
signals

Article

DXN: Dynamic AI-Based Analysis and Optimisation of IoT
Networks’ Connectivity and Sensor Nodes’ Performance

Ihsan Lami * and Alnoman Abdulkhudhur *

����������
�������

Citation: Lami, I.; Abdulkhudhur, A.

DXN: Dynamic AI-Based Analysis

and Optimisation of IoT Networks’

Connectivity and Sensor Nodes’

Performance. Signals 2021, 2, 570–585.

https://doi.org/10.3390/

signals2030035

Academic Editor: Costas Chaikalis

Received: 14 May 2021

Accepted: 31 August 2021

Published: 3 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computing, The University of Buckingham, Buckingham MK18 1EG, UK
* Correspondence: ihsan.lami@buckingham.ac.uk (I.L.); alnoman.abdulkhudhur@buckingham.ac.uk (A.A.)

Abstract: Most IoT networks implement one-way messages from the sensor nodes to the “application
host server” via a gateway. Messages from any sensor node in the network are sent when its sensor
is triggered or at regular intervals as dictated by the application, such as a Smart-City deployment
of LoRaWAN traps/sensors for rat detection. However, these traps can, due to the nature of this
application, be moved out of signal range from their original location, or obstructed by objects,
resulting in under 69% of the messages reaching the gateway. Therefore, applications of this type
would benefit from control messages from the “application host server” back to the sensor nodes for
enhancing their performance/connectivity. This paper has implemented a cloud-based AI engine, as
part of the “application host server”, that dynamically analyses all received messages from the sensor
nodes and exchanges data/enhancement back and forth with them, when necessary. Hundreds of
sensor nodes in various blocked/obstructed IoT network connectivity scenarios are used to test our
DXN solution. We achieved 100% reporting success if access to any blocked sensor node was possible
via a neighbouring node. DXN is based on DNN and Time Series models.

Keywords: IoT; AI-based engine; LoRaWAN; network connectivity performance; sensor nodes
performance; DNN; time series; network load optimisation; activity-based optimisation; transmission
scheduling optimisation

1. Introduction

Artificial Intelligence (AI) provides the ability to make decisions without the interac-
tion of humans which makes it attractive for “network traffic monitoring and management”.
AI engines are used for IoT applications for predicting, amongst others, the changes in the
collected application data (e.g., temperature and humidity readings). Another use is for
predicting the behaviour of the IoT Sensor Nodes (SN) (e.g., signal strength and power
levels). Therefore, AI can be the best QoS tool for IoT networks by forcing certain SNs to
behave in a certain way to mitigate certain networking issues (e.g., re-routing) [1].

Deployment of some LPWAN (Low Power WAN) technologies such as LoRaWAN
(Long Range WAN) demonstrates that there are real-time implementational issues, depend-
ing on the application and the SN deployment method, such as: (1) limited connectivity
time for any one SN as more and more SNs added to the network due to the duty-cycle
restriction [2], (2) SN signals can be blocked by obstacles especially for indoor connectivity
scenarios [3], and (3) SNs can be moved around to a different location where it becomes
out of range of the Gateway (GW) [4]. Feedback from actual deployments, such as the rat
trap application example mentioned earlier, reveals some serious issues of this nature that
need intelligent addressing.

Therefore, we believe that IoT networks would greatly benefit from an AI controller
that studies all the received messages data of the network to mitigate/overcome these
challenges in real-time. For the above three issues, the AI controller can put some non-
active SNs to sleep to ease the duty-cycle restriction. Moreover, to overcome the “out of
range” issue (i.e., an SN becomes too far away from the gateway) and/or when an “obstacle

Signals 2021, 2, 570–585. https://doi.org/10.3390/signals2030035 https://www.mdpi.com/journal/signals

https://www.mdpi.com/journal/signals
https://www.mdpi.com
https://doi.org/10.3390/signals2030035
https://doi.org/10.3390/signals2030035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/signals2030035
https://www.mdpi.com/journal/signals
https://www.mdpi.com/article/10.3390/signals2030035?type=check_update&version=2

Signals 2021, 2 571

presents itself in the SN signal path”, the AI system can mitigate these issues by arranging
for a neighbouring SN to temporarily act as a bridge node for reaching the blocked SN
message to the GW. Furthermore, this AI controller will make sure, independent of human
help, that the nodes carrying out the bridging will maintain connectivity without running
out battery power and that load-balance with other neighbouring SNs is achieved before
the situation is rectified.

The proposed DXN AI-based engine detailed in this paper performs real-time anal-
ysis/monitoring of the collected data from all messages of the network and then make
live decisions to change the behaviour of certain SNs as necessary to overcome any of the
connectivity issues noted above.

The remaining of the paper is organised as follows: Section 2 summarises the most
recent literature that we have chosen to review here; Section 3 details the DXN implemen-
tation with the test case scenarios/experiments and the obtained results; and finally, this
work is concluded in Section 4.

2. Literature Review

The current expansion of the IoT SN devices and the communication technologies
to support them necessitates the emergence of more scalable IoT networks. Current IoT
networks/applications are limited because the “things”/SN devices have to be low-power
and cheap. Moreover, the LPWAN technologies suffer from a limited data bandwidth
due to duty cycle restrictions. Furthermore, most IoT networks are deployed as a star
network (in a one-way communication). This is limiting, in that they lack the feedback
mechanism that is used for application data purposes and can be used for enhancing the
networking QoS.

We found that the literature contains attempts of researchers in LPWAN to improve IoT
networks by inserting relay/repeater nodes in the network to improve their connectivity.
Much of the literature focuses on the limitations of the LPWAN in general and LoRaWAN
in particular. When in some deployment scenarios, certain SNs fall out of the GW’s reach
due to reasons such as communication range and/or signal blockage due to obstacles
or interference. The following is of a subset of the papers that we reviewed which have
contributed to the design of our DXN solution.

Utilising the communication between the SNs and the host server was addressed
by proposing a clustering technique for Machine-to-Machine (M2M) devices in an IoT
network [5]. The technique was based on forming the clusters and selecting the Cluster
Heads (CH) based on three factors: the node’s energy availability, interest ties (the relation
strength between the M2M devices), and physical ties (the physical proximity and the
communication link quality of the M2M devices). Once the cluster and the CH are formed
and selected, these factors and sensor readings will be transmitted to the network host
server via the CH. The host server (User) can use this information to make new decisions
if necessary. This idea is similar to our DXN solution in the sense of creating a two-way
relationship between the network and the host server where the collected information can
be used to generate feedback to the network.

Proposing a relay mechanism is not something new; many proposals [6] have sug-
gested using special devices such as repeaters (mostly are mains powered) in a fixed
architecture deployment scenario. Others suggest deploying extra GWs. This makes it
challenging to implement such solutions efficiently using regular LoRa SNs (small battery-
powered expected to last for many years). Because these SNs have limited resources, there
is no synchronisation between them, and they are sending/receiving at different times
using different channels that are selected randomly. However, there was an attempt to
facilitate a regular relay node dedicated to helping other SNs (end SNs) that are struggling
to reach the GW [7]. These relay SNs are responsible for synchronising and forwarding
messages from end SNs when they fail to reach the GW directly. To achieve this, two
channels will be defined for every SN in the network. The relay SNs will be scanning
these two channels every 500 ms separately. Before an end SN sends its packet, it will send

Signals 2021, 2 572

a “wake-up sequence” (WS) message transmitted in an implicit header mode (no PHY
header to minimise the overhead) on one of these channels. The WS message includes the
randomly selected channel and data rate that the end SN will be using for the upcoming
packet transmission, plus the time of the transmission. Once this WS message is received
by a relay node, it can go back to sleep mode and later wakes up to the right channel/data
rate just before the arrival of the end SN packet. When that packet arrives, the relay SN
will acknowledge it first and then will encapsulate and forward it to the GW. The end SN
will go back to sleep mode as well and open a receive window after 17 s to receive the
acknowledgement (Ack) from the GW through the relay SN. The authors claim that the
relay SN’s Ack message will include timing correction information to sync the end SN
clock. This proposed method claims that with the relay SN sensing the two channels every
500 milliseconds, then the battery capacity for 5 years of operation will be 2.88 Amp.hour
(A.h). Furthermore, for an end SN that transmit every 30 min, the battery capacity will be
0.16 A.h, which can be reduced to 0.08 A.h in case it transmits every 6 h. Although the
method is based on using relay SNs with regular resources just as a typical LoRa SN, it
is still fully dependent on these dedicated relay SN devices. That means that these relay
SNs need to be strategically deployed in order to be useful. Therefore, it is less suitable for
dynamic SN deployments, or the environment of the application changes the SN positions.
Furthermore, this method suggests dedicating two channels for the handshake, and once
these channels are used, they will be unavailable to use again for a certain amount of time,
due to the duty cycle restrictions. Therefore, in the case of more than two end SNs available,
they will be unable to use these channels. However, this work has inspired us to focus on
enhancing regular SNs that can be adjusted as needed, on the go, to perform the bridging
instead of a dedicated relay SN.

