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Abstract: Generative Adversarial Networks (GANs) have gained significant attention in recent years,
with impressive applications highlighted in computer vision, in particular. Compared to such exam-
ples, however, there have been more limited applications of GANs to time series modeling, including
forecasting. In this work, we present the Mixture Density Conditional Generative Adversarial Model
(MD-CGAN), with a focus on time series forecasting. We show that our model is capable of estimating
a probabilistic posterior distribution over forecasts and that, in comparison to a set of benchmark
methods, the MD-CGAN model performs well, particularly in situations where noise is a significant
component of the observed time series. Further, by using a Gaussian mixture model as the output
distribution, MD-CGAN offers posterior predictions that are non-Gaussian.

Keywords: time series forecasting; generative adversarial networks; mixture density models; proba-
bilistic forecasting; deep neural networks; financial time series

1. Introduction

Generative Adversarial Networks (GANs) have been one of the many breakthroughs
in Deep Learning methods in recent years. Several different variations of the model have
been introduced since the method was first introduced in Reference [1]. One of the most
popular variations of this work is that of the Conditional Generative Adversarial Network
(CGAN) [2] in which the generator and discriminator (we briefly review the GAN process
in Section 2) are both conditioned on some observed information. In the application of time
series forecasting, future values are conditioned on information observed from the past,
either from the time series itself, some set of associated exogenous data, or a combination
of the two. This conditioning addition to the GAN formalism makes the CGAN approach
particularly useful as a foundational model for time series prediction. Most applications of
(C)GANSs, however, have been within computer vision and, to a lesser extent, in natural
language processing and simulation models [3-5].

The literature on the application of any form of GAN model to problems associated
with time series is, to date, limited. However, some recent literature shows the potential
usefulness of the method. For example, the work reported in Reference [6] applies a
recurrent GAN to generate realistic, synthetic, medical data series, and, in Reference [7],
a (standard) GAN model is used to generate realistic financial asset prices and analyze
their distributions.

In Reference [8], a GAN is used to forecast high-frequency stock data, and, in Refer-
ence [9], GANs are used to generate missing values in incomplete time series. We note
that the GAN models used in all these applications make point estimates for the fore-
cast. Although a perfectly valid approach, and one that has a long history in time series
forecasting, we argue that probabilistic forecasts are a prerequisite in many application
domains, in which knowledge of the predictive uncertainty is as vital as the prediction
itself. In this work, we expand on the CGAN algorithm to allow a full predictive probability

Signals 2021, 2, 559-569. https:/ /doi.org/10.3390/signals2030034

https://www.mdpi.com/journal/signals


https://www.mdpi.com/journal/signals
https://www.mdpi.com
https://doi.org/10.3390/signals2030034
https://doi.org/10.3390/signals2030034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/signals2030034
https://www.mdpi.com/journal/signals
https://www.mdpi.com/article/10.3390/signals2030034?type=check_update&version=1

Signals 2021, 2

560

distribution, rather than a point value. To obtain richer predictive densities, we model
the posterior distribution using a finite Gaussian Mixture model (GMM). Although we
find only occasional evidence that such non-Gaussian predictions offer significant benefits,
we note that producing them is not much more costly than single Gaussian predictive
distributions, and so present our approach as a more general multi-component model.

1.1. Related Work

We here briefly review recent literature which is close to our approach. We start
by noting the work of Reference [10], in which a mixture of GAN models is proposed
as a data clustering model. Although clearly related, this is somewhat different to our
approach, in which we use a single GAN generator, linked to the hyperparameters of the
posterior mixture model, rather than a mixture of GAN models. Furthermore, our goal
is forecasting rather than unsupervised data classification. The approaches advocated in
Reference [11,12] propose a latent space, used for sampling latent vectors in the GAN,
formulated via a Gaussian mixture. The latter replaces, in these papers, the single Gaussian
distribution used for such generation in standard GAN models. In both these papers, the
generator and discriminator have a similar structure to a standard GAN. In Reference [13],
a mixture model is used, but for the discriminator alone, with the generator being that of
a standard GAN model; we note the difference to our approach, in which the generator
is a GMM. The work of Reference [14] proposes a model to best approximate the joint
distribution over a set of static and temporal features, associated with a time series. The
authors use a GAN to propagate these features so as to model the dynamics of the time
series. We note that the outputs from the model are point estimates and that, in the case of
a 1-d system, the method is the same as CGAN albeit with an added autoencoder. Finally,
Reference [15] compares (standard) GAN models to GMMs for image generation. The
authors show that GANSs are superior in their ability to generate sharp images, but note
that mixture models offer more efficient inference. They propose a combination of the two
and introduce a GAN model in which the GAN generator is a mixture model. However,
the sample generator still makes point estimates from the multi-modal distribution in order
to retain a discriminator function the same as that of a standard GAN model. We offer
discriminator extensions which allow the GAN process to operate on the full (multi-modal)
posterior distribution.

