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Abstract: Spatiotemporal representations learned using 3D convolutional neural networks (CNN)
are currently used in state-of-the-art approaches for action-related tasks. However, 3D-CNN are
notorious for being memory and compute resource intensive as compared with more simple 2D-CNN
architectures. We propose to hallucinate spatiotemporal representations from a 3D-CNN teacher with
a 2D-CNN student. By requiring the 2D-CNN to predict the future and intuit upcoming activity, it is
encouraged to gain a deeper understanding of actions and how they evolve. The hallucination task
is treated as an auxiliary task, which can be used with any other action-related task in a multitask
learning setting. Thorough experimental evaluation, it is shown that the hallucination task indeed
helps improve performance on action recognition, action quality assessment, and dynamic scene
recognition tasks. From a practical standpoint, being able to hallucinate spatiotemporal representa-
tions without an actual 3D-CNN can enable deployment in resource-constrained scenarios, such as
with limited computing power and/or lower bandwidth. We also observed that our hallucination
task has utility not only during the training phase, but also during the pre-training phase.

Keywords: action recognition; scene recognition; action quality assessment; activity recognition;
deep learning; computer vision; convolutional neural networks; multitask learning; transfer learning

1. Introduction

Spatiotemporal representations are densely packed with information regarding both
the appearance and salient motion patterns occurring in the video clips, as illustrated in
Figure 1. Due to this representational power, they are currently the best performing models
on action-related tasks, such as action recognition [1–4], action quality assessment [5–9],
skills assessment [10], and action detection [11]. This representation power comes at the
cost of increased computational complexity [12–15], which makes 3D-CNNs unsuitable for
deployment in resource-constrained scenarios.

The power of 3D-CNNs comes from their ability to attend to the salient motion
patterns of a particular action class. In contrast, 2D-CNNs are generally used for learning
and extracting spatial features pertaining to a single frame/image; thus, by design, they do
not take into account any motion information and, therefore, lack temporal representation
power. Some works [16–19] have addressed this by using optical flow, which will respond
at all pixels that have moved/changed. This means the optical flow can respond to cues
both from the foreground motion of interest, as well as the irrelevant activity happening
in the background. This background response might not be desirable since CNNs have
been shown to find short cuts to recognize actions not from the meaningful foreground,
but from background cues [20,21]. These kinds of short cuts might still be beneficial for
action recognition tasks but not in a meaningful way, that is, the 2D network is not actually
learning to understand the action itself, but rather the contextual cues and clues. Despite
these shortcomings, 2D-CNNs are computationally lightweight, which makes them suitable
for deployment on edge devices.

Signals 2021, 2, 604–618. https://doi.org/10.3390/signals2030037 https://www.mdpi.com/journal/signals

https://www.mdpi.com/journal/signals
https://www.mdpi.com
https://doi.org/10.3390/signals2030037
https://doi.org/10.3390/signals2030037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/signals2030037
https://www.mdpi.com/journal/signals
https://www.mdpi.com/article/10.3390/signals2030037?type=check_update&version=1


Signals 2021, 2 605

Only first frame 3D representations capture appearance and salient motion

16-frame clip
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(2D-CNN)
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Entire clip

Figure 1. Multitask learning with HalluciNet. HalluciNet (2D-CNN) is jointly optimized for the main task and to hallucinate
spatiotemporal features (computed by an actual 3D-CNN) from a single frame.

In short, 2D-CNNs have the advantage of being computationally less expensive,
while 3D-CNNs extract spatiotemporal features that have more representation power. In
our work, we propose a way to combine the best of both worlds—rich spatiotemporal
representation with low computational cost. Our inspiration comes from the observation
that given even a single image of a scene, humans can predict how the scene might evolve.
We are able to do so because of our experience and interaction in the world, which provides
a general understanding of how other people are expected to behave and how objects can
move or be manipulated. We propose to hallucinate spatiotemporal representations as
computed by a 3D-CNN, using a 2D-CNN, utilizing only a single still frame (see Figure 1).
The idea is to force a 2D-CNN to predict the motion that will occur in the next frames,
without ever having to actually see it.
Contributions: We propose a novel multitask approach, which incorporates an auxiliary
task of approximating 3D-CNN representations using a 2D-CNN and a single image. It
has the following benefits:

• Conceptually, our hallucination task can provide a richer, stronger supervisory signal
that can help the 2D-CNN to gain a deeper understanding of actions and how a given
scene evolves with time. Experimentally, we found our approach to be beneficial in
the following computer vision tasks:

1. Action recognition (actions with short- and long-term temporal dynamics).
2. Action quality assessment.
3. Scene recognition.