The first inspiration for DXN came from an AI-based project to enhance the security
of IoT devices against malware attacks [8]. This is because SNs are very vulnerable to all
forms of breach as, by design, they are simple with minimum resources and so include
minimum protection in pursuit of maximum battery life. This paper proposes a scheme that
continuously analyses the information received from the IoT network SNs. The AI engine
tries to detect anomalies in the SN’s code behaviour in comparison with its neighbouring
SNs, in case the SN’s code has been tampered with by a hacker. This AI engine is based on
a CNN model and is located at the host server in the cloud. This scheme claims to work
irrespective of the connectivity technology/protocol of the IoT network. This scheme is
achieved by first inserting debugging code, which runs on the assembly language code,
in each of the SNs in the network. This debugging code helps to identify the code flow
of the received messages from these SNs. Once the messages are received at the server,
the process will extract features from the received code of every SN, including features
such as its memory used, network type, system calls, etc., into a CSV file. The process then
converts these extracted SN features into vectors represented as unique images (similar to
creating QR images that have embedded information to be interpreted by the reader). The
process concludes by AI analysis by the ZFNet, a CNN based model [9], to determine if
an attack has been carried out. Therefore, once the scheme detects a suspicious code from
any SN, it will prevent the data from being used by the application, and so prevent an
attack from taking place. This scheme is dynamic in terms of processing and analysing the
data received from the SNs continuously in real time. Thus, it claims to achieve a malware
detection accuracy of 99.28%. In addition, the use of an AI engine helped to identify not
only the attacks that have been trained with but also identifying new evolving attacks. This
has inspired us to think about implementing an AI engine based in the cloud to conduct a
continuous live analysis of the IoT network messages for our solution.

In pursuit of reducing battery energy spent by SNs communicating localised messages
about whatever they sensing to the GW of an IoT network, the following article has imple-
mented a smart clustering algorithm that balances the connectivity load of the SNs [10].
This will keep the various SNs in the network alive longer as they proved in their testing.
The authors have proposed a dynamic Cluster Head Sensor Node (CHSN) allocation based

Signals 2021, 2 573

on the cluster network activity and traffic based on a set criterion. This means that no one
CHSN will drain down its energy handling the communication for its cluster SNs. This has
also improved the message slots allowance, eliminating any unnecessary communications
within the cluster. The load balancing algorithm used for the clusters is considered as
an improvement to the existing LEACH clustering algorithm [11] (a technique based on
selecting new CHSN each round within the cluster based on their energy levels). This
implementation categorises the SNs based on their energy level, location and neighbouring
SNs. This information is obtained from the accumulated database (located in the cloud and
updated by CHSNs each round) by a fuzzy logic-based controller (a model that has the
ability to recognise, represent, and utilise data that is vague). The actual SN data collected
by its CHSN include the SN’s identifier, location, remaining energy level, average distance
to neighbours and distance to the GW. Therefore, their proposed controller will, for each
of the clusters in the network, generate a queue of all the potential CHSNs in descending
order from the most capable to the least. Based on that, a new CHSN will be selected, and
in its turn, it will broadcast a join request to the rest of the SNs in its cluster. Finally, and
based on the available clusters and their sizes, this controller will create a scheduling table
for message transmission for all SNs in every cluster. This schedule is sent to all SNs and is
designed to control the SNs random transmission, by syncing messages of any cluster’s SNs
at specific time slots. Therefore, the CHSN and its associated SNs will have less wake-up
time than before. The results of their test scenarios claim an improvement in the SNs’
battery lifetime of up to 200% when compared to other conventional clustering techniques
(LEACH-PSO [12] and LEACH). This work has inspired us that clustering techniques are
the way to go in our DXN. We believe that clustering coupled with an AI engine analysis
would be a powerful implementation to reduce the unnecessary communication traffic and
preserve the power consumption of SNs.

Another study of clustered networks was conducted and claimed that 60–80% of
the total power consumption of the whole network is consumed by the CHSN nodes
themselves [13]. This next work solves this issue. It is interesting to us because it uses two
wireless connectivity technologies (LoRa and Zigbee) to cluster SNs before reaching the
GW. This is mainly to increase the range of the IoT network coverage to a larger network
as well as making its management scalable (and so to reduce CHSN power wasting).
LoRa SNs are used to connect tail-end clusters of ZigBee SNs network to transmit their
data to a remote GW using the long-range capability of LoRa. Furthermore, the authors
deployed an AI model to help analyse the deployment to propose a better network control
for the active/sleep periods of the LoRa SNs in the network. This AI engine predicts the
fluctuation in the collected data to identify the periods when each SN needs to be active or
sleep. Their proposed AI model was trained on a dataset generated by collecting data from
various similar IoT networks. Using this dataset in an Interrupted Poisson Process (IPP)
(a discrete probability distribution that calculates the probability of occurrence of a number
of given events in a fixed period of time) will help in describing the traffic requirement for
each SN (i.e., searching for the optimal transmission threshold and transmission rate). This
information is indexed at the GW and then sent to each corresponding SN. Therefore, the
GW will be able to adapt to any changes, for instance, if any SN’s packet generation rate
decreases, then based on the IPP outputs, the GW needs to apply a smaller redundancy
threshold to that SN to reduce the power consumption. The GW also holds records of the
active periods for each SN, so to be analysed by a shallow (a single layer) Recurrent Neural
Network (RNN) to predict the trend of that SN’s activity. This way, the GW will be able to
adjust the sleeping/active strategy for each SN over time regardless of any sudden changes.
Therefore, CHSNs will only be active at peak times. The paper quoted that, by using this
model, LoRa SNs are saving one half of their energy compared to staying active all the
time. This is an interesting approach that showed how AI-based network traffic analysis
can impact battery power consumption which is very important for IoT devices. Therefore,
this inspired us to include SNs’ activity in relation to the environment where each SN is
placed in our clustering technique design.

Signals 2021, 2 574

A level of intelligence can be implemented onboard SNs that will lead to balancing the
load on the supporting GW (in terms of the number of SNs connecting/transmitting data
through a GW at any one point in time). In LoRa, the duty cycle function inside SNs allows
a GW to accommodate thousands of SNs at the same time. Moreover, this capability of
connecting lots of SNs to a GW can be achieved either randomly or fixed. However, when
using different types of SNs (including different types of sensors or transmitting at different
intervals), it can create an imbalance in the load at the supporting GW level (traffic issue
rather than SN numbers). A Game Theory (GT)-based intelligent engine was proposed to
be implemented onboard the SNs to help each SN to select suitable GW among multiple
available GWs for relaying its messages [14]. This approach uses a reputation model (rating
GWs based on the transmission rate and time). This is based on feedback from SNs to
evaluate the connectivity between the SN and the network server for the used GW. This
approach will determine how successful a GW is in relaying data between the connected
SNs and the network host server. By using Bayesian Game (BG) strategy (a strategy where
participating players (the SNs) do not have information about other participating players,
but they depend on their beliefs to make a decision to maximise their rewards), SNs will
estimate the time required for transmitting their uplinks with the used power transmission.
Then, based on how good the GW performs against this time estimation, SNs will give
feedback to the GW that will be reconsidered in the reputation model. The network server
will keep/update a record of all the GWs’ reputations, and whenever it receives an uplink
from any SN, it will reply to it with a reward. High rewards are given for SNs that use
GWs with low reputation, and low rewards are given for SNs that use GWs with high
reputation, so to balance the load among GWs to transmit their data through it. The goal of
each SN is to collect as many rewards as possible while maintaining a good connection to
the server. This will maintain a load balance across all the available GWs. This approach
was compared with both random and fixed SNs allocation in terms of Packet Delivery
Ratio (PDR) and Packet Delivery Delay (PDD). The results claim that the reputation scoring
model has achieved best with a PDR of 98% and a PDD of 15%. We believe that it is useful
to include a load balancing model in our DXN solution to prevent the load imbalance at
any bridging SN available within the range of more than one blocked SN.