1.2. Contributions and Paper Structure

The contributions of this paper are as follows: first, we recast, via modifications of the
GAN loss functions, the conditional GAN approach to provide (multi-modal) probability
densities over forecasts; second, we show, through a series of comparative experiments,
that GAN methods—particularly our proposed approach—are able to make good forecasts,
especially in situations in which noise is prevalent. We show how our proposed method is
extremely robust to variable noise injections. Finally, we demonstrate how, for some time
series forecasting problems, superior results are obtained by entertaining a more complex,
multi-model, forecast distribution.

The rest of this paper is set out as follows: in Section 2, we provide a brief overview of
the (C)GAN model, introducing the key concepts. In Section 3, we present the structure of
the MD-CGAN model. In Section 4, we test the model on a variety of ‘real-world” datasets
and discuss the results. Finally, in Section 5, we conclude.

2. The GAN and CGAN Model

The goal of the GAN model is to estimate a generative model using an adversarial
process [1]. This is achieved by simultaneously training two models. Firstly, a generative
model G, that, in the case of data forecasting, learns past patterns in the data and infers
the predictive values. Secondly, a discriminative model D, that determines how likely a
sample was to originate from the ‘true’ training data, compared to being sampled from
the generator. The generator is, hence, matched against an adversary, the discriminator
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(whose goal is to detect the difference between a true data sample and one created by
the generator). Components of the model are then trained (via an optimization process)
to maximize the probability of the discriminator being unable to distinguish true from
generated data samples. Typically, including the approach we take here, the generator and
the discriminator are both constructed as multi-layer perceptrons, with stochastic gradient
methods being employed to obtain optimization.

We start by formulating the definitions which we use in common across the GAN
models we test. We consider a time series, y;. Our aim is to estimate the forecast of some
y{/> ;» conditioned on a set of observations which we denote x;. The inputs to the generator
network are x; and z;, where z; is a collection of samples from a normal distribution,
p(zn)g = N(0,varg,, ). During model training, the output from the generator, y{,, as well
as the true forecast sample v, are fed to the discriminator, whose role is to discriminate

between them, i.e., to identify y{, as the ‘fake’ sample.

In an unconditioned GAN model, there is no control over the data that is generated.
In the CGAN model, in contrast, by conditioning the model on additional information, it
is possible to direct the data generation process [2]. Schematics of the GAN and CGAN
models are depicted in Figure 1.
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Figure 1. Schematic of (a) GAN and (b) CGAN models, showing Generator and Discriminator components and associ-

ated variables.

3. The MD-CGAN Model Framework

As with the GAN and CGAN methods, we consider a time series, y;. Our aim now is
to infer the posterior distribution over some y,~, conditioned on the set of observations,
x;. In order to form the posterior distribution, we model the full conditional density
p(yy|xt) as an adversarial network. To achieve this, we use a Mixture Density Network
(MDN) model [16] for the generator G. The inputs to the generator network are as per the
CGAN approach, x; and zg, where z, is, as before, a collection of samples from a normal
distribution, p(z,)g = N (0,varg,,). The outputs of Gy (xt, zg) are now, however, the
parameters of the Gaussian mixture posterior over the forecast. This mixture has mixing
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coefficient, standard deviation, and mean for the i-th component denoted as «;, 0;, and y;,
respectively. As first proposed in Reference [16], we achieve this by using latent variables
s = {Sa,Sc, 8, }, conditioned on the inputs. The mapping from [x;, z¢] — s — {a;, 0, j1;}
is modeled via our network. As the mixings must satisfy } ;#; = 1, we map s, to « via
exp(su,i)
Lexp(sy)
adopt o; = exp(s,,i). Finally, the means can be mapped directly from the latent variables;
hence, p; = s,,;. Schematically, the MD-CGAN method is depicted in Figure 2.

the softmax function, where a; = The elements of ¢ are strictly positive, so we

Yr = Lyy)

MD-CGAN
Discriminator

@

:
Generator —>

Figure 2. Schematic of the MD-CGAN model. We note that the discriminator in the MD-CGAN model has a different loss
function and structure to the GAN and CGAN models.

