level transcription error score inspired by the
evaluation metric used in multiparty speech activity detection.

Some recent studies have focused on tatum- and symbol-level evaluations.
Nishikimi et al. [54] used the tatum-level error rate based on the Levenshtein distance
in automatic singing transcription. Nakamura et al. [55] conducted symbol-level eval-
uation for a piano transcription system consisting of multi-pitch detection and rhythm
quantization. In the multi-pitch detection stage, an acoustic model estimates note events
represented by pitches, onset and offset times (in seconds), and velocities. In the rhythm
quantization stage, a metrical HMM with Gaussian noise (noisy metrical HMM) quan-
tizes the note events on a tatum grid, followed by note-value and hand-part estimation.
McLeod et al. [56] proposed a quantitative metric called MV2H for both multipitch detec-
tion and musical analysis. Similar to Nakamura’s work, this metric aims to evaluate a
complete musical score with instrument parts, a time signature and metrical structure, note
values, and harmonic information. The MV2H metric is based on the principle that a single
error should be penalized once in the evaluation phase. In the context of ADT, in contrast,
tatum- and symbol-level metrics have scarcely been investigated.

3. Proposed Method

Our goal is to estimate a drum score Ŷ ∈ {0, 1}M×N from the mel spectrogram of a
target musical piece X ∈ RF×T

+ , where M is the number of drum instruments (BD, SD, and
HH, i.e., M = 3), N is the number of tatums, F is the number of frequency bins, and T is
the number of time frames. We assume that all onset times are located on the tatum-level
grid, and the tatum times B = {bn}N

n=1, where 1 ≤ bn ≤ T and bn < bn+1, are estimated
in advance.

In Section 3.1, we explain the configuration of the encoder–decoder-based transcription
model. Section 3.2 describes the masked language model as a bidirectional language model
with the bi-gram- and GRU-based language models as unidirectional language models.
The regularization method is explained in Section 3.3.

3.1. Transcription Models

The transcription model is used for estimating the tatum-level onset probabilities
φ ∈ [0, 1]M×N , where φm,n represents the probability that drum m has an onset at tatum n.
The drum score Y is obtained by binarizing φ with a threshold δ ∈ [0, 1].

The encoder of the transcription model is implemented with a CNN. The mel spec-
trogram X is converted to latent features F ∈ RDF×T , where DF is the feature dimension.
The frame-level latent features F are then summarized into tatum-level latent features
G ∈ RDF×N through a max-pooling layer referring to the tatum times B as follows:

Gd,n = max
bn−1+bn

2 ≤t<
bn+bn+1

2

Fd,t, (1)

where b0 = b1 and bN+1 = bN are introduced for the brief expression.
The decoder of the transcription model is implemented with a bidirectional GRU

(BiGRU) or a self-attention mechanism (SelfAtt) followed by a fully connected layer. The
intermediate features G are directly converted to the onset probabilities at the tatum level.
In the self-attention-based decoder, the onset probabilities are estimated without recursive
computation. To learn the sequential dependency and global structure of drum scores, the
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positional encoding E ∈ RDF×N are fed into the latent features G to obtain extended latent
features Z ∈ RDF×N . The standard positional encodings proposed in [26] are given by

Ed,n =


sin
(

1
10,0002d/DF

n
)

(d ≡ 0 mod 2),

cos
(

1
10,0002d/DF

n
)

(d ≡ 1 mod 2),
(2)

In this paper, we propose tatum-synchronous positional encodings (denoted SyncPE):

Ed,n =


sin
(

π
2+[d/2]n

)
(d ≡ 0 mod 2),

cos
(

π
2+[d/2]n

)
(d ≡ 1 mod 2),

(3)

where [·] represents the floor function. As shown in Figure 2, the nonlinear stripes patterns
appear in the encodings proposed in [26] because the period of the trigonometric functions
increases exponentially with respect to the latent feature indices, whereas the proposed
tatum-synchronous encodings exhibit the linear stripes patterns.

Original positional encoding
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Proposed positional encoding
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Figure 2. The original positional encoding described in [26] (left) and the proposed one (right) with
DF = 512 and N = 256.