The following section describes the compound features of DXN that we have adopted
to ensure it delivers performance enhancement most suited to IoT networks, focusing on
LoRaWAN deployments.

3. Design, Implementation and Test of the DXN Engine

Since this project is focused on the wireless connectivity of sensor nodes in an LPWAN
IoT networking, our original idea behind DXN is to introduce a dynamic SNs QoS manage-
ment inside the host-server to feed the SNs with control messages to make new networking
(connectivity/traffic/routing) decisions for the SNs’ messages. The implemented DXN
is an AI-based engine that constantly collects data, analyses them, creates relations and
statistics, forwards them to the network controller to then feedback control messages to
SNs, and so on.

3.1. Why DXN

Note that some of the scenarios to the issues raised here are illustrated in detail in
Sections 3.4.1–3.4.3.

Figure 1 shows a screenshot of SNs’ generated/sent data received by the host server
in our deployed LoRaWAN IoT network (for example, the first column in the screenshot
contains the SN address to communicate with the relevant SN, the second column contains
the address of the end node in case the message is being forwarded, plus other information
such as energy level to estimate its remaining battery life, RSSI, location, etc.). If these
kinds of data are fed to an AI-based engine, there is potential to enhance the QoS of the
network by continuously analysing the collected data. An AI engine will be able to make
decisions that can be fed back to the SNs to adapt/change their behaviour according to the

Signals 2021, 2 575

connectivity status of the network at that time. This will overcome certain networking QoS
issues, such as:

1. When more than one middle/bridging SN is available nearby in the vicinity of
an SN that is either blocked or out of GW reach, DXN will decide which of these
middle/bridging SNs is used to forward through the messages of the blocked node.
This will balance the connectivity amongst middle/bridging nodes without overusing
certain bridging SNs more than others.

2. By analysing the transmission configurations used by each SN (for example, the used
Spreading Factor (SF) or the used LoRaWAN frequency channel), DXN can change
these configurations or update the frequency channels list for any SN that is affected
by a harsh signal environment to prevent jitter or packet loss.

3. To maintain a healthy IoT network with minimum duty cycle restrictions, DXN
can adjust the sleep/active times for each SN in the network based on its current
transmission/relevance status, or the environment status. The rhythm of SN activity
may change in some networks from time/environment to another, especially in
agricultural applications, for example.

4. Furthermore, to point (3) above, by analysing the trend of the collected data, the
activity of SNs could be predicted, and then “activity” will become an effective factor
in SNs clustering for better network management, and load-balancing on any chosen
middle/bridging node.

5. The AI engine productivity could be increased further by including simple extra
information data within the SNs packets as inputs that will have a huge impact.
However, including such extra information, data should be based on a considerate
study to balance between the effort of the SNs and the improvement impact on the
connectivity of the whole network. Examples of such data are:

• Security, adding security details to help detecting/preventing certain attacks.
• Priority, including priority details to help deciding the response/process time

compared to others.
• Type, including the SN type in the hybrid deployments, to help utilise each SN

type efficiently.
• Location, including location details to help make decisions that suit certain areas,

such as deploying extra or fewer SNs.
Signals 2021, 2 FOR PEER REVIEW 7

Figure 1. Screenshot of the database used by DXN at the host server.

3.2. The Problem Statement

We believe that to conduct any project implementation, it is best to have a real-time

actual deployment to evaluate the results, and the implemented software and hardware

features. For this project, we chose a partner company’s LoRaWAN IoT deployed network

to solve two main issues they have: (1) range, where SNs might either be deployed out of

the GW’s range, or maybe moved its position after the deployment, and (2) access, where

any SN is unable to reach the GW due to its signal being obstructed by something (tall

building/trees) or medium interference.

Once the situation is analysed, we decided to implement the features listed in Section

3.2.1 so as to be able to solve most of the issues listed in Section 3.1.

3.2.1. DXN Features

Based on the AI-based engine’s potentials, studying the reviewed literature, along

with the issues defined in the problem statement Section 3.2, we decided on the following

features that will be implemented and tested for the focus of this paper:

1. Bridging optimisation: balance the network usage by dynamically identifying new

routes (MNs) for any blocked SN if available.

2. Activity optimisation: balance the activity of the network by adjusting the SNs’ Tx

Intervals based on their activity in the geographical region.

3. Transmission Scheduling: schedule the transmission time for each blocked SN in the

network to reduce its listening (wake-up) time (save battery) to the minimum.

3.2.2. Bridging Algorithm

The fundamental protocol for DXN is the addition of features to each SN LoRaWAN

protocol:

1. Every SN will wake up as intended/scheduled to try sending its message to the GW

in normal Class A mode (maintaining normal Class A frequencies and duty cycle

restrictions). If unsuccessful after three tries (no Acknowledgment message re-

ceived), it will switch itself to a Class C mode (listening mode frequency). We label

such blocked SN node as an EN.

Figure 1. Screenshot of the database used by DXN at the host server.

Signals 2021, 2 576

3.2. The Problem Statement

We believe that to conduct any project implementation, it is best to have a real-time
actual deployment to evaluate the results, and the implemented software and hardware
features. For this project, we chose a partner company’s LoRaWAN IoT deployed network
to solve two main issues they have: (1) range, where SNs might either be deployed out of
the GW’s range, or maybe moved its position after the deployment, and (2) access, where
any SN is unable to reach the GW due to its signal being obstructed by something (tall
building/trees) or medium interference.

Once the situation is analysed, we decided to implement the features listed in Section 3.2.1
so as to be able to solve most of the issues listed in Section 3.1.

3.2.1. DXN Features

Based on the AI-based engine’s potentials, studying the reviewed literature, along
with the issues defined in the problem statement Section 3.2, we decided on the following
features that will be implemented and tested for the focus of this paper:

1. Bridging optimisation: balance the network usage by dynamically identifying new
routes (MNs) for any blocked SN if available.

2. Activity optimisation: balance the activity of the network by adjusting the SNs’ Tx
Intervals based on their activity in the geographical region.

3. Transmission Scheduling: schedule the transmission time for each blocked SN in the
network to reduce its listening (wake-up) time (save battery) to the minimum.

3.2.2. Bridging Algorithm

The fundamental protocol for DXN is the addition of features to each SN
LoRaWAN protocol:

1. Every SN will wake up as intended/scheduled to try sending its message to the GW
in normal Class A mode (maintaining normal Class A frequencies and duty cycle
restrictions). If unsuccessful after three tries (no Acknowledgment message received),
it will switch itself to a Class C mode (listening mode frequency). We label such
blocked SN node as an EN.

2. If any SN is successful in reaching the GW, then (after transmitting its own message
on Class A mode and receiving the corresponding successful Acknowledgement
message from the GW) it will transmit a “rescue message” in the Class C frequency, in
the hope that a nearby EN would receive it and reply within its normal Class C single
receive window. We label such a node as an MN. This rescue message will include
a chosen Class A frequency that an EN is expected to transmit its message on, and
which this MN will be listening to during the “receive window”.