The above formalism allows us to directly model the predictive likelihood conditioned
on an input, and the likelihood of G, conditioned on the observations x; and samples Zg as:

M

l
—

L(Gy(xt,zg)) = ) ai(xt, 2g)Ni(yp |pi(xt, 2g), 03(xt, 2g)), D

where m is the number of mixture components.

As in the CGAN model, the discriminator, D, is also conditioned on x;. The input to
the discriminator model is, by design, xtmauﬁ(yt/ ), where ¢, is the standard deviation
of the set of observed y; (We note that the GAN approach is not sensitive, within reason,
to this value (it is, in effect, a constant in the update equations), and we discuss its setting
later in the paper.). For true values of y,, v/27t0,L(yy ) is maximized. The generator tries
to ‘fool’ the discriminator by generating G, such that the /2710, £(Gy ) is maximized. The
loss function for the generator, L, is as in Equation (2). The discriminator network, on the
other hand, attempts to differentiate between true y, values and the pseudo-values created
by the generator. The loss function for the discriminator, Lp, is as in Equation (3). We note
that the lowest value of the discriminator loss is achieved when /2710, £ () is maximal
(unity), and £(Gy (xt,zg)) is minimal (zero).

L =E. p,z)[—L(Gr(xt, 25))], 2
Lp =By p, . [IXV2710,L(yy) — x: [P+
E.p, () [x: V27102 L(Gy (%1, 29) ) |17]- ®)

Our algorithm, thus, follows the steps in Algorithm 1 below.
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Algorithm 1 MD-CGAN Algorithm.

1: for number of training iterations do

2 for j steps do do

3: Sample N noise samples, {z!,...z"} from p,(z)
4

5

Sample N data points, {x',...xN} from pga¢ (x)
Update the discriminator by descending its stochastic gradient:

N
Vo, 3 [Ix"v2mo £(y™) — x| 2+

n=1

Ix"V270,£(G (2™, x")) |

6: end for
. Sample N noise samples, {z!,...,z"} from p,(z)
8: Update the generator by descending its stochastic gradient:

N
Vo, Y. —L(G(z",xM))
n=1

9: end for

4. Experiments
4.1. Comparison with Other Learning Models

To provide a range of comparisons to methods related to this work, we compare our
MD-CGAN model to the following baseline methods: the Mixture Density Network model
(MDN), chosen to baseline mixture density outputs against [16]; the CGAN model, chosen
as a well-known GAN approach [2]; and a “standard” Multi-Layer Perceptron (MLP)
neural network (SNN) as a simple, yet effective, baseline. As a more traditional, parametric,
benchmarking model, we use regular (linear-Gaussian) Auto-Regressive (AR) models [17],
with parameters obtained by standard least-squares maximum-likelihood estimation. To
promote as fair comparison as possible for the nonlinear methods, we use a common
neural network architecture across core components in the models, choosing the neural
network structure commonly used for GAN models in recent literature [2]. We do not alter
this structure throughout our experiments, and we keep to fixed hyperparameter settings
(guided by those used in Reference [2]). Figure 3 provides a schematic of the structure
used. We note that, whilst the lengths of the input and output vectors are dependent on
the model, the structure of all networks remains constant.

4.2. Details of Implementation

All models were coded in the Python language, and we use the Keras library [18] to
build the neural networks.

The neural networks in Figure 3 follow the structure of the CGAN model detailed
in Reference [2]. The hyperparameters in the models were set as follows: for the discrimi-
nator, both in CGAN and MD-CGAN, the dropout parameter is set to 0.4, and alpha for
the leaky ReLU is set to 0.2. For the generator, the dropout rate is set to 0.5, and alpha for
the leaky ReLU is, again, 0.2. The parameter governing the number of neurons, 7, in the
dense layers of the neural network modules is set to 40. The variance parameter, 0, in the
MD-CGAN models is set to 0.2. During training, we follow the steps of Algorithm 1 and
set j to 1 for all datasets.