Furthermore, we also found hallucination task to be useful during the following:

1. The pretraining phase.
2. The training phase.

• Practically, approximating spatiotemporal features, instead of actually computing
them, is useful for the following:

1. Limited compute power (smart video camera systems, lower-end phones, or
IoT devices).

2. Limited/expensive bandwidth (Video Analytics Software as a Service (VA SaaS)),
where our method can help reduce the transmission load by a factor of 15 (need
to transmit only 1 frame out of 16).

Many computer vision efforts in areas such as automated (remote) physiotherapy
(action quality assessment), which are targeted for low-income groups, make use of 3D-
CNNs. It is more likely that a low income demographic would have devices with low
computational resources and restricted communication resources, which are not suitable
to run 3D-CNNs; in these cases, we can just hallucinate spatiotemporal representations,
instead of using actual 3D-CNNs and a large number of frames.
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2. Related Work

Our work is related to predicting features, developing efficient/light-weight spa-
tiotemporal network approaches, and distilling knowledge. Next, we briefly compare and
contrast our approach to the most closely related works in the literature.

Capturing information in future frames: Many works have focused on capturing
information in future frames [16–18,22–30]. Generating future frames is a difficult and
complicated task, and usually requires the disentangling of background, foreground, low-
level and high-level details, and modeling them separately. Our approach to predicting
features is much simpler. Moreover, our goal is not to a predict a pixel-perfect future, but
rather to make predictions at the semantic level.

Instead of explicitly generating future frames, works such as [16–19] focused on
learning to predict the optical flow (very short-term motion information). These approaches,
by design, require the use of an encoder and a decoder. Our approach does not require
a decoder, which reduces the computational load. Moreover, our approach learns to
hallucinate features corresponding to 16 frames, as compared to motion information in two
frames. Experiments confirm the benefits of our method over optical flow prediction.

Bilen et al. [29] introduced a novel, compact representation of a video called a “dy-
namic image”, which can be thought of as a summary of full videos in a single image.
However, computing a dynamic image requires access to all the corresponding frames,
whereas HalluciNet requires processing just a single image.

Predicting features: Other works [27,31,32] proposed predicting features. Our work
is closest to [32], where the authors proposed hallucinating depth using the RGB input,
whereas we propose hallucinating the spatiotemporal information. Reasoning about depth
information is different from reasoning about spatiotemporal evolution.

Efficient Spatiotemporal Feature Computation: Numerous works have developed
approaches to make video processing more efficient, either by reducing the required input
evidence [33–36], or explicitly, through more efficient processing [12,13,37–42].

While these works aim to address either reducing the visual evidence or developing a
more efficient architecture design, our solution to hallucinate (without explicitly computing)
spatiotemporal representations using a 2D-CNN from a single image aims to solve both the
problems, while also providing stronger supervision. In fact, our approach, which focuses
on improving the backbone CNN, is complementary to some of these developments [42,43].

3. Best of Both Worlds

Since humans are able to predict future activity and behavior through years of experi-
ence and a general understanding of “how the world works”, we would like to develop
a network that can understand an action in a similar manner. To this end, we propose a
teacher–student network architecture that asks a 2D-CNN to use a single frame to halluci-
nate (predict) 3D features pertaining to 16 frames.

Let us consider the example of a gymnast performing her routine as shown in Figure 1.
In order to complete the hallucination task, the 2D-CNN should do the following:

• Learn to identify that there’s an actor in the scene and localize her;
• Spatially segment the actors and objects;
• Identify that the event is a balance beam gymnastic event and the actor is a gymnast;
• Identify that the gymnast is to attempt a cartwheel;
• Predict how she will be moving while attempting the cartwheel;
• Approximate the final position of the gymnast after 16 frames, etc.

The challenge is understanding all the rich semantic details of the action from only a
single frame.