3. If steps 1 and then 2 are complete, and if an EN does receive a rescue message on
the Class C frequency, it will transmit its message immediately within the normal
“receive window” timing on the frequency stated in the rescue message. It will then
stay in listening mode at this frequency until it receives an acknowledgement message
via MN. Otherwise, if nothing is received within the user-defined timer (depending
on the network transmission intervals), or if the MN is permanently removed from
the network, the EN will start fresh again from step 1 (i.e., go back being SN, being in
Class A, etc.) as this MN will be considered as an unreliable bridge.

4. If the MN does receive an EN message within the “receive window”, it will forward it
to the GW as a normal Class A message and later it will also forward the Acknowledg-
ment message back to the EN once received, using the pre-agreed frequency stated in
the rescue message.

5. Both MN and EN nodes will go back to sleep and will wake up in Class A for the next
scheduled time as in step 1.

Signals 2021, 2 577

3.3. DXN Algorithms and Suitable AI Engine Implementation

We decided on implementing the following deployment scenario that reflects the
issues mentioned in the problem statement in Section 3.2. As shown in Figure 2A, and
as described in Section 3.2.2, this is a typical IoT network scenario that illustrates some
SNs unable to reach the GW using LoRa. Specifically, SN2–SN4 are shown to be out of
the GW range, therefore, they will switch to listening mode waiting for rescue messages.
SN6–SN11 are directly communicating with the GW as they are within its range, and they
are operating as regular LoRaWAN SNs. On the other hand, SN12 and SN13 are likely
to become bridging SNs (MN1 and MN2) for SN2–SN4 as they are within their reach.
Furthermore, SN1 was connected directly to the GW, but when an obstacle was introduced,
it will become EN1 and will start communicating through its neighbour SN12 (MN1). As
SN5 was moved away from the GW, it also becomes EN5 and started forwarding through
SN13 (MN2). Figure 2B illustrates the deployment after the bridging algorithm took effect.

Signals 2021, 2 FOR PEER REVIEW 8

2. If any SN is successful in reaching the GW, then (after transmitting its own message
on Class A mode and receiving the corresponding successful Acknowledgement
message from the GW) it will transmit a “rescue message” in the Class C frequency,
in the hope that a nearby EN would receive it and reply within its normal Class C
single receive window. We label such a node as an MN. This rescue message will
include a chosen Class A frequency that an EN is expected to transmit its message
on, and which this MN will be listening to during the “receive window”.

3. If steps 1 and then 2 are complete, and if an EN does receive a rescue message on
the Class C frequency, it will transmit its message immediately within the normal
“receive window” timing on the frequency stated in the rescue message. It will then
stay in listening mode at this frequency until it receives an acknowledgement mes-
sage via MN. Otherwise, if nothing is received within the user-defined timer (de-
pending on the network transmission intervals), or if the MN is permanently re-
moved from the network, the EN will start fresh again from step 1 (i.e., go back
being SN, being in Class A, etc.) as this MN will be considered as an unreliable
bridge.

4. If the MN does receive an EN message within the “receive window”, it will forward
it to the GW as a normal Class A message and later it will also forward the Acknowl-
edgment message back to the EN once received, using the pre-agreed frequency
stated in the rescue message.

5. Both MN and EN nodes will go back to sleep and will wake up in Class A for the
next scheduled time as in step 1.

3.3. DXN Algorithms and Suitable AI Engine Implementation
We decided on implementing the following deployment scenario that reflects the is-

sues mentioned in the problem statement in Section 3.2. As shown in Figure 2A, and as
described in Section 3.2.2, this is a typical IoT network scenario that illustrates some SNs
unable to reach the GW using LoRa. Specifically, SN2–SN4 are shown to be out of the GW
range, therefore, they will switch to listening mode waiting for rescue messages. SN6–
SN11 are directly communicating with the GW as they are within its range, and they are
operating as regular LoRaWAN SNs. On the other hand, SN12 and SN13 are likely to
become bridging SNs (MN1 and MN2) for SN2–SN4 as they are within their reach. Fur-
thermore, SN1 was connected directly to the GW, but when an obstacle was introduced,
it will become EN1 and will start communicating through its neighbour SN12 (MN1). As
SN5 was moved away from the GW, it also becomes EN5 and started forwarding through
SN13 (MN2). Figure 2B illustrates the deployment after the bridging algorithm took effect.

Figure 2. A. The implemented IoT network deployment, B. The same deployment with the bridg-
ing algorithm.

A B

Commented [M1]: Please add the explainations of
each images.

Figure 2. (A) The implemented IoT network deployment, (B) The same deployment with the
bridging algorithm.

In consideration for the design of DXN, this scenario suffers from the following issues
due to the geographical location and the transmission timing of the network nodes (see
Section 3.2): (1) lack of MN selection mechanism, which cause an imbalance of the network
load (power consumption eventually) due to the randomness of selecting the MN out
of the available ones (if any); (2) lack of synchronisation mechanism (as it is costly to
implement) and that will cause miscommunications; (3) high power consumption, due to
the inconsistency in the transmission intervals which leads to long waiting time ENs spent
in many cases waiting for a rescue message to be received. Therefore, we implemented our
DXN engine to overcome these issues by using a Deep Neural Network (DNN) model [15]
to predict the status/resources of each available MN. Then, based on that, it will assign a
score for each MN; the better the resource, the higher the score will be for each MN. These
scores will influence the MN selection in case more than one is available. DXN will keep
monitoring the received messages and updating the scores as the MNs’ status changes so
to choose the next MN for any new blocked SN (Figure 3).

The same DNN model is used to predict the time required for any chosen MN to
forward a message for any specific EN and its corresponding reply/Ack message. This is
to minimise the waiting (listening) time spent by the ENs (based on the connection status
and the number of ENs available). The model will feedback the predicted timer for each
bridged EN.

Signals 2021, 2 578

Signals 2021, 2 FOR PEER REVIEW 9

load (power consumption eventually) due to the randomness of selecting the MN out of

the available ones (if any); (2) lack of synchronisation mechanism (as it is costly to imple-

ment) and that will cause miscommunications; (3) high power consumption, due to the

inconsistency in the transmission intervals which leads to long waiting time ENs spent in

many cases waiting for a rescue message to be received. Therefore, we implemented our

DXN engine to overcome these issues by using a Deep Neural Network (DNN) model [15]

to predict the status/resources of each available MN. Then, based on that, it will assign a

score for each MN; the better the resource, the higher the score will be for each MN. These

scores will influence the MN selection in case more than one is available. DXN will keep

monitoring the received messages and updating the scores as the MNs’ status changes so

to choose the next MN for any new blocked SN (Figure 3).

Figure 3. Overall DXN showing the “AI Engine” and the “IoT Network” blocks.

The same DNN model is used to predict the time required for any chosen MN to

forward a message for any specific EN and its corresponding reply/Ack message. This is

to minimise the waiting (listening) time spent by the ENs (based on the connection status

and the number of ENs available). The model will feedback the predicted timer for each

bridged EN.

DXN also uses a Time Series model [16] in combination with its DNN to predict the

SNs’ activity by forecasting the trend of their collected connectivity data to unify the trans-

mission intervals for each chosen MN and its connected ENs (Figure 3).

For testing (see Section 3.4), DXN’s AI engine is trained using a dataset of the relevant

data collected from all SNs messages in the IoT Network. This dataset contains around

6300 entries; each entry contains information about a packet received by the server from

a specific SN (EN/MN). The dataset contains two types of information, first is the infor-

mation provided by each node (such as node address, battery level, location, the role (EN,

MN or just SN) and Tx interval), and the second is information calculated upon receiving

the packet at the host server (receiving time, RSSI, SNR and time since the last packet).

Each dataset was split into 80% for training and 20% for testing as it was the best effective

use setup. Again, as illustrated in Figure 4, DXN is continuously making new decisions to

improve the network performance. It follows a continuous cycle of analysing the collected

data (the current network status), making new changes and then implementing them, and

will start over by analysing the newly collected data (new network status) and so on.

Figure 3. Overall DXN showing the “AI Engine” and the “IoT Network” blocks.