As shown in Figure 3, the extended features Z are converted to the onset probabil-
ities φ through a stack of L self-attention mechanisms with I heads [26] and the layer
normalization (Pre-Norm) [57] proposed for the simple and stable training of the trans-
former models [58,59]. For each head i (1 ≤ i ≤ I), let Qi , [qi,1, . . . , qi,N ] ∈ RDK×N ,
Ki , [ki,1, . . . , ki,N ] ∈ RDK×N , and Vi , [vi,1, . . . , vi,N ] ∈ RDK×N be query, key, and value
matrices given by

Qi = W(Q)
i LayerNorm(Z) + b(Q)

i , (4)

Ki = W(K)
i LayerNorm(Z) + b(K)

i , (5)

Vi = W(V)
i LayerNorm(Z) + b(V)

i , (6)

where Dk is the feature dimension of each head (Dk=
DF
I in this paper as in [26]); qi ∈ RDK ,

ki ∈ RDK , and vi ∈ RDK are query, key, and value vectors, respectively; W(Q)
i ∈ RDK×DF ,

W(K)
i ∈ RDK×DF , and W(V)

i ∈ RDK×DF are weight matrices; and b(Q)
i ∈ RDK×N , b(K)

i ∈
RDK×N , and b(V)

i ∈ RDK×N are bias vectors. Let α ∈ RN×N be a self-attention matrix
consisting of the degrees of self-relevance of the extended latent features Z, which is
given by
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ei,n,n′ =
q>i,nki,n′√

DK
, (7)

αi,n,n′ =
exp

(
ei,n,n′

)
∑N

n′=1 exp
(
ei,n,n′

) , (8)

where > represents the matrix or vector transpose , and n and n′ represent the feature
indices of Q and K, respectively. Let H , [H1, . . . , HI ] ∈ RDF×N be a feature matrix
obtained by concatenating all the heads, where Hi , Viα

>
i ∈ RDK×N .

Multi-head

SelfAtt

×

×

score

LayerNorm

FFNDropout

Figure 3. The proposed transcription model with a multi-head self-attention mechanism.

The extended latent features and the extracted features H with Dropout (p = 0.1) [60]
are then fed into a feed forward network (FFN) with a rectified linear unit (ReLU) as follows:

Z←W(H)
2 max

{
0, W(H)

1 (Dropout(H) + Z) + b(H)
1

}
+ b(H)

2 , (9)

where W(H)
1 ∈ RDFFN×DF and W(H)

2 ∈ RDF×DFFN are weight matrices, b(H)
1 ∈ RDFFN×N and

b(H)
2 ∈ RDF×N are bias vectors, and DFFN is the dimension of the output. Equation (4) to

Equation (9) are repeated L times with different parameters. The onset probabilities φ are
finally calculated as follows:

φ = σ
(

W(H)
3 Z + b(H)

3

)
, (10)

where σ(·) is a sigmoid function, W(H)
3 ∈ RM×DF is a weight matrix, and b(H)

3 ∈ RM×N is
a bias vector.

3.2. Language Models

The language model is used for estimating the generative probability (musical natu-
ralness) of an arbitrary existing drum score Ỹ. For brevity, we assume that only one drum
score is used as training data. In practice, a sufficient amount of drum scores are used. In
this study, we use unidirectional language models such as the repetition-aware bi-gram
model and GRU-based model proposed in [19] and a masked language model (MLM), a
bidirectional language model proposed for pretraining in BERT [46] (Figure 4).
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Figure 4. Language models used for regularized training of a transcription model.

The unidirectional language model is trained beforehand in an unsupervised manner
such that the following negative log-likelihood Luni

lang(Ỹ) is minimized:

Luni
lang(Ỹ) = − log p(Ỹ) = −

N

∑
n=1

log p(Ỹ:,n|Ỹ:,1:n−1), (11)

where “i:j” represents a set of indices from i to j, and “:” represents all possible indices. In
the repetition-aware bi-gram model (top figure in Figure 4), assuming that target musical
pieces have the 4/4 time signature, the repetitive structure of a drum score is formulated
as follows:

p(Ỹ:,n|Ỹ:,1:n−1) =
M

∏
m=1

p(Ỹm,n|Ỹm,n−16) =
M

∏
m=1

πỸm,n−16,Ỹm,n
, (12)

where πA,B (A, B ∈ {0, 1}) represents the transition probability from A to B. Note that this
model assumes the independence of the M drums. In the GRU model (middle figure in
Figure 4), p(Ỹ:,n|Ỹ:,1:n−1) is directly calculated using an RNN.