3.1. Hallucination Task

The hallucination task can be seen as distilling knowledge from a better teacher
network (3D-CNN), ft, to a lighter student network (2D-CNN), fs. The teacher, ft, is
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pretrained and kept frozen, while the parameters of the student, fs, are learned. Mid-level
representations can be computed as follows:

φt = ft(F0, F1, ..., FT−1) (1)

φs = fs(F0) (2)

where FT is the T-th video frame.
The hallucination loss, Lhallu encourages fs to regress φs to φt by minimizing the

Euclidean distance between φs and φt:

Lhallu = |σ(φs)− σ(φt)|2. (3)

Multitask learning (MTL):

Reducing computational cost with the hallucination task is not the only goal. Since
the primary objective is to better understand activities and improve performance, halluci-
nation is meant to be an auxiliary task to support the main action-related task (e.g., action
recognition). The main task loss (e.g., classification loss), Lmt, is used in conjunction with
the following hallucination loss:

LMTL = Lmt + λLhallu (4)

where λ is a loss balancing factor. The realization of our approach is straightforward, as
presented in Figure 1.

3.2. Stronger Supervision

In a typical action recognition task, a network is only provided with the action class
label. This may be considered a weak supervision signal since it provides a single high-level
semantic interpretation of a clip filled with complex changes. More dense labels at lower
semantic levels are expected to provide stronger supervisory signals, which could improve
action understanding.

In this vein, joint actor–action segmentation is an actively pursed research
direction [44–48]. Joint actor–action segmentation datasets [49] provide detailed annota-
tions, through significant annotation efforts. In contrast, our spatiotemporal hallucination
task provides detailed supervision of a similar type (though not exactly the same) for
free. Since 3D-CNN representations tend to focus on actors and objects, 2D-CNN can
develop a better general understanding about actions through actor/object manipula-
tion. Additionally, the 2D representation is less likely to take shortcuts—ignoring the
actual actor and action being performed, and instead doing recognition based on the back-
ground [20,21]—as it cannot hallucinate spatiotemporal features, which mainly pertain to
the actors/foreground from the background.

3.3. Prediction Ambiguities

In general, the prediction of future activity with a single frame could be ambiguous
(e.g., opening vs. closing a door). However, a study has shown that humans are able to
accurately predict immediate future action from a still image 85% of the time [27]. So, while
there may be ambiguous cases, there are many other instances where causal relationships
exist and the hallucination task can be exploited. Additionally, low-level motion cues can
be used to resolve ambiguity (Section 4.4).

4. Experiments

We hypothesize that incorporating the hallucination task is beneficial by providing a
deeper understanding of actions. We evaluate the effect of incorporating the hallucination
task in the following settings:

• (Section 4.1) Actions with short-term temporal dynamics.
• (Section 4.2) Actions with long-term temporal dynamics.
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• (Section 4.3) Non-action task.
• (Section 4.4) Hallucinating from two frames, instead of a single frame.
• (Section 4.5) Effect of injecting hallucination task during pretraining.

Choice of networks: In principle, any 2D- or 3D-CNNs could be used as student or
teacher networks, respectively. Noting the SOTA performance of 3D-ResNeXt-101 [3] on
action recognition, we choose to use it as our teacher network. We considered various
student models. Unless otherwise mentioned, our student model is VGG11-bn, and
pretrained on the ImageNet dataset [50]; the teacher network was trained on UCF-101 [51]
and kept frozen. We named the 2D-CNN trained with the side-task hallucination loss
as HalluciNet, and the one without hallucination loss as (vanilla) 2D-CNN, while the
HalluciNetdirect variant, which directly uses hallucinated features for the main action
recognition task.

Which layer to hallucinate? We chose to hallucinate the activations of the last bottle-
neck group of 3D-ResNeXt-101, which are 2048-dimensional. Representations of shallower
layers will have higher dimensionality and will be less semantically mapped.

Implementation details: We used PyTorch [52] to implement all of the networks.
Network parameters were optimized using an Adam optimizer [53] with a beginning
learning rate of 0.0001. λ in Equation (4) was set to 50, unless specified otherwise. Further
experiment specific details are presented with the experiment. The codebase will be made
publicly available.

Performance baselines: Our performance baseline was a 2D-CNN with the same
architecture, but was trained without hallucination loss (vanilla 2D-CNN). In addition,
we also compared the performance against other popular approaches from the literature,
specified in each experiment.