DXN also uses a Time Series model [16] in combination with its DNN to predict
the SNs’ activity by forecasting the trend of their collected connectivity data to unify the
transmission intervals for each chosen MN and its connected ENs (Figure 3).

For testing (see Section 3.4), DXN’s AI engine is trained using a dataset of the relevant
data collected from all SNs messages in the IoT Network. This dataset contains around
6300 entries; each entry contains information about a packet received by the server from a
specific SN (EN/MN). The dataset contains two types of information, first is the information
provided by each node (such as node address, battery level, location, the role (EN, MN
or just SN) and Tx interval), and the second is information calculated upon receiving the
packet at the host server (receiving time, RSSI, SNR and time since the last packet). Each
dataset was split into 80% for training and 20% for testing as it was the best effective use
setup. Again, as illustrated in Figure 4, DXN is continuously making new decisions to
improve the network performance. It follows a continuous cycle of analysing the collected
data (the current network status), making new changes and then implementing them, and
will start over by analysing the newly collected data (new network status) and so on.

Signals 2021, 2 FOR PEER REVIEW 10

Figure 4. Network hardware.

3.4. DXN Tests Scenarios and Experiments

The following three test scenarios are designed to test the following three algorithms

we implemented inside DXN: (a) Network Load-Based Optimisation Algorithm, (b) Net-

work Activity-Based Optimisation Algorithm and (c) Nodes Transmission Scheduling

Optimisation Algorithm. Furthermore, for our testing, we used the following hardware

equipment: a single GW, MultiConnect Conduit gateway (MTCDT-LEU1), and SNs, Mul-

tiConnect mDots (MTDOT-868) (Figure 4). LoRaWAN 1.1 was the LoRa protocol version

used in all of our tests. The maximum number of nodes used in our latest test was 13 SNs

as they were enough to be deployed as regular LoRa SNs, ENs, and MNs. Each node was

set to send a packet at 5 min interval, and the bridging algorithm will take effect when a

node fails to reach the GW after three attempts. The time intervals are chosen to reduce

the months run time of the actual scenario to obtain the results within a short time. For

implementing the AI models, we used BigML, an online AI platform [17]. The DNN model

was implemented with the following configurations: three hidden layers (64 neurons

each), Adam algorithm, ReLU activation function and the weights were set automatically

by BigML. Finally, for the Time Series model, a separated dataset was used that is ar-

ranged sequentially. BigML models time series data as a combination of components:

level, trend, seasonality and error. For each component, it will be modelled additively,

multiplicatively or not included at all. The training time was set to 6 h (eligible to end

earlier if no further improvements can be achieved).

3.4.1. Network Load-Based Optimisation Algorithm

Using the DNN model, this algorithm is responsible for balancing the network load

by selecting the best available MN at the time. This will take effect when an EN is within

the range of more than one MN. In this case, DXN will select the MN with the higher score

(better resources), and this helps balance the traffic in the network. In this case, all the

heavy computations and analysis are performed at the host server leaving the node with

minimum tasks. The selected MN’s address will be included in the downlink (Ack mes-

sage from the GW to the EN); the EN will then only respond to that MN and will ignore

any other MNs within its range.

Figure 4. Network hardware.

Signals 2021, 2 579

3.4. DXN Tests Scenarios and Experiments

The following three test scenarios are designed to test the following three algorithms
we implemented inside DXN: (a) Network Load-Based Optimisation Algorithm, (b) Net-
work Activity-Based Optimisation Algorithm and (c) Nodes Transmission Scheduling
Optimisation Algorithm. Furthermore, for our testing, we used the following hardware
equipment: a single GW, MultiConnect Conduit gateway (MTCDT-LEU1), and SNs, Multi-
Connect mDots (MTDOT-868) (Figure 4). LoRaWAN 1.1 was the LoRa protocol version
used in all of our tests. The maximum number of nodes used in our latest test was 13 SNs
as they were enough to be deployed as regular LoRa SNs, ENs, and MNs. Each node was
set to send a packet at 5 min interval, and the bridging algorithm will take effect when a
node fails to reach the GW after three attempts. The time intervals are chosen to reduce
the months run time of the actual scenario to obtain the results within a short time. For
implementing the AI models, we used BigML, an online AI platform [17]. The DNN model
was implemented with the following configurations: three hidden layers (64 neurons each),
Adam algorithm, ReLU activation function and the weights were set automatically by
BigML. Finally, for the Time Series model, a separated dataset was used that is arranged
sequentially. BigML models time series data as a combination of components: level, trend,
seasonality and error. For each component, it will be modelled additively, multiplicatively
or not included at all. The training time was set to 6 h (eligible to end earlier if no further
improvements can be achieved).

3.4.1. Network Load-Based Optimisation Algorithm

Using the DNN model, this algorithm is responsible for balancing the network load
by selecting the best available MN at the time. This will take effect when an EN is within
the range of more than one MN. In this case, DXN will select the MN with the higher score
(better resources), and this helps balance the traffic in the network. In this case, all the
heavy computations and analysis are performed at the host server leaving the node with
minimum tasks. The selected MN’s address will be included in the downlink (Ack message
from the GW to the EN); the EN will then only respond to that MN and will ignore any
other MNs within its range.

To test this, we used a scenario that we have tested previously for better results
comparison. The scenario, as shown in Figure 5, consists of two MNs (MN1 and MN2) and
five ENs (EN1, EN2, . . . , N5). The nodes’ position is chosen so that MN1 is within EN1,
EN2 and EN3′s range and MN2 is within EN3, EN4 and EN5′s range. This scenario was
implemented to test the ability to create a bridge to link the GW to what was unreachable
EN. However, this randomness will create an imbalance in the network, especially when
MN1 and MN2 are transmitting at different intervals, leading to one of them having a
higher chance of being selected by the EN. Since EN3 is within both MNs’ range, the
selection is random based on which MN is discovered first (meaning, each time EN3 has
something to send it will listen until the first rescue message from either MN1 or MN2 is
received, and it will respond to that message).

In summary, with the use of DXN, each MN will now be given a score based on its
current status, and EN3 will be instructed to respond to the one with the higher score (better
resources) and will ignore messages received from others. Table 1 shows the difference in
the EN3 behaviour between the two scenarios (with/without DXN).

Signals 2021, 2 580

Signals 2021, 2 FOR PEER REVIEW 11

To test this, we used a scenario that we have tested previously for better results com-

parison. The scenario, as shown in Figure 5, consists of two MNs (MN1 and MN2) and

five ENs (EN1, EN2, …, N5). The nodes’ position is chosen so that MN1 is within EN1,

EN2 and EN3′s range and MN2 is within EN3, EN4 and EN5′s range. This scenario was

implemented to test the ability to create a bridge to link the GW to what was unreachable

EN. However, this randomness will create an imbalance in the network, especially when

MN1 and MN2 are transmitting at different intervals, leading to one of them having a

higher chance of being selected by the EN. Since EN3 is within both MNs’ range, the se-

lection is random based on which MN is discovered first (meaning, each time EN3 has

something to send it will listen until the first rescue message from either MN1 or MN2 is

received, and it will respond to that message).

Figure 5. Load balance scenario.

In summary, with the use of DXN, each MN will now be given a score based on its

current status, and EN3 will be instructed to respond to the one with the higher score

(better resources) and will ignore messages received from others. Table 1 shows the dif-

ference in the EN3 behaviour between the two scenarios (with/without DXN).

Table 1. The effect of DXN on EN3 behaviour.

EN#
Total Tx

Packets

Without DXN With DXN

Packets

through

MN1

Packets

through

MN2

Successful

Delivered

Packets

PDR
Avg. Overall

Tx Time (sec)

Packets

through

MN1

Packets

through

MN2

Successful

Delivered

Packets

PDR

Avg.

Overall Tx

Time (sec)

EN3 1152 569 583 1152 100% 4.1 - 1152 1151 99.9% 4.8

From Table 1, it is clear that without DXN, EN3 is almost equally selecting between

MN1 and MN2 (as both send at equal intervals) which, on paper, looks better balanced.