The MLM is capable of learning the global structure of drum scores (bottom figure in
Figure 4). In the training phase, drum activations at randomly selected 15% of tatums in Ỹ
are masked and the MLM is trained such that those activations are predicted as accurately
as possible. The loss function Lbi

lang(Ỹ) to be minimized is given by

p̂(Ỹn) = p(Ỹ:,n|Ỹ:,1:n−1, Ỹ:,n+1:N), (13)

Lbi
lang(Ỹ) = −

N

∑
n=1

log p̂(Ỹn). (14)

3.3. Regularized Training

To consider the musical naturalness of the estimated score Ŷ obtained by binarizing φ,
we use the language model-based regularized training method [19] that minimizes

Ltotal = Ltran(φ|Y) + γL∗lang(Ŷ), (15)

where Ŷ is a ground-truth score, γ > 0 is a weighting factor, the symbol * denotes “uni“ or
“bi“, and Ltran(φ|Ŷ) is the modified negative log-likelihood given by

Ltran(φ|Y) = −
M

∑
m=1

N

∑
n=1
{βmYm,n log φm,n + (1−Ym,n) log(1− φm,n)}, (16)

where βm > 0 is a weighting factor compensating for the imbalance between the numbers
of onset and non-onset tatums.



Signals 2021, 2 516

To use backpropagation for optimizing the transcription model, the binary score Y
should be obtained from the soft representation φ in a differentiable manner instead of
simply binarizing φ with a threshold. We thus use a differentiable sampler called the
Gumbel-sigmoid trick [61], as follows:

η
(k)
m,n ∼ Uniform(0, 1), (17)

ψ
(k)
m,n = − log

{
− log

(
η
(k)
m,n

)}
, (18)

Ŷm,n = σ

{
φm,n + ψ

(1)
m,n − ψ

(2)
m,n

τ

}
, (19)

where k=1, 2, and τ > 0 is a temperature (τ = 0.2 in this paper). Note that the pretrained
language model is used as a fixed regularizer in the training phase and is not used in the
prediction phase.

4. Evaluation

This section reports the comparative experiments conducted for evaluating the pro-
posed ADT method and investigates the effectiveness of the self-attention mechanism and
that of the MLM-based regularized training.

4.1. Evaluation Data

We used the Slakh2100-split2 (Slakh) [62] and the RWC Popular Music Database
(RWC) [63] for evaluation because these datasets include ground-truth beat times. The
Slakh dataset contains 2100 musical pieces in which the audio signals were synthesized
from the Lakh MIDI dataset [64] using professional-grade virtual instruments, and the
RWC dataset contains 100 Japanese popular songs. All music signals were sampled at
44.1 kHz. The onset times of BD, SD, and HH (M = 3) were extracted as ground-truth
data from the synchronized MIDI files provided for these datasets. To make ground-truth
drum scores, each onset time was quantized to the closest tatum time (the justification of
this approach is discussed in Section 4.4). Only musical pieces in which the drum onset
times and tatum times had been annotated correctly as ground-truth data were used for
evaluation. For the Slakh dataset, we used 2010 pieces, which were split into 1449, 358,
and 203 pieces as training, validation, and test data, respectively. For the RWC dataset,
we used 65 songs for 10-fold cross validation, where 15% of training data was used as
validation data in each fold. Since here we aim to validate the effectiveness of the language
model-based regularized training for self-attention-based transcription models on the
same dataset (Slakh or RWC), investigation of the cross-corpus generalization capability
(portability) of language models is beyond the scope of the paper and left as future work.

For each music signal, a drum signal was separated with Spleeter [5] and the tatum
times were estimated with madmom [2] or given as oracle data. The spectrogram of a
music or drum signal was obtained using short-time Fourier transform (STFT) with a
Hann window of 2048 points (46 ms) and a shifting interval of 441 points (10 ms). We
used mel-spectrograms as input features because they have successfully been used for
onset detection [11] and CNN-based ADT [14]. The mel-spectrogram was computed
using a mel-filter bank with 80 bands from 20 Hz to 20,000 Hz and normalized so that the
maximum volume was 0 db. A stack of music and drum mel-spectrograms was fed into a
transcription model.