4.1. Actions with Short-Term Temporal Dynamics

In the first experiment, we tested the influence of the hallucination task for general
action recognition. We compared the performance with two single frame prediction
techniques: dense optical flow prediction from a static image [17], and motion prediction
from a static image [19].

Datasets: The following action recognition datasets were considered.

1. UCF101 [51] is an action recognition dataset of realistic in-the-wild action videos,
collected from YouTube, having 101 action categories. With 13,320 videos from
101 action categories, UCF101 provides the largest diversity in terms of actions and
with the presence of large variations in camera motion, object appearance and pose,
object scale, viewpoint, cluttered background, illumination conditions, etc., and it
is the most challenging dataset to date. The action categories can be divided into
five types: (1) human–object interaction; (2) body motion only; (3) human–human
interaction; (4) playing musical instruments; and (5) sports.

2. HMDB-51 [54] is collected from various sources, mostly from movies, and a small
proportion from public databases such as the Prelinger archive, YouTube and Google
videos. This dataset contains 6849 clips divided into 51 action categories, each con-
taining a minimum of 101 clips. The action categories can be grouped in five types:
(1) general facial actions; (2) facial actions with object manipulation; (3) general body
movements; (4) body movements with object interaction; and (5) body movements for
human interaction. Since HMDB-51 video sequences are extracted from commercial
movies as well as YouTube, it represents a fine multifariousness of light conditions,
situations and surroundings in which the action can appear, captured with different
camera types and recording techniques, such as points of view.

In order to be consistent with the literature, we adopted their experimental protocols.
Center frames from the training and testing samples were used for reporting performance,
and are named UCF- and HMDB-static, as in the literature [19].

Metric: We report the top-1 frame/clip-level accuracy (in %).
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We summarize the performance on the action recognition task in Table 1a. We found
that on both datasets, incorporating the hallucination task helped. Our HalluciNet outper-
formed prior approaches [17,19] on both the UCF-101 and HMDB-51 datasets. Moreover,
our method has an advantage of being computationally lighter than [19], as it does not use
a flow image generator network. Qualitative results are shown in Figure 2. In the successes,
ambiguities were resolved. The failure cases tended to confuse semantically similar classes
with similar motions, such as FloorGymnastics/BalanceBeam or Kayaking/Rowing. To
evaluate the quality of the hallucinated representations themselves, we directly used those
representations for the main action recognition task (HalluciNetdirect). We noticed that
the hallucinated features had strong performance, improved on the 2D-CNN, and, in fact,
performed best on the UCF-static.

Table 1. (a) Action recognition results and comparison. (b) HalluciNet helps recent developments,
such as TRN and TSM. (c) Multiframe inference on better base model. (b,c) Evaluated on UCF101.

(a)

Method UCF-Static HMDB-Static

App stream [19] 63.60 35.10
App stream ensemble [19] 64.00 35.50
Motion stream [19] 24.10 13.90
Motion stream [17] 14.30 04.96
App + Motion [19] 65.50 37.10
App + Motion [17] 64.50 35.90

Ours 2D-CNN 64.97 34.23
Ours HalluciNet 69.81 40.32
Ours HalluciNetdirect 70.53 39.42

(b)

Method Accuracy

TRN (R18) 69.57
TRN (HalluciNet(R18)) 69.94
TSM (R18) 71.40
TSM (HalluciNet(R18)) 73.12

(c)

Model Accuracy

Resnet-50 76.74
HalluciNet(R50) 79.83

Next, we used the hallucination task to improve the performance of recent develop-
ments, TRN [43] and TSM [42]. We used Resnet-18 (R18) as the backbone for both, and
implemented single, center segment, 4-frame versions of both. For TRN, we considered
the multiscale version. For TSM, we considered the online version, which is intended for
real-time processing. For both, we sampled 4 frames from the center 16 frames. We used
λ = 200. Their vanilla versions served as our baselines. The performance on UCF101 is
shown in Table 1b.