However, by examining the MNs’ statistics, it shows otherwise (see Table 2). It shows that

with the use of DXN, the forwarding capacity is spread between MN1 and MN2 unevenly,

but according to the score, MN2 clearly has better resources and thus the added capacity.

Figure 5. Load balance scenario.

Table 1. The effect of DXN on EN3 behaviour.

EN# Total Tx
Packets

Without DXN With DXN

Packets
through

MN1

Packets
through

MN2

Successful
Delivered

Packets
PDR

Avg.
Overall Tx
Time (sec)

Packets
through

MN1

Packets
through

MN2

Successful
Delivered

Packets
PDR

Avg.
Overall Tx

Time (s)

EN3 1152 569 583 1152 100% 4.1 - 1152 1151 99.9% 4.8

From Table 1, it is clear that without DXN, EN3 is almost equally selecting between
MN1 and MN2 (as both send at equal intervals) which, on paper, looks better balanced.
However, by examining the MNs’ statistics, it shows otherwise (see Table 2). It shows that
with the use of DXN, the forwarding capacity is spread between MN1 and MN2 unevenly,
but according to the score, MN2 clearly has better resources and thus the added capacity.

Table 2. DXN load balance based on the score.

MN#

Without DXN With DXN

ScorePackets Sent
to GW

Packets
Forwarded

to GW

Total
Packets Sent

Capacity
Percentage

Packets Sent
to GW

Packets
Forwarded

to GW

Total
Packets Sent

Capacity
Percentage

MN1 1152 2873 4025 349% 1152 2304 3456 300% 59
MN2 1152 2887 4039 350% 1152 3456 4608 400% 82

To test the dynamic aspect of DXN, EN1 and EN2 (connecting through MN1) were
removed during the test. This affected the MN1 score, since it had no ENs connecting
through it, making its score higher than MN2′s score. EN3 then changed its behaviour and
started to forward through MN1 since it had better recourses.

Another scenario was implemented to highlight the effect of the DXN engine on a
larger network, where a total of five MNs and 11 ENs were deployed. The nodes were
deployed in an arranged setup where almost every EN is within the range of more than one
MN. The MNs’ scores were somewhat different. Figure 6 illustrates the difference between
the scenario in Figure 5 with and without the DXN engine by showing the load (number
of packets being forwarded) and the score for each MN. In addition, DXN creates a more
balanced network when forcing MNs that have a higher score to forward more packets.

Signals 2021, 2 581

Signals 2021, 2 FOR PEER REVIEW 12

Table 2. DXN load balance based on the score.

MN#

Without DXN With DXN

Score
Packets

Sent to

GW

Packets

Forwarded to

GW

Total

Packets

Sent

Capacity

Percentage

Packets

Sent to

GW

Packets

Forwarded to

GW

Total

Packets

Sent

Capacity

Percentage

MN1 1152 2873 4025 349% 1152 2304 3456 300% 59

MN2 1152 2887 4039 350% 1152 3456 4608 400% 82

To test the dynamic aspect of DXN, EN1 and EN2 (connecting through MN1) were

removed during the test. This affected the MN1 score, since it had no ENs connecting

through it, making its score higher than MN2′s score. EN3 then changed its behaviour and

started to forward through MN1 since it had better recourses.

Another scenario was implemented to highlight the effect of the DXN engine on a

larger network, where a total of five MNs and 11 ENs were deployed. The nodes were

deployed in an arranged setup where almost every EN is within the range of more than

one MN. The MNs’ scores were somewhat different. Figure 6 illustrates the difference

between the scenario in Figure 5 with and without the DXN engine by showing the load

(number of packets being forwarded) and the score for each MN. In addition, DXN creates

a more balanced network when forcing MNs that have a higher score to forward more

packets.

Figure 6. DXN load balance with 5 MNs scenario.

3.4.2. Network Activity-Based Optimisation Algorithm

As shown in Figure 7, EN was blocked but it is supposed to send a message every 5

min. The only available MN node is scheduled to send a message every 1 h. As it stands,

EN will be waiting until MN wakes up every hour to forward its messages. DXN can see

this situation from the host server data.

Figure 7. Different Tx intervals scenario.

Therefore, the second part of DXN is performing two tasks. First, it will set a new Tx

interval for both EN and MN in this scenario (using the DNN model). This Tx will force

Figure 6. DXN load balance with 5 MNs scenario.

3.4.2. Network Activity-Based Optimisation Algorithm

As shown in Figure 7, EN was blocked but it is supposed to send a message every
5 min. The only available MN node is scheduled to send a message every 1 h. As it stands,
EN will be waiting until MN wakes up every hour to forward its messages. DXN can see
this situation from the host server data.

Signals 2021, 2 FOR PEER REVIEW 12

Table 2. DXN load balance based on the score.

MN#

Without DXN With DXN

Score
Packets

Sent to

GW

Packets

Forwarded to

GW

Total

Packets

Sent

Capacity

Percentage

Packets

Sent to

GW

Packets

Forwarded to

GW

Total

Packets

Sent

Capacity

Percentage

MN1 1152 2873 4025 349% 1152 2304 3456 300% 59

MN2 1152 2887 4039 350% 1152 3456 4608 400% 82

To test the dynamic aspect of DXN, EN1 and EN2 (connecting through MN1) were

removed during the test. This affected the MN1 score, since it had no ENs connecting

through it, making its score higher than MN2′s score. EN3 then changed its behaviour and

started to forward through MN1 since it had better recourses.

Another scenario was implemented to highlight the effect of the DXN engine on a

larger network, where a total of five MNs and 11 ENs were deployed. The nodes were

deployed in an arranged setup where almost every EN is within the range of more than

one MN. The MNs’ scores were somewhat different. Figure 6 illustrates the difference

between the scenario in Figure 5 with and without the DXN engine by showing the load

(number of packets being forwarded) and the score for each MN. In addition, DXN creates

a more balanced network when forcing MNs that have a higher score to forward more

packets.

Figure 6. DXN load balance with 5 MNs scenario.

3.4.2. Network Activity-Based Optimisation Algorithm

As shown in Figure 7, EN was blocked but it is supposed to send a message every 5

min. The only available MN node is scheduled to send a message every 1 h. As it stands,

EN will be waiting until MN wakes up every hour to forward its messages. DXN can see

this situation from the host server data.

Figure 7. Different Tx intervals scenario.

Therefore, the second part of DXN is performing two tasks. First, it will set a new Tx

interval for both EN and MN in this scenario (using the DNN model). This Tx will force

Figure 7. Different Tx intervals scenario.

Therefore, the second part of DXN is performing two tasks. First, it will set a new Tx
interval for both EN and MN in this scenario (using the DNN model). This Tx will force
both to be active at similar times to reduce the listening time of EN and also the traffic
generated from it. Second, it will study the collected data and continuously forecast new
Tx intervals to both MN and EN based on the predicted trend of the received data (using
the Time Series model). This is useful in seasonal applications where the collected data
might matter more during specific periods of time. The new Tx interval of the MN will
be reconsidered when load balancing, as well (change of the MN score). This might be
applied to several groups of nodes based on their activity.

To test this part, the arrangement of Figure 5 is used. The transmitting intervals were
set differently from SN to another and were set in specific different patterns. In addition,
a delay was created manually to simulate the clock time drift at the SNs for rapid results
obtaining and short experiment time. As shown in Figure 4, there are two MNs and five
ENs with each nodes’ Tx intervals. The collected data at the host server that DXN saw for
each group and the new adjustments are as shown in Table 3.

Signals 2021, 2 582

Table 3. Tx interval adjustment by DXN.