The number of training iterations is, however, specific to model and dataset. With the
exception of the GAN models, we monitor the errors, until they reach saturation during
training. For the GAN models, in which both the generator and the discriminator have a
loss value per iteration, we monitor the average sample error from the training data and
continue iteration until the errors reach saturation.

In all models, we optimize parameters using the Adam optimizer [19], with learning
rate set to 0.001, exponential decay for the first momentum set to 0.9, exponential decay for
the second momentum set to 0.999, and epsilon set to 10~7.
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Figure 3. Common Neural Network structure used across all models.

4.3. Data

We perform experiments on ten datasets with differing provenance, including Mackey-
Glass chaotic dataset [20], the Sunspot dataset [21], and eight financial time series. We
first look at the one-step forecasting and the issue of (test set) noise resilience, focusing on
controlled experiments with the Mackey-Glass and Sunspot datasets (Section 4.4). We then
expand our experiments to consider the financial datasets and increased forecast horizon
in Section 4.5.

For all datasets we use, the time series is split into training and out-of-sample test
sets. The training datasets in all our experiments are comprised of 2000 samples, and
all test sets consist of 400 sequential data points post the training set. All performance
metrics are obtained from the test set only. To enable a simple comparison across all
models and datasets, we keep a fixed lookback window of data as input. All models are,
therefore, provided, as input, with the last k data points, set to k = 5 for the purpose of
all our experiments. Of course, in practice, the lookback window (or other observation
vector) would be optimized for a model and dataset, typically using shrinkage, model-
complexity penalties or cross-validation methods [16]. Our goal in this paper is to showcase
like-for-like performance when exactly the same observation vector is available across all
models. We run both an AR(5) model (corresponding to the common k = 5 observation
vector) and, as a martingale baseline, the AR(0) model, in which the forecast is simply the
previous observation. All datasets are pre-normalized to the [0,1] interval, again to allow
for simpler comparison across data and methods. We further note that both the CGAN
and SNN models make point estimate predictions, whilst MD-CGAN and MDN estimate
posterior distributions. To enable a simple comparison across models, therefore, we report
the mean-square error (MSE) for all methods. The number of mixture components, m, in
both MD-CGAN and MDN is set to unity (we vary this in Section 4.6), to further ease
comparison across models, some of which produce a probability distribution at output
and others point values. The posterior mean of the predictive distribution is taken as
the forecast value for both the MDN and MD-CGAN models for the purposes of point-
prediction error reporting. Selecting m > 1 for the MD-CGAN and MDN methods would,
in principle, be possible, but, as the posterior distribution is non-Gaussian (it is a mixture
of Gaussians), the associated error metric is no longer a simple MSE, making like-for-like
comparison to other approaches difficult.
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4.4. One-Step Forecasting

Mackey-Glass and Sunspot time series: We start our experiments looking at one-step
ahead forecasts on two well known datasets, the Mackey-Glass chaotic time series [20]
and the Sunspot dataset [21]. We consider one-step forecast errors in the presence of
increasing test set noise. We add 5% to 30% (by amplitude) normally distributed noise
to the test data (from a GAN perspective, these input perturbations are, in effect, treated
similarly to adversarial attacks). However, a true adversarial attack has an intelligently
chosen perturbation to maximize malicious impact. We note that no noise (perturbation) is
added to the training dataset. Mean Square Errors (MSE) are presented in Tables 1 and 2
and Figure 4 for all algorithms considered. For both datasets, we see that MD-CGAN has
the best performance for noise levels of 10% and above. Indeed, we see that the GAN
models (particularly MD-CGAN) perform consistently well (especially in the Mackey-Glass
example) across multiple noise levels, indicating that the approach is particularly resilient
to additive observation noise. This is to be expected, as GAN approaches treat the additive
noise as adversarial perturbation to the input, against which they are designed to be robust.

In the next section, we investigate model performance at longer forecast horizons,
mainly in the finance domain, which is known to contain variable amounts of stochasticity.
Financial times series are often dominated by stochastics, and we expect GAN approaches
to be well-suited to forecasting in these circumstances.

Mackey-Glass Dataset Sunspot Dataset
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Figure 4. Comparative MSE plots with increasing test set noise perturbation. We note that the GAN-based methods,
particularly MD-CGAN, perform consistently even as noise levels increase.

Table 1. Mackey-Glass data: MSE variation with added noise level, with standard deviations in parentheses.