We also experimented with a larger, better base model, Resnet-50. In this experiment,
we trained using all the frames, and not only the center frame; during testing, we averaged
the results over 25 frames. We used λ = 350. Results on UCF101 are shown in Table 1c.
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GT: WallPushups

GT: SoccerJuggling

GT: FieldHockeyPenalty

GT: FloorGymnastics

GT: Kayaking

GT: TaiChi

2D-CNN HalluciNet

Figure 2. Qualitative results. The hallucination task helps improve performance when the action
sample is visually similar to other action classes, and a motion cue is needed to distinguish them.
However, sometimes, HalluciNet makes incorrect predictions when the motion cue is similar to that
of other actions, and dominates over the visual cue. Please zoom in for a better view.

Finally, in Table 2, we compare our predicted spatiotemporal representation, HalluciNetdirect,
and the actual 3D-CNN. Hallucinet improved upon the vanilla 2D-CNN, though well
below the actual 3D-CNN. However, the performance trade-off resulted in only 6% of the
computational cost of the full 3D-CNN. We also observed a reduction in the data needed
to be transmitted. Here, our 3D-CNN used 112 × 112 pixel frames as input (mean image
size: 3.5 KB), while our 2D-CNN used 224 × 224 pixels (mean image size: 13.94 KB) as
input. In this case, we observed a reduction of more than 4 times. In cases where 3D-CNNs
use a larger resolution input, we can expect a much larger reduction. For example, if the
3D-CNN uses frames of resolution of 224 × 224 pixels, then the data transmission would
be reduced by 16 times.

Table 2. Cost vs. accuracy comparison. We measure the times on a Titan-X GPU.

Model Accuracy Time/Inf. FLOPs/Param Data
TransmittedUCF HMDB

Ours 2D-CNN 64.97 34.23 3.54 ms 58 13.94 KBOurs HalluciNet 70.53 39.42
Ours actual 3D-CNN 87.95 60.44 58.99 ms 143 56.00 KB

4.2. Actions with Long-Term Temporal Dynamics

Although we proposed hallucinating the short-term future (16 frames), frequently,
actions with longer temporal dynamics must be considered. To evaluate the utility of
short-term hallucination in actions with longer temporal dynamics, we considered the task
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of recognizing dives and assessing their quality. Short clips were aggregated over longer
videos using an LSTM, as shown in Figure 3.

Frame 1

Frame 16

Frame 81

Frame 96
Clip 1 …

…

Clip 6

ℒℎ𝑎𝑙𝑙𝑢

3D CNN

Only the 
first frame

Full clip

HalluciNet
ℒ𝐶𝑙𝑠

LSTM

P      AS       RT    #SS   #TW

𝝨

AQA 
Score

ℒ𝐿2

Figure 3. Detailed action recognition and action quality assessment models.

4.2.1. Dive Recognition

Task description: In Olympic diving, athletes attempt many different types of dives.
In a general action recognition dataset, such as UCF101, all of these dives are grouped
under a single action class: diving. However, these dives are different from each other
in subtle ways. Each dive has the following five components: (a) position (legs straight
or bent); (b) starting from arm stand or not; (c) rotation direction (backwards, forwards,
etc.); (d) number of times the diver somersaulted in air; and (e) number of times the diver
twisted in air. Different combinations of these components produce a unique type of dive
(dive number). The dive recognition task comprises predicting all five components of a
dive using very few frames.

Why is this task more challenging? Unlike general action recognition datasets, e.g.,
UCF-101 or kinetics [2], the cues needed to identify the specific dive are distributed across
the entire action sequence. In order to correctly predict the dive, the whole action sequence
needs to be seen. To make the dive classification task more suitable for our HalluciNet
framework, we asked the network to classify a dive correctly using only a few regularly
spaced frames. In particular, we truncated a diving video to 96 frames and showed the
student network every 16th frame, for a total of 6 frames. Note that we are not asking
our student network to hallucinate the entire dive sequence; rather, the student network
is required to hallucinate the short-term future in order to “fill the holes” in the visual
input datastream.

Dataset: The recently released diving dataset MTL-AQA [6], which has 1059 training
and 353 test samples, was used for this task. The average sequence length is 3.84 s. Diving
videos are real-world footage collected from various FINA events. The side view is used
for all the videos. Backgrounds and the clothing of athletes vary.