4.2. Model Configurations

The configurations of the two transcription models (CNN-BiGRU and CNN-SelfAtt(-
SyncPE) described in Section 3.1) are shown in Figure 5 and Table 1. The encoders were
the same CNN consisting of four convolutional layers with a kernel size of 3× 3, and the
decoders were based on the BiGRU and the multi-head self-attention mechanism. The
influential hyperparameters were automatically determined with a Bayesian optimizer
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called Optuna [65] for the validation data in the Slakh dataset or with 10-fold cross vali-
dation in the RWC dataset under a condition that DFFN = 4DF. As a result, CNN-SelfAtt
had about twice as many parameters as CNN-BiGRU. In the training phase, the batch size
was set to 10, and the max length was set to 256 for CNN-SelfAtt. We used the AdamW
optimizer [66] with an initial learning rate of 10−3. The learning rate of CNN-SelfAtt was
changed according to [26], and warmup_steps was set to 4000. To prevent over-fitting,
we used weight regularization (λ = 10−4), drop-out just before all of the fully connected
layers of CNN-BiGRU (p = 0.2) and each layer of CNN-SelfAtt (p = 0.1), and tatum-level
SpecAugment [67] for the RWC dataset, where 15% of all tatums were masked in the
training phase. The weights of the convolutional and BiGRU layers were initialized based
on [68], the fully connected layer was initialized by the sampling from Uniform(0, 1), and
the biases were initialized to 0. In the testing phase, the average of the ten parameters
before and after the epoch that achieved the smallest loss for the validation data was used
in CNN-SelfAtt. The threshold for φ was set to δ = 0.2.

     Output: Latent features

Input: Spectrogram

     Convolution

     Convolution

     Convolution

     Max-pooling

     Max-pooling

     Max-pooling

     Convolution

:     3×3×32 + BatchNorm

:     1×3×1

:     3×3×64 + BatchNorm

:     3×3×64 + BatchNorm

:     1×3×1

:     Frame → Tatum

:     3×3×32 + BatchNorm

CNN-based encoder

     Output: Onset probabilities

Input: Latent features

     Fully connected :     98 → 3

:     p = 0.2     Drop out

BiGRU layer(s)

BiGRU-based decoder

     Output: Onset probabilities

Input: Latent features

     Fully connected:     98 → 3

SelfAtt
     Multi-head 

SelfAtt-based decoder

×

×

Figure 5. Configurations of the transcription models (CNN-BiGRU and CNN-SelfAtt).

The configurations of the three language models (bi-gram, GRU, and MLM(-SyncPE)
described in Section 3.2) are shown in Table 2. Each model was trained with 512 external
drum scores of Japanese popular songs and Beatles songs. To investigate the impact of the
data size for predictive performance, each model was also trained by using only randomly
selected 51 scores. The influential hyperparameters of the neural language models, i.e., the
number of layers and the dimension of hidden states in the GRU model and h, l, DF, and
DFFN in the MLM, were automatically determined with Optuna [65] via three-fold cross
validation with the 512 scores under a condition that DFFN = 4DF. As a result, the MLM
had about twice as many parameters as the GRU model. The bi-gram model was defined
by only two parameters π0,1 and π1,1.

Table 1. Hyperparameters of the decoders of the two transcription models optimized by Optuna.

BiGRU SelfAtt

Layer Dim Size h l DF DFFN Size

Slakh 1 131 573 k 2 8 96 384 1.03 M
RWC 3 98 774 k 8 7 120 480 1.38 M

Table 2. Hyperparameters of the three language models optimized by Optuna.

Bi-Gram GRU MLM-SyncPE

Size Layer Dim Size h l DF DFFN Size

2 3 64 63 k 4 8 112 448 1.25 M
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4.3. Evaluation Metrics

The performance of ADT was evaluated at the frame and tatum levels. The frame-level
F-measure (F ) is the harmonic mean of the precision rate P and the recall rateR:

P =
NC

NE
, R =

NC

NG
, F =

2RP
R+ P , (20)

where NE, NG, and NC are the number of estimated onset times, that of ground-truth onset
times, and that of correctly-estimated onset times, respectively, and the error tolerance
was set to 50 ms. Note that F = 100% means perfect transcription. For the tatum-level
evaluation, we propose a tatum-level error rate (TER) based on the Levenshtein distance.
Note that all the estimated drum scores were concatenated and then the frame-level F-
measure and TER were computed for the whole dataset. As shown in Figure 6, the TER
between a ground-truth score Y , Y1:N ∈ {0, 1}M×N with N tatums and an estimated
score Ŷ , Ŷ1:N̂ ∈ {0, 1}M×N̂ with N̂ tatums, denoted by TER(Y1:N , Ŷ1:N̂), is computed via
dynamic programming as follows:

TER(Y1:n+1, Ŷ1:n̂+1) =



max(n, n̂)×M (n = 0 or n̂ = 0),

min


TER(Y1:n, Ŷ1:n̂+1) + M

TER(Y1:n+1, Ŷ1:n̂) + M

TER(Y1:n, Ŷ1:n̂) + S(Yn, Ŷn̂)