0% Noise 5% Noise 10% Noise 15% Noise 20% Noise 25% Noise 30% Noise
AR(0) 0.0020 0.0042 0.0133 0.0246 0.0418 0.0624 0.0951
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
AR(5) 41 x10°° 0.2794 1.1558 2.6581 4.4868 7.3152 10.1527
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
SNN 0.0014 0.0047 0.0242 0.0519 0.0570 0.1013 0.1640
(0.0000) (0.0001) (0.0015) (0.0014) (0.0021) (0.0023) (0.0099)
CGAN 0.0036 0.0061 0.0155 0.0240 0.0259 0.0347 0.0360
(0.0002) (0.0004) (0.0009) (0.0009) (0.0013) (0.0012) (0.0012)
MDN 0.0002 0.0064 0.0278 0.0589 0.0780 0.0980 0.1402
(0.0000) (0.0001) (0.0007) (0.0011) (0.0012) (0.0012) (0.0011)
MD-CGAN 0.0026 0.0044 0.0126 0.0165 0.0197 0.0233 0.0264
(0.0001) (0.0002) (0.0002) (0.0004) (0.0007) (0.0008) (0.0006)
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Table 2. Sunspot data: MSE variation with added noise level, with standard deviations in parentheses.
0% Noise 5% Noise 10% Noise 15% Noise 20% Noise 25% Noise 30% Noise
AR(0) 0.0080 0.0109 0.0200 0.0262 0.0494 0.0795 0.0974
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
AR(5) 0.0068 0.0081 0.0137 0.0138 0.0226 0.0314 0.0409
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
SNN 0.0114 0.0132 0.0154 0.0201 0.0335 0.0401 0.0536
(0.0004) (0.0006) (0.0008) (0.0009) (0.0014) (0.0022) (0.0025)
CGAN 0.0137 0.0143 0.0149 0.0161 0.0228 0.0269 0.0266
(0.0002) (0.0008) (0.0012) (0.0010) (0.0022) (0.0021) (0.0023)
MDN 0.0105 0.0140 0.0161 0.0263 0.0384 0.0592 0.0758
(0.0000) (0.0008) (0.0013) (0.0013) (0.0018) (0.0023) (0.0017)
MD-CGAN 0.0093 0.0096 0.0113 0.0126 0.0159 0.0194 0.0203
(0.0001) (0.0002) (0.0002) (0.0002) (0.0003) (0.0006) (0.0007)
4.5. Forecasts over Longer-Horizons
One-step forecasts were presented in Section 4.1. Here, we extend analysis over longer
horizons. All models make estimates over a horizon of ten weeks for an extended set
of financial time series, namely: U.S. initial jobless claims (USIJC, weekly intervals [22]);
EURUSD foreign exchange daily rates (EURUSD FX rate [23]), WTI crude oil spot prices
(WTI [24]), Henry Hub Natural Gas spot prices (Nat Gas [24]), CBOE Volatility Index
(VIX [25]), New York Harbor No. 2 Heating Oil Spot Price (Heating Oil [24]), Invesco DB
U.S. Dollar Index Bullish Fund (USD Index [26]), and iShares MSCI Brazil Small-Cap ETF
(EM ETF [27]), as well as two other time series: Number of daily births in Quebec (DBQ, [28])
and minimum daily temperatures in the city of Caribou, Maine, USA (MDT [29]). We
forecast over a ten-week horizon, representing a 50-step forecast for the daily datasets (FX,
WTI, Nat Gas, VIX, Heating Oil, USD Index, EM ETF, DBQ, and MDT), and 10 steps for the
weekly USIJC dataset. Our comparisons, as previously, include standard econometric linear
models, namely the 5-th order autoregressive, AR(5), model and the martingale, or AR(0)
model, in which the forecast is the last observed datum. Taking the martingale model as a
baseline, we present in Table 3 the mean-square errors as the ratio to the martingale model
error. We note that the MD-CGAN approach delivers ratios below unity and provides the
lowest error of almost all models in this scenario.
Table 3. Ratio of model MSE to martingale, AR(0), baseline model over 10-week forecast horizon.
usIjc EURUSD FX Rate WTI Nat Gas VIX Index Heating Oil USD Index EM ETF DBQ MDT
AR(5) 0.78 191 0.85 1.01 0.71 0.82 124 0.89 0.56 0.65
SNN 0.79 1.25 0.89 0.94 0.71 0.93 1.34 0.82 041 0.64
CGAN 0.77 0.85 1.53 1.07 0.91 0.54 137 0.69 0.66 0.69
MDN 0.84 3.48 148 113 0.77 0.89 0.68 0.81 045 0.62
EAQAN 0.73 0.76 0.80 0.82 0.66 0.59 0.54 0.65 0.38 0.61