Model: We pretrained both our 3D-CNN teacher and 2D-CNN student on UCF-101.
Then, the student network was trained to classify dives. Since we would be gathering
evidence over six frames, we made use of an LSTM [55] for aggregation. The LSTM was
single-layered with a hidden state of 256D. The LSTM’s hidden state at the last time step
was passed through separate linear classification layers, one for each of the properties
of a dive. The full model is illustrated in Figure 3. The student network was trained
end-to-end for 20 epochs using an Adam solver with a constant learning rate of 0.0001.
We also considered HalluciNet based on Resnet-18 (λ = 400). We did not consider R50
because it is much larger, compared to the dataset size.

The results are summarized in Table 3a, where we also compare them with other state-
of-the-art 3D-CNN-based approaches [6,56]. Compared with the 2D baseline, Hallucinet
performed better on 3 out of 5 tasks. The position task (legs straight or bent) could be
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equally identifiable from a single image or clip, but the number of twists, somersaults, or
direction of rotation are more challenging without seeing motion. In contrast, HalluciNet
could predict the motion. Our HalluciNet even outperformed 3D-CNN-based approaches
that use more frames (MSCADC [6] and Nibali et al. [56]). C3D-AVG outperformed
HalluciNet, but is computationally expensive and uses 16×more frames.

Table 3. (a) Performance (Accuracy in % reported) comparison on dive recognition task. #Frames
represents the number of frames that the corresponding method sees. P, AS, RT, SS, TW stand for
position, arm stand, rotation type, number of somersaults, and number of twists. (b) Performance
(Spearman’s rank correlation in % reported) on AQA task.

(a)

Method CNN #Frames P A RT SS TW

C3D-AVG [6] 3D 96 96.32 99.72 97.45 96.88 93.20
MSCADC [6] 3D 16 78.47 97.45 84.70 76.20 82.72
Nibali et al. [56] 3D 16 74.79 98.30 78.75 77.34 79.89

Ours VGG11 2D 6 90.08 99.43 92.07 83.00 86.69
HalluciNet (VGG11) 2D 6 89.52 99.43 96.32 86.12 88.10
HalluciNet (R18) 2D 6 91.78 99.43 95.47 88.10 89.24

(b)

Method CNN #Frames Corr.

Pose+DCT [57] - 96 26.82
C3D-SVR [5] 3D 96 77.16
C3D-LSTM [5] 3D 96 84.89
C3D-AVG-STL [6] 3D 96 89.60
MSCADC-STL [6] 3D 16 84.72

Ours VGG11 2D 6 80.39
Ours HalluciNet (VGG11) 2D 6 82.70
Ours HalluciNet (R18) 2D 6 83.51

4.2.2. Dive Quality Assessment

Action quality assessment (AQA) is another task that can highlight the utility of
hallucinating spatiotemporal representations from still images, using a 2D-CNN. In AQA,
the task is to measure, or quantify, how well an action was performed. A good example of
AQA is that of judging Olympic events, such as diving, gymnastics, figure skating, etc. Like
the dive recognition task, in order to correctly assess the quality of a dive, the entire dive
sequence needs to be seen/processed.

Dataset: MTL-AQA [6], the same as in Section 4.2.1.
Metric: Consistent with the literature, we report Spearman’s rank correlation (in %).
We followed the same training procedure as in Section 4.2.1, except that for the AQA

task, we used L2 loss to train, as it is a regression task. We trained for 20 epochs with
Adam as a solver and annealed the learning rate by a factor of 10 every 5 epochs. We also
considered HalluciNet based on R18 (λ = 250).

The AQA results are presented in Table 3b. Incorporating the hallucination task helped
improve AQA performance. Our HalluciNet outperformed C3D-SVR and was quite close to
C3D-LSTM and MSCADC, although it saw 90 and 10 fewer frames, respectively. Although
it does not match C3D-AVG-STL, HalluciNet requires significantly less computation.

4.3. Dynamic Scene Recognition

Dataset: Feichtenhofer et al. introduced the YUP++ dataset [58] for the task of dynamic
scene recognition. It has a total of 20 scene classes. Samples from this dataset encompass
a wide range of conditions, including those arising from natural within scene category
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differences, seasonal and diurnal variations as well as viewing parameters. For each
scene class in the dataset, there are 60 color videos, with no two samples for a given class
taken from the same physical scene. Half of the videos within each class were acquired
with a static camera and half were acquired with a moving camera, with camera motions
encompassing pan, tilt, zoom and jitter.