(otherwise),
(21)

S(Yn, Ŷn̂) =
M

∑
m=1
|Ym,n − Ŷm,n̂|, (22)

where S(Yn, Ŷn̂) represents the sum of the Manhattan distances between the ground-
truth activations Yn at tatum n and the estimated activations Ŷn̂ at tatum n̂. Note that N̂
might be different from N when the tatum times were estimated with madmom and that
TER(Y1:N , Ŷ1:N̂) = 0 does not mean perfect transcription as discussed in Section 4.4. The
comprehensive note-level evaluation measures were proposed for AMT [55,56] but were
not used in our experiment because ADT focuses on only the onset times of note events.
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Figure 6. Computation of tatum-level error rate (TER) based on dynamic programming.

4.4. Justification of Tatum-Level Drum Transcription

We validated the appropriateness of tatum-level ADT because some kinds of actual
onset times cannot be detected in principle under an assumption that the onset times of each
drum are exclusively located on the sixteenth-note-level grid. As shown in Figure 7, such
undetectable onsets are (doubly) categorized into two groups. If multiple onset times are
close to the same tatum time, only one onset time can be detected, i.e., the other onset times
are undetectable and categorized into the conflict group. Onset times that are not within
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50 ms from the closest tatum times are categorized into the far group. In the tatum-level
ADT, the onset times of these groups remain undetected even when TER(Y1:N , Ŷ1:N̂) = 0.

conflict

tatum

onset onset
far

tatum

onset

tatum

tolerance tolerance
tolerancetolerance

Figure 7. Two groups of undetectable onset times.

Table 3 shows the ratio of undetectable onset times in each group to the total number
of actual onset times when the estimated or ground-truth beat times were used for quanti-
zation. The total ratio of undetectable onset times was sufficiently low. This justifies the
sixteenth-note-level quantization of onset times, at least for the majority of typical popular
songs used in our experiment. Note that our model cannot deal with triplet notes.

Since the tatum times are assumed to be given, we evaluated the beat tracking perfor-
mance of madmom [2] in the same way as Equation (20). The mir_eval library was used
for computing P ,R, and F . The F-measure for the 203 pieces of the test data in the Slakh
dataset was 92.5% and that for the 65 songs in the RWC dataset was 96.4%.

Table 3. Ratio of undetectable onset times.

Dataset
Madmom Ground-Truth

conflict far conflict ∪ far conflict far conflict ∪ far

Slakh 0.86% 0.16% 1.02% 1.30% 0.35% 1.64%
RWC 0.43% 0.23% 0.65% 1.19% 0.29% 1.48%

4.5. Evaluation of Language Modeling

We evaluated the three language models (bi-gram, GRU, and MLM(-SyncPE) de-
scribed in Section 3.2) in terms of the perplexities for the 203 pieces in the Slakh dataset and
the 65 songs in the RWC dataset. The perplexity for a drum score Ỹ is defined as follows:

PPL∗(Ỹ) = 2
1
NL
∗
lang(Ỹ), (23)

where “*” denotes “uni” or “bi” and Luni
lang(Ỹ) and Lbi

lang(Ỹ) are given by Equations (11) and

(14), respectively. Since Lbi
lang(Ỹ) based on the MLM does not exactly give the likelihood for

Ỹ because of the bidirectional nature, unlike Luni
lang(Ỹ) based on the bi-gram or GRU model

with the autoregressive nature, PPLbi(Ỹ) can be only roughly compared with PPLuni(Ỹ).
As shown in Table 4, the predictive capability of the GRU model was significantly

better than that of the bi-gram model based on the strong assumption that drum patterns
are repeated with the 4/4 time signature. The MLM using the proposed positional encod-
ings, denoted by MLM-SyncPE, slightly outperformed the MLM using the conventional
encodings. The larger the training dataset, the lower (better) the perplexity. The pseudo-
perplexity obtained by the MLM was close to 1, meaning that the activations at masked
tatums can be predicted accurately from the forward and backward contexts.

Table 4. Perplexities obtained by the language models. “MLM” and “MLM-SyncPE” are MLMs with
the conventional and proposed tatum-synchronous positional encodings, respectively.