4.6. Multi-Modal Posterior Predictions

Finally, we compare the performance of MD-CGAN over varying numbers of mixture
components. In all the previous experiments, we set m = 1 (hence, the model produced a
single predictive Gaussian posterior). Here, we briefly present the results for the finance
datasets with m € {1,2,3}. We report (negative) log-likelihood measures (as we do not
compare against point-value models in this section) and consider one-step forecasts on
all the datasets. Table 4 presents the performance across datasets for varying numbers of
mixture components in the posterior prediction. Figure 5 shows the predicted distribution
for the test datasets for Nat Gas and Vix Index.

We note performance improvement for some datasets for m > 1. We do not attempt
to infer m, though choosing its value based on performance on a set of cross-validation
data would be an option, as would enforcing regularization over the mixture model
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posterior, through more extensive use of Bayesian inference. We leave these extensions for
future research.

Table 4. Negative log-likelihood variation with m, with standard deviations in brackets.

ife EURUSD FXRate ~ WTI  NatGas  VIX Index Heating Oil ~ USDIndex  EMETF DBQ MDT
m=1 —1.01 ~1.79 —1.75 —128 ~1.50 ~1.63 —0.65 ~1.26 —0.62 —0.82
(0.02) (0.08) (0.09) (0.04) (0.05) (0.06) (0.05) (0.05) (0.01) (0.02)
m=2 ~1.05 ~0.98 —124 ~1.33 ~1.39 ~137 ~0.83 ~1.10 —0.69 ~0.85
(0.04) (0.05) (0.02) (0.02) (0.04) (0.03) (0.05) (0.03) (0.02) (0.03)
m=3 ~1.09 —0.67 ~1.33 ~125 ~148 ~135 ~0.86 ~1.09 ~0.67 —0.91
(0.02) (0.04) (0.06) (0.02) (0.03) (0.02) (0.07) (0.05) (0.02) (0.03)

|
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Figure 5. Estimated distributions for (left) Nat Gas with m = 2 and (right) VIX index with m = 1 over out-of-sample test

datasets. True samples are shown as white dots. Red indicates high data likelihood, and blue data low likelihood, under the

MD-CGAN model.

5. Conclusions

In this paper, we present the MD-CGAN model, which offers extensions to the
CGAN [2] methodology, particularly to allow for GAN inference of a (multi-modal) poste-
rior distribution over forecast values. Our approach uses a CGAN-like approach to infer the
hyperparameters of a Gaussian Mixture model posterior, and we find that the MD-CGAN
approach outperforms other methods on all datasets in which noise is prevalent, including
all the financial time series investigated, over long-term forecast horizons. Although the
method performs well across all tested datasets, in cases in which strong correlations exist
in the time series and little noise is expected at test time, alternative forecasting methods
(including neural networks and a range of parametric models) may perform equally well.
As a GAN model, our approach retains “adversarial” robustness to data perturbations
when forecasting. We find this is most notable when noise is extensively present in data.
Our method is, thus, particularly well suited to dealing with financial data. Furthermore,
MD-CGAN can effectively estimate a flexible posterior distribution, in contrast to standard
GAN models which (almost without exception) produce point value outputs. Exploiting
this rich, multi-model, posterior distribution is not reported in detail here but will be
featured in follow-up work. In the experiments reported here, “adversarial” perturbations
of the observed test data are due to stochastics in the data, rather than carefully planned ma-
licious attacks. Assessing the performance of the model in data with optimized adversarial
attacks is an interesting avenue of future research that might be of value in finance, where
“spoofing” is often prevalent. In this paper, we do not optimize the lookback window or
the structure of the MD-CGAN model for each dataset. Optimization of lookback, and
performing neural architecture search, is an interesting avenue for future research, likely to
improve performance on a dataset by dataset basis. In summary, the MD-CGAN model
combines the advantageous features of both flexible probabilistic forecasting and GAN
methods. We see this as a particularly useful approach for dealing with time series in
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which noise is significant and for providing robust, long-term forecasts beyond simple
point estimates.
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