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Abstract: Light curve analysis usually involves extracting manually designed features associated
with physical parameters and visual inspection. The large amount of data collected nowadays
in astronomy by different surveys represents a major challenge of characterizing these signals.
Therefore, finding good informative representation for them is a key non-trivial task. Some studies
have tried unsupervised machine learning approaches to generate this representation without much
effectiveness. In this article, we show that variational auto-encoders can learn these representations
by taking the difference between successive timestamps as an additional input. We present two
versions of such auto-encoders: Variational Recurrent Auto-Encoder plus time (VRAEt) and re-
Scaling Variational Recurrent Auto Encoder plus time (S-VRAEt). The objective is to achieve the
most likely low-dimensional representation of the time series that matched latent variables and,
in order to reconstruct it, should compactly contain the pattern information. In addition, the S-
VRAEt embeds the re-scaling preprocessing of the time series into the model in order to use the Flux
standard deviation in the learning of the light curves structure. To assess our approach, we used the
largest transit light curve dataset obtained during the 4 years of the Kepler mission and compared
to similar techniques in signal processing and light curves. The results show that the proposed
methods obtain improvements in terms of the quality of the deep representation of phase-folded
transit light curves with respect to their deterministic counterparts. Specifically, they present a good
balance between the reconstruction task and the smoothness of the curve, validated with the root
mean squared error, mean absolute error, and auto-correlation metrics. Furthermore, there was a
good disentanglement in the representation, as validated by the Pearson correlation and mutual
information metrics. Finally, a useful representation to distinguish categories was validated with
the F1 score in the task of classifying exoplanets. Moreover, the S-VRAEt model increases all the
advantages of VRAEt, achieving a classification performance quite close to its maximum model
capacity and generating light curves that are visually comparable to a Mandel–Agol fit. Thus, the
proposed methods present a new way of analyzing and characterizing light curves.

Keywords: variational auto-encoder; representation learning; transit model; light curve; unsuper-
vised learning

1. Introduction

New instrumentation technologies, such as the Legacy Survey of Space and Time
(LSST) at the Vera C. Rubin Observatory [1], the Transiting Exoplanet Survey Satellite
(TESS, [2]), and future space-based telescopes and ground-based observatories have moti-
vated the use of automatic techniques to process and analyze the large amount of data that
is being and will be generated.

In the exoplanet domain, advances in instrumentation and data analysis have allowed
the discovery of thousands of exoplanets. NASA has reported (last updated 12 October
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2021: https://exoplanets.nasa.gov accessed on 13 October 2021) more than 4500 exoplanets
detected using different techniques, despite the fact that planets emit or reflect very faint
light compared to their host star and that their orbital distance is very small relative to
observational distance. The analysis of light curves has been the main source of candidate
objects. These series are photometric observations of light intensity as a function of time,
where the observed star luminosity varies through time as a result of intrinsic processes
or due to external influences, such as an orbiting planet passing between the star and
the observer. The latter phenomenon is called a transit and has been used as an effective
method (http://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html accessed on
12 October 2021) method to study candidate orbiting objects. A transit light curve can be
mathematically modeled as a natural phenomenon of an orbiting object, and algorithms
such as the well-known Mandel–Agol method [3] can be used to fit such models. Unfortu-
nately, the diversity of planetary systems (and their corresponding astrophysical scenarios)
prevents unique model selection due to the unknown number of transits and complex
dynamics, such as eclipsing binary systems, very faint observation, or the microvariability
of the star [4].

The application of task-based learning models to solve specific tasks (e.g., exoplanet
search) has been the common approach to reduce human effort [5–8]. These are methods
that learn representations and model parameters based on a specific learning task and a
particular objective function, usually based on the available labels. On the other hand,
learning models to build self-generated representations of light curves have been largely
unexplored.

Task-free methods, such as those in [9–11], learn the key features (representation)
for detecting candidate exoplanets from data instead of imposing a model without the
correct capacity to learn the