Language Model Bi-Gram GRU MLM MLM-SyncPE

Dataset Size 51 512 51 512 51 512 51 512

Slakh 1.278 1.265 1.357 1.170 1.180 1.050 1.124 1.049
RWC 1.374 1.369 1.473 1.273 1.289 1.086 1.217 1.085
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4.6. Evaluation of Drum Transcription

We evaluated the two transcription models (CNN-BiGRU and CNN-SelfAtt-SyncPE
described in Section 3.1) that were trained with and without the regularization mechanism
based on each of the three language models (bi-gram, GRU, and MLM-SyncPE described in
Section 3.2). For comparison, we tested the conventional frame-level ADT method based on
a CNN-BiGRU model [18] that had the same architecture as our tatum-level CNN-BiGRU
model (Figure 5) except that the max-pooling layers were not used. It was trained such
that the following frame-level cross entropy was minimized:

Ltran?(φ?|Y?) = −
M

∑
m=1

T

∑
t=1

(
β?

mY?
m,t log φ?

m,t + (1−Y?
m,t) log(1− φ?

m,t)
)
, (24)

where φ?, Y? ∈ RM×T are the estimated onset probabilities and the ground-truth binary
activations, respectively, and β? > 0 is a weighting factor. For each drum m, a frame t was
picked as an onset if

1. φ?
m,t = max{φ?

m,t−w1 :t+w2
},

2. φ?
m,t ≥ mean{φ?

m,t−w3 :t+w4
}+ δ̂,

3. t− tprev > w5,

where δ̂ was a threshold, w1:5 were interval parameters, and tprev was the previous onset
frame. These were set to δ̂ = 0.2, w1 = w3 = w5 = 2, and w2 = w4 = 0, as in [18]. The
weighting factors β, γ, and β? were optimized for the validation data in the Slakh dataset
and by 10-fold cross validation in the RWC dataset, as shown in Table 5. To measure
the tatum-level transcription performance, the estimated frame-level onset times were
quantized at the tatum level with reference to the estimated or ground-truth tatum times.

Table 5. Weighting factors optimized by Optuna. m=0, 1, and 2 represent BD, SD, and HH, respectively.

CNN-BiGRU CNN-SelfAtt

β?
0 β?

1 β?
2 β0 β1 β2

Bi-Gram GRU MLM
β0 β1 β2

Bi-Gram GRU MLM

γ γ

Slakh 0.67 2.00 1.77 1.07 0.19 0.40 0.10 0.05 0.01 0.62 0.92 0.90 1.02 0.07 1.25
RWC 6.22 8.09 6.48 0.50 0.32 0.71 0.05 0.04 0.26 0.69 0.92 0.55 1.10 0.05 1.31

As shown in Table 6, CNN-SelfAtt-SyncPE worked best for the Slakh dataset and
CNN-BiGRU with the MLM-SyncPE-based regularization worked best for the RWC dataset
in terms of the F-measure and TER. This suggests that a sufficient amount of paired data are
required to draw the full potential of the self-attention mechanism. CNN-SelfAtt-SyncPE
tended to yield higher or comparable F-measures for BD and SD in the RWC dataset and
lower F-measures for HH in both the datasets. This was because percussive sounds in the
high-frequency range were not cleanly separated by the Spleeter even with some noises,
or SelfAtt-based model had a tendency to detect other instruments similar to HH such as
Maracas. The MLM-SyncPE-based regularization made a little improvement for the Slakh
dataset because even the non-regularized model worked well on the synthesized dataset
with the limited acoustic and timbral variety. In contrast, it significantly outperformed
the bi-gram- or GRU-based regularization for the RWC dataset but required much longer
training time because every iteration costs O(C× N), where C represents the batch size.
Note that, if enough memory is available, the MLM-based regularization can be calculated
in a parallel manner by O(1). CNN-BiGRU with the MLM-based regularization required
the longest training time in spite of the highest performance. The frame-level CNN-BiGRU
model [18] required much longer training time than our frame-to-tatum model.
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Table 6. Training times per song (s/song), F-measures (%), and TERs obtained by the conventional and proposed methods.