Group# Nodes Tx Interval
(Hours) MN Score New Tx Interval

(Hours)
New MN

Score

Group1

MN1 12

59 8 55EN1 3

EN2 10

Group2

MN2 6

82 6 82
EN3 11

EN4 5

EN5 4

As shown in Table 3, the new Tx interval for group 1 is set to 8 h, meaning each node
will transmit its message every 8 h including MN1, and for group 2, the new Tx interval
is now 6 h. It is also noticeable that MN1′s score was 59, and now that it is sending more
often (every 8 h instead of previously every 12 h), that will affect its power consumption
and thus its score, which dropped to 55. Meanwhile, the score of MN2 remained the same
because the new Tx interval of its group (group 2) was set to 6 h (meaning, nothing is going
to change in the MN2 status). Figure 8 shows the results of this normalisation process
by DXN.

Signals 2021, 2 FOR PEER REVIEW 13

both to be active at similar times to reduce the listening time of EN and also the traffic

generated from it. Second, it will study the collected data and continuously forecast new

Tx intervals to both MN and EN based on the predicted trend of the received data (using

the Time Series model). This is useful in seasonal applications where the collected data

might matter more during specific periods of time. The new Tx interval of the MN will be

reconsidered when load balancing, as well (change of the MN score). This might be ap-

plied to several groups of nodes based on their activity.

To test this part, the arrangement of Figure 5 is used. The transmitting intervals were

set differently from SN to another and were set in specific different patterns. In addition,

a delay was created manually to simulate the clock time drift at the SNs for rapid results

obtaining and short experiment time. As shown in Figure 4, there are two MNs and five

ENs with each nodes’ Tx intervals. The collected data at the host server that DXN saw for

each group and the new adjustments are as shown in Table 3.

Table 3. Tx interval adjustment by DXN.

Group# Nodes
Tx Interval

(Hours)
MN Score

New Tx Interval

(Hours)
New MN Score

Group1

MN1 12

59 8 55 EN1 3

EN2 10

Group2

MN2 6

82 6 82
EN3 11

EN4 5

EN5 4

As shown in Table 3, the new Tx interval for group 1 is set to 8 h, meaning each node

will transmit its message every 8 h including MN1, and for group 2, the new Tx interval

is now 6 h. It is also noticeable that MN1′s score was 59, and now that it is sending more

often (every 8 h instead of previously every 12 h), that will affect its power consumption

and thus its score, which dropped to 55. Meanwhile, the score of MN2 remained the same

because the new Tx interval of its group (group 2) was set to 6 h (meaning, nothing is

going to change in the MN2 status). Figure 8 shows the results of this normalisation pro-

cess by DXN.

Figure 8. Tx interval adjustment for messages by DXN.

0

2

4

6

8

10

12

14

MN1 EN1 En2 MN2 EN3 EN4 EN5

Tx
 In

te
rv

al
s

(H
o

u
rs

)

Tx before and after DXN normalisation for the messages in
of nodes in Figure 4

Tx Interval New Tx Interval

Figure 8. Tx interval adjustment for messages by DXN.

3.4.3. Nodes Transmission Scheduling Optimisation Algorithm

To enhance the communication of any IoT network further is to make all its SNs work
in a synchronised schedule. DXN is designed to achieve this by including synchronisation
data in the downlink messages from the host server to all the SNs. Effectively, DXN is
overriding the duty cycle restriction in LoRaWAN networks (implemented on the 868 MHz
band). This way, no “intelligent SNs” are needed.

DXN set up “continuously updated timers” that will be included at each rescue
message to be used by the SNs to schedule their waking up and sleeping behaviour as
follows. DXN will decide on the rescue message intervals in an optimum way by balancing
between increasing the interval for as long as possible and ensure the minimum wake-up
time by the ENs. MNs will repeat sending the rescue message to all blocked nodes it is
serving (meaning, when an EN replies to a rescue message and failed to receive an Ack, it
will try again after this timer is finished. DXN predicts this timer based on analysing the

Signals 2021, 2 583

communication information). This is to overcome the duty cycle limitations (predicting
when the channel will be available again).

The scenario in Figure 5 is also used to test this scheduling mechanism. To ensure
successful communication between the SNs in each group, MNs were set to a five-minute
rescue message interval. The GW Ack message will include this timer which will keep
being updated by DXN and the new rescue message repeat timer. ENs, on the other hand,
at the first cycle, was set to the maximum timer (5 min) to ensure the reception of the rescue
message. Once they receive a rescue message and their packet is acknowledged by the GW,
the Ack will include the new rescue message interval as per the previous step. Further,
on the following cycles, each EN will report its waiting time, and DXN will ensure the
minimum waiting time while maintaining a successful connection. The goal is to reduce
the waiting time of EN to the minimum, and so for this test, we chose the waiting time for
each EN to be 30 s (the time from waking up until receiving the rescue message is 30 s). To
ensure a successful packet delivery, the change is set to be gradual rather than immediate.
Figure 9 details the waiting time at each of the two groups in Figure 5. Note that group1
and group2 were set to 3 h and 4 h uplink intervals, respectively. In this case, DXN changes
group2 timers more gradually than group1 since each node in group2 has more sleeping
time, leading to a higher chance of miscommunicating.

Signals 2021, 2 FOR PEER REVIEW 14

3.4.3. Nodes Transmission Scheduling Optimisation Algorithm

To enhance the communication of any IoT network further is to make all its SNs work

in a synchronised schedule. DXN is designed to achieve this by including synchronisation

data in the downlink messages from the host server to all the SNs. Effectively, DXN is

overriding the duty cycle restriction in LoRaWAN networks (implemented on the

868MHz band). This way, no “intelligent SNs” are needed.

DXN set up “continuously updated timers” that will be included at each rescue mes-

sage to be used by the SNs to schedule their waking up and sleeping behaviour as follows.

DXN will decide on the rescue message intervals in an optimum way by balancing be-

tween increasing the interval for as long as possible and ensure the minimum wake-up

time by the ENs. MNs will repeat sending the rescue message to all blocked nodes it is

serving (meaning, when an EN replies to a rescue message and failed to receive an Ack, it

will try again after this timer is finished. DXN predicts this timer based on analysing the

communication information). This is to overcome the duty cycle limitations (predicting

when the channel will be available again).

The scenario in Figure 5 is also used to test this scheduling mechanism. To ensure

successful communication between the SNs in each group, MNs were set to a five-minute

rescue message interval. The GW Ack message will include this timer which will keep

being updated by DXN and the new rescue message repeat timer. ENs, on the other hand,

at the first cycle, was set to the maximum timer (5 min) to ensure the reception of the

rescue message. Once they receive a rescue message and their packet is acknowledged by

the GW, the Ack will include the new rescue message interval as per the previous step.

Further, on the following cycles, each EN will report its waiting time, and DXN will ensure

the minimum waiting time while maintaining a successful connection. The goal is to re-

duce the waiting time of EN to the minimum, and so for this test, we chose the waiting

time for each EN to be 30 s (the time from waking up until receiving the rescue message

is 30 s). To ensure a successful packet delivery, the change is set to be gradual rather than

immediate. Figure 9 details the waiting time at each of the two groups in Figure 5. Note

that group1 and group2 were set to 3 h and 4 h uplink intervals, respectively. In this case,

DXN changes group2 timers more gradually than group1 since each node in group2 has

more sleeping time, leading to a higher chance of miscommunicating.

Figure 9. Waiting time reduction using DXN.

As shown in the figure above, after around 10 cycles of scheduling by DXN, the ENs

in each group were settled on the waiting time goal of around 30–40 s based on the groups’

Tx interval, with a staggering reduction of around 86% in group2 and 90% in group1,

compared to the first cycle with the initial rescue message interval of 5 min.

0

50

100

150

200

250

300

350

2 12 22 32 42

Ti
m

e
in

 S
ec

o
n

d
s

Cycle

Waiting Time

Group1 (3 hours Tx interval) Group2 (4 hours Tx interval)

Figure 9. Waiting time reduction using DXN.

As shown in the figure above, after around 10 cycles of scheduling by DXN, the ENs
in each group were settled on the waiting time goal of around 30–40 s based on the groups’
Tx interval, with a staggering reduction of around 86% in group2 and 90% in group1,
compared to the first cycle with the initial rescue message interval of 5 min.