The use of this dataset to evaluate the utility of inferred motion was suggested in [19].
In the work by Feichtenhofer, 10% of the samples were used for training, while the remain-
ing 90% of the samples were used for testing purposes. Gao et al. [19] formed their own
split, called static-YUP++.

Protocol: For training and testing purposes, we considered the central frame of
each sample.

The first experiment considered standard dynamic scene recognition using splits from
the literature and compared them with a spatiotemporal energy based approach (BoSE),
slow feature analysis (SFA) approach, and temporal CNN (T-CNN). Additionally, we
also considered versions based on Resnet50 and predictions averaged over 25 frames. As
shown in Table 4a, HalluciNet showed minor improvement over the baseline 2D-CNN
and outperformed studies in the literature. T-CNN might be the closest for comparison
because it uses a stack of 10 optical flow frames; however, our HalluciNet outperformed
it by a large margin. Note that we did not train our 3D-CNN on the scene recognition
dataset/task, and used a 3D-CNN trained on the action recognition dataset, but we still
observed improvements.

Table 4. (a) Dynamic scene recognition on YUP++. (b) Dynamic scene recognition on static-YUP++.

(a)

Method Accuracy

SFA [59] 56.90
BoSE [60] 77.00
T-CNN [61] 50.60

(Our Singleframe inference)

Our VGG11 77.50
Our HalluciNet(VGG11) 78.15

(Our Multiframe inference with better base models)

Our Resnet-50 83.43
Our HalluciNet(Resnet-50) 84.44

(b)

Method Accuracy

Appearance [19] 74.30
GT Motion [19] 55.50
Inferred Motion [19] 30.00
Appearance ensemble [19] 75.20
Appearance + Inferred Motion [19] 78.20
Appearance + GT Motion [19] 79.60

Our 2D-CNN 72.04
Our HalluciNet 81.53

The second experiment compared our approach with [19] in which we used their split
for static-YUP++ (Table 4b). In this case, our vanilla 2D-CNN did not outperform studies
in the literature, but our HalluciNet did—even when groundtruth motion information was
used by im2flow [19].



Signals 2021, 2 614

4.4. Using Multiple Frames to Hallucinate

As previously discussed, there are situations (e.g., door open/close) where a single
image cannot be reliably used for hallucination. However, motions cues coming from
multiple frames can be used to resolve ambiguities.

We modified the single frame HalluciNet architecture to accept multiple frames, as
shown in Figure 4. We processed frame Fj and frame Fj+k (k > 0) with our student
2D-CNN. In order to tease out low-level motion cues, we did ordered concatenation of
the intermediate representations, corresponding to frames Fj and Fj+k. The concatenated
student representation in the 2-frame case is as follows:

φs = concatφ(φ
j
s, φ

j+k
s ) (5)

where φl
s is the student representation from frame Fl as in Equation (2). This basic approach

can be extended to more frames, as well as multi-scale cases. Hallucination loss remains as
a single frame case (Equation (3).

ℒ𝑚𝑎𝑖𝑛 𝑡𝑎𝑠𝑘

ℒℎ𝑎𝑙𝑙𝑢

3D CNN
16 frames

Frame 𝐹𝑗

Shared
WeightsFrame 𝐹𝑗+𝑘

Figure 4. Multiframe architecture. Instead of using a single frame to hallucinate, representations of
ordered frames are concatenated (⊕), which is then used for hallucinating. Everything else remains
the same as our single frame model.

In order to see the effect of using multiple frames, we considered the following
two cases:

1. Single-frame baseline (HalluciNet(1f)). We set k = 0, which is equivalent to our
standard single frame case;

2. Two-frame baseline (HalluciNet(2f)). We set k = 3, to give the student network fs
access to pixel changes in order to tease out low-level motion cues.

We trained the networks for both the cases, using the exact same procedure and
parameters as in the single frame case, and observed the hallucination loss, Lhallu, on
the test set. We experimented with both kinds of actions—with short-term and long-
term dynamics.

Results for short-term actions are presented in Table 5a for UCF101. We saw a re-
duction in hallucination loss by a little more than 3%, which means that the hallucinated



Signals 2021, 2 615

representations were closer to the true spatiotemporal representations. Similarly, there was
a slight classification improvement, but with a 67% increase in computation time.