Decoder Time Madmom Ground-Truth

+ Language Model BD SD HH Total TER BD SD HH Total TER

Slakh

BiGRU [18] 55.8 93.6 92.7 71.5 85.9 20.6 93.0 92.5 71.4 85.6 8.4
BiGRU 15.3 95.6 90.2 75.5 87.1 19.6 95.2 90.2 75.8 87.1 7.2

+ MLM-SyncPE (512) 137.0 95.3 90.7 78.4 88.1 19.0 94.7 90.9 77.6 87.8 7.1
SelfAtt-SyncPE 26.7 95.8 93.1 79.9 89.6 18.7 95.6 92.9 79.5 89.3 6.8

+ Bi-gram (512) 15.6 95.8 92.7 80.5 89.7 18.5 95.4 93.1 80.5 89.7 6.3
+ GRU (512) 15.7 96.4 93.0 80.5 90.0 18.5 96.1 92.9 80.4 89.8 6.4
+ MLM-SyncPE (512) 42.0 96.1 93.2 80.7 90.0 18.5 95.8 93.3 80.9 90.0 6.3

RWC

BiGRU [18] 58.2 86.0 74.0 70.5 76.8 16.7 86.6 74.1 70.9 77.2 12.3
BiGRU 24.5 86.9 76.2 77.9 80.3 15.2 86.7 76.5 76.9 80.0 11.4

+ MLM-SyncPE (512) 130.1 88.0 76.5 79.7 81.4 14.0 88.1 76.5 79.3 81.3 10.3
SelfAtt-SyncPE 30.5 87.5 76.4 72.6 78.8 17.0 88.0 75.6 72.9 78.8 13.2

+ Bi-gram (512) 31.8 86.0 76.5 69.6 77.4 16.8 87.0 76.0 69.6 77.5 12.7
+ GRU (512) 24.1 87.6 76.2 73.2 79.0 16.6 87.8 76.3 73.9 79.4 12.5
+ MLM-SyncPE (512) 51.6 88.1 74.9 75.4 79.5 16.2 87.9 74.3 71.7 78.0 12.4

4.7. Investigation of Self-Attention Mechanism

We further investigated the behaviors of the self-attention mechanisms used in the
transcription and language models. To validate the effectiveness of the proposed tatum-
synchronous positional encodings (SyncPE), we compared two versions of the proposed
transcription model, denoted by CNN-SelfAtt and CNN-SelfAtt-SyncPE, in terms of the
F-measure and TER. As shown in Table 7, CNN-SelfAtt-SyncPE always outperformed
CNN-SelfAtt by a large margin. To investigate the impact of the data size used for training
the transcription models (CNN-BiGRU and CNN-SelfAtt-SyncPE), we compared the per-
formances obtained by using 1/32, 1/16, 1/4, 1/2, and all of the training data in the Slakh
or RWC datasets. As shown in Figure 8, CNN-SelfAtt-SyncPE was severely affected by the
data size and CNN-BiGRU worked better than CNN-SelfAtt when only a small amount
of paired data were available. To investigate the impact of the data size used for training
the language models (bi-gram, GRU, and MLM-SyncPE), we compared the performances
obtained by CNN-SelfAtt-SyncPE that was regularized with a language model pretrained
with 512 or 51 external drum scores. As shown in Table 8, the pretrained language models
with a larger number of drum scores achieved higher performances. The effect of the
MLM-SyncPE-based regularization severely depends on the data size, whereas the bi-gram
model was scarcely affected by the data size.

Table 7. F-measures (%) and TERs obtained by CNN-SelfAtt with the conventional positional encodings and CNN-SelfAtt-
SyncPE with the proposed tatum-synchronous positional encodings.

Decoder
Madmom Ground-Truth

BD SD HH Total TER BD SD HH Total TER

Slakh SelfAtt 96.0 93.1 75.4 88.2 20.0 95.7 92.7 75.7 88.0 7.7
SelfAtt-SyncPE 95.8 93.1 79.9 89.6 18.7 95.6 92.9 79.5 89.3 6.8

RWC SelfAtt 87.5 72.0 68.8 76.1 19.2 87.5 72.2 69.1 76.3 15.5
SelfAtt-SyncPE 87.5 76.4 72.6 78.8 17.0 88.0 75.6 72.9 78.8 13.2
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Table 8. F-measures (%) and TERs obtained by CNN-SelfAtt-SyncPE regularized by the language models pretrained from
51 or 512 external drum scores.