3.4.4. Overall Evaluation of DXN

DXN has shown that it is possible to enhance the network performance by imple-
menting a dynamic AI-based engine that is constantly analysing the collected data from
the actual deployed SNs and giving live feedback to adjust the SNs’ behaviour. This was
achieved by using the DNN model with 98% accuracy in predicting. As for the Time Series
model, it achieved a Mean Squared Error (MSE) of 0.11.

By using the network server resources located in the cloud (assumed to be unlimited
in terms of power source, computational capabilities, storage, etc.), DXN was able to per-
form all the heavy calculations, leaving the SNs with minimum tasks and eliminating any
additional overhead when compared to solutions such as [14] and [18] that are proposing
the implementation of AI algorithms onboard the deployed SNs. Furthermore, no addi-
tional hardware equipment/capabilities were required other than the typical LoRaWAN

Signals 2021, 2 584

compatible network. Therefore, we envisage that more enhancement is achievable by
including extra (simple) information within the SNs’ data messages.

4. Conclusions

DXN has shown better performance in terms of (1) node availability due to load
balancing, and (2) better node longevity (reduced battery consumption by sending nodes to
sleep) by reducing the waiting time for each node and by grouping the nodes based on their
activity. These aspects are often difficult to maintain even in well-designed and planned IoT
networks due to unexpected challenges that might take place after the network deployment.
DXN is achieved by using an AI-based engine that is based on simple Time Series and
DNN models capable of analysing the collected data from the nodes and predicts changes
to the behaviour of the nodes, something that can be added to enhance all IoT networks.

By reviewing the AI literature in LPWAN IoT networks, we noticed that AI is mostly
implemented in a fixed way, yet, as DXN demonstrated, it has the potential to be utilised
dynamically for powerful prediction capabilities. We believe that the future of IoT lies with
utilising the LPWAN networking capabilities combined with AI self-learning benefiting
from the cloud resources.

Author Contributions: Data curation, A.A.; Investigation, A.A.; Methodology, A.A.; Supervision,
I.L.; Validation, A.A.; Writing—original draft, A.A.; Writing—review & editing, I.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during the current study are available from the
corresponding author upon reasonable request.

Acknowledgments: Special thanks to the University of Basra, the Iraqi Ministry of Higher Education
and Scientific Research (MO-HESR) for sponsoring this Ph.D. study and to Russell IPM Ltd. for their
cooperation, providing data and testing equipment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Atlam, F.H.; Walters, R.J.; Wills, G.B. Intelligence of things: Opportunities challenges. In Proceedings of the 2018 3rd Cloudification

of the Internet of Things (CIoT), Paris, France, 2–4 July 2018. [CrossRef]
2. Mikhaylov, K.; Petäjäjärvi, J.; Haenninen, T. Analysis of the Capacity and Scalability of the LoRa Wide Area Network Technology.

In Proceedings of the European Wireless 2016, 22th European Wireless Conference, Oulu, Finland, 18–20 May 2016.
3. Petajajarvi, J.; Mikhaylov, K.; Hamalainen, M.; Iinatti, J. Evaluation of LoRa LPWAN technology for remote health and wellbeing

monitoring. In Proceedings of the International Symposium on Medical Information and Communication Technology, ISMICT,
Worcester, MA, USA, 20–23 March 2016. [CrossRef]

4. Petäjäjärvi, J.; Mikhaylov, K.; Roivainen, A.; Hänninen, T.; Pettissalo, M. On the coverage of LPWANs: Range evaluation and chan-
nel attenuation model for LoRa technology. In Proceedings of the 2015 14th International Conference on ITS Telecommunications,
ITST 2015, Copenhagen, Denmark, 2–4 December 2015; pp. 55–59. [CrossRef]

5. Tsiropoulou, E.E.; Paruchuri, S.T.; Baras, J.S. Interest, energy and physical-aware coalition formation and resource allocation in
smart IoT applications. In Proceedings of the 2017 51st Annual Conference on Information Sciences and Systems, CISS 2017,
Baltimore, MD, USA, 22–24 March 2017. [CrossRef]

6. Zhou, W.; Tong, Z.; Dong, Z.Y.; Wang, Y. Lora-hybrid: A LoRaWAN based multihop solution for regional microgrid. In
Proceedings of the 2019 IEEE 4th International Conference on Computer and Communication Systems, ICCCS 2019, Singapore,
23–25 February 2019; pp. 650–654. [CrossRef]

7. Holin, N.; Sornin, F. LoRaWAN Relay Workshop. In Proceedings of the Thing Network Conference, Amsterdam, The Netherlands,
31 January–1 February 2019.

8. Jeon, J.; Park, J.H.; Jeong, Y.S. Dynamic Analysis for IoT Malware Detection with Convolution Neural Network Model. IEEE
Access 2020, 8, 96899–96911. [CrossRef]

http://doi.org/10.1109/CIOT.2018.8627114
http://doi.org/10.1109/ISMICT.2016.7498898
http://doi.org/10.1109/ITST.2015.7377400
http://doi.org/10.1109/CISS.2017.7926111
http://doi.org/10.1109/CCOMS.2019.8821683
http://doi.org/10.1109/ACCESS.2020.2995887

Signals 2021, 2 585

9. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2014; Volume 8689,
pp. 818–833. [CrossRef]

10. Rahimi, P.; Chrysostomou, C. Improving the Network Lifetime and Performance of Wireless Sensor Networks for IoT Applications
Based on Fuzzy Logic. In Proceedings of the 15th Annual International Conference on Distributed Computing in Sensor Systems,
DCOSS 2019, Santorini, Greece, 29–31 May 2019; pp. 667–674. [CrossRef]

11. Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless microsensor
networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, HI, USA, 7 January
2000; p. 223. [CrossRef]

12. Puschmann, D.; Barnaghi, P.; Tafazolli, R. Adaptive Clustering for Dynamic IoT Data Streams. IEEE Internet of Things J. 2017, 4,
64–74. [CrossRef]

13. Zhang, C.; Dong, M.; Ota, K. Enabling Computational Intelligence for Green Internet of Things: Data-Driven Adaptation in
LPWA Networking. IEEE Comput. Intell. Mag. 2020, 15, 32–43. [CrossRef]

14. Kumari, P.; Gupta, H.P.; Dutta, T. A Bayesian Game Based Approach for Associating the Nodes to the Gateway in LoRa Network.
IEEE Trans. Intell. Transp. Syst. 2021. [CrossRef]

15. Deep Neural Network—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/computer-
science/deep-neural-network (accessed on 9 April 2021).

16. Time Series Models—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/
neuroscience/time-series-models (accessed on 9 April 2021).

17. BigML. Available online: https://bigml.com/ (accessed on 6 May 2021).
18. Kwon, M.; Lee, J.; Park, H. Intelligent IoT Connectivity: Deep Reinforcement Learning Approach. IEEE Sens. J. 2020, 20, 2782–2791.

[CrossRef]

http://doi.org/10.1007/978-3-319-10590-1_53
http://doi.org/10.1109/DCOSS.2019.00120
http://doi.org/10.1109/hicss.2000.926982
http://doi.org/10.1109/JIOT.2016.2618909
http://doi.org/10.1109/MCI.2019.2954642
http://doi.org/10.1109/TITS.2020.3046302
https://www.sciencedirect.com/topics/computer-science/deep-neural-network
https://www.sciencedirect.com/topics/computer-science/deep-neural-network
https://www.sciencedirect.com/topics/neuroscience/time-series-models
https://www.sciencedirect.com/topics/neuroscience/time-series-models
https://bigml.com/
http://doi.org/10.1109/JSEN.2019.2949997

	Introduction
	Literature Review
	Design, Implementation and Test of the DXN Engine
	Why DXN
	The Problem Statement
	DXN Features
	Bridging Algorithm

	DXN Algorithms and Suitable AI Engine Implementation
	DXN Tests Scenarios and Experiments
	Network Load-Based Optimisation Algorithm
	Network Activity-Based Optimisation Algorithm
	Nodes Transmission Scheduling Optimisation Algorithm
	Overall Evaluation of DXN

	Conclusions
	References