The long-term action results are presented in Table 5b for MTL-AQA. Like with short-
term actions, there was an improvement when using two frames. The percent of reduction
in Lhallu was better than the short-term case, and dive classification was improved across
all components (except AS, which was saturated).

Table 5. (a) Single-frame vs. two-frame on UCF-101. (b) Single-frame vs. two-frame: MTL-AQA
dive classification. Lhallu: lower is better.

(a)

Method Lhallu (×10−3) Accu Time/Inf.

HalluciNet(1f) 3.3 68.60 3.54 ms
HalluciNet(2f) 3.2 (↓ 3.08%) 69.55 5.91 ms

(b)

Method Lhallu (×10−3)
Accuracies

P AS RT SS TW

HalluciNet(1f) 4.2 89.24 99.72 94.62 86.69 87.54
HalluciNet(2f) 3.9 (↓ 8.05%) 92.35 99.72 96.32 89.90 90.08

Discussion:

Despite the lower mean hallucination error in the short-term case, the reduction rate
was larger for the long-term actions. We believe this is due to the inherent difficulty of the
classification task. In UCF-101, action classes are more semantically distinguishable, which
makes it easier (e.g., archery vs. applying_makeup) to hallucinate and reason about the
immediate future from a single image, while in the MTL-AQA dive classification case, the
action evolution can be confusing or tricky to predict from a single image. An example is
trying to determine the direction of rotation—it is difficult to determine if it is forward or
backward with a snapshot devoid of motion. Moreover, differences between dives are more
subtle. The tasks of counting somersaults and twists need accuracy up to half a rotation. As
a result, short-term hallucination is more difficult—it is difficult to determine if it is a full or
half rotation. While the the two-frame HalluciNet can extract some low-level motion cues to
resolve ambiguity, the impact is tempered in UCF-101, which has less motion dependence.
Consequently, there is comparatively more improvement in MTL-AQA, where motion
(e.g., speed of rotation to distinguish between full/half rotation) is more meaningful to the
classification task.

4.5. Utility of Hallucination Task in Pretraining

To determine if the hallucination task positively affects pretraining, we conducted an
experiment on the downstream task of dive classification on the MTL-AQA dataset. In
Experiment Section 4.2.1 the backbone network was trained on the UCF-101 action classifi-
cation dataset; however, the hallucination task was not utilized during that pretraining.
Table 6 summarizes the results of pretraining with and without the hallucination for dive
classification. The use of hallucination during pretraining provided better initialization
for both the vanilla 2D-CNN and HalluciNet, which led to improvements in almost every
category besides rotation (RT) for HalluciNet. Additionally, HalluciNet training had the
best performance for each dive class, indicating its utility both in pretraining network
initialization and task-specific training.
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Table 6. Utility of hallucination task in pretraining. Best performances are underlined.

Model Pretraining w/
Hallucination

Accuracies

P AS RT SS TW

2D-CNN No 90.08 99.43 92.07 83.00 86.69
Yes 92.35 99.72 94.33 86.97 88.95

HalluciNet No 89.52 99.43 96.32 86.12 88.10
Yes 92.92 99.72 95.18 88.39 91.22

5. Conclusions

Although 3D-CNNs extract richer spatiotemporal features than the spatial features
from 2D-CNNs, this comes at a considerably higher computational cost. We proposed a
simple solution to approximate (hallucinate) spatiotemporal representations (computed by
a 3D-CNN), using a computationally lightweight 2D-CNN with a single frame. Halluci-
nating spatiotemporal representations, instead of actually computing them, dramatically
lowers the computational cost (only 6% of 3D-CNN time in our experiments), which makes
deployment on edge devices feasible. In addition, by using only a single frame, rather
than 16, the communication bandwidth requirements are lowered. Besides these practical
benefits, we found that the hallucination task, when used in a multitask learning setting,
provides a strong supervisory signal, which helps in (1) actions with short- and long-term
dynamics, (2) dynamic scene recognition (non-action task), and (3) improving pretraining
for downstream tasks. We showed the hallucination task across various base CNNs. Our
hallucination task is a plug-and-play module, and we suggest future works to leverage the
hallucination task for action as well as non-action tasks.
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