Decoder Madmom Ground-Truth

+ Language Model BD SD HH Total TER BD SD HH Total TER

Slakh

SelfAtt-SyncPE 95.8 93.1 79.9 89.6 18.7 95.6 92.9 79.5 89.3 6.8
+ Bi-gram (51) 95.1 93.0 80.5 89.5 18.6 94.9 93.1 80.6 89.5 6.5
+ GRU (51) 96.3 92.1 80.0 89.5 18.6 96.1 92.1 79.9 89.3 6.4
+ MLM-SyncPE (51) 95.8 93.5 79.9 89.7 19.0 95.8 93.7 79.8 89.8 7.0
+ Bi-gram (512) 95.8 92.7 80.5 89.7 18.5 95.4 93.1 80.5 89.7 6.3
+ GRU (512) 96.4 93.0 80.5 90.0 18.5 96.1 92.9 80.4 89.8 6.4
+ MLM-SyncPE (512) 96.1 93.2 80.7 90.0 18.5 95.8 93.3 80.9 90.0 6.3

RWC

SelfAtt-SyncPE 87.5 76.4 72.6 78.8 17.0 88.0 75.6 72.9 78.8 13.2
+ Bi-gram (51) 86.1 76.5 66.8 76.5 17.1 85.7 76.6 67.4 76.6 13.1
+ GRU (51) 85.6 73.3 70.2 76.4 19.6 86.7 72.9 71.3 76.9 15.7
+ MLM-SyncPE (51) 86.8 75.7 71.5 78.0 17.5 86.9 75.2 72.2 78.1 13.6
+ Bi-gram (512) 86.0 76.5 69.6 77.4 16.8 87.0 76.0 69.6 77.5 12.7
+ GRU (512) 87.6 76.2 73.2 79.0 16.6 87.8 76.3 73.9 79.4 12.5
+ MLM-SyncPE (512) 88.1 74.9 75.4 79.5 16.2 87.9 74.3 71.7 78.0 12.4

F-measure [%]

Dataset size

Slakh

TER

Dataset size

Slakh RWCRWC

11/21/41/81/161/32

90
.0

87
.5

85
.0

82
.5

80
.0

77
.5

75
.0

72
.5

70
.0

80
.0

70
.0

60
.0

50
.0

40
.0

25
.0

22
.5

20
.0

17
.5

15
.0

12
.5

10
.0

7.5

35
.0

30
.0

25
.0

20
.0

15
.0

：BiGRU (madmom) ：BiGRU (Ground-truth) ：SelfAtt (Ground-truth)：SelfAtt (madmom)

11/21/41/81/161/32 11/21/41/81/161/32 11/21/41/81/161/32

Figure 8. F-measures (%) and TERs obtained by CNN-BiGRU and CNN-SelfAtt-SyncPE trained with
1/32, 1/16, 1/4, 1/2, and all of the training data.

We confirmed that CNN-SelfAtt-SyncPE with the MLM-SyncPE-based regulariza-
tion learned the global structures of drum scores through attention matrices and yielded
globally coherent drum scores. Figure 9 shows examples of attention matrices. In Slakh-
Track01930, both the global structure of drums and the repetitive structure of BD were
learned successfully. In RWC-MDB-P-2001 No. 25, the repetitive structures of SD and
HH were captured. These examples demonstrate that the attention matrices at each layer
and head can capture the different structural characteristics of drums. Figure 10 shows
examples of estimated drum scores. In RWC-MDB-P-2001 No. 25, the MLM-SyncPE-based
regularization improved PPLbi (musical unnaturalness) and encouraged CNN-SelfAtt-
SyncPE to learn the repetitive structures of BD, SD, and HH. In RWC-MDB-P-2001 No.
40, in contrast, although the MLM-SyncPE-based regularization also improved PPLbi, it
yielded an oversimplified score of HH.
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Figure 9. Examples of attention matrices representing the repetitive structures of drum scores.
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Figure 10. Examples of improved (left) and oversimplified (right) drum scores estimated by CNN-
SelfAtt-SyncPE with the MLM-SyncPE-based regularization.

5. Conclusions

In this paper, we described a global structure-aware frame-to-tatum ADT method
based on self-attention mechanisms. The transcription model consists of a frame-level
convolutional encoder for extracting the latent features of music signals and a tatum-level
self-attention-based decoder for considering musically meaningful global structure and is
trained in a regularized manner based on an pretrained MLM. Experimental results showed
that the proposed regularized model outperformed the conventional RNN-based model in
terms of the tatum-level error rate and the frame-level F-measure, even when only a limited
amount of paired data were available so that the non-regularized model underperformed
the RNN-based model. The attention matrices revealed that the self-attention-based model
could learn the global and repetitive structure of drums at each layer and head. In future
work, we plan to deal with more sophisticated and/or non-regular drum patterns (e.g.,
fill-ins) played using various kinds of percussive instruments (e.g., cymbals and toms).
Considering that beat and downbeat times are closely related to drum patterns, it would
be beneficial to integrate beat tracking into ADT in a multi-task learning framework.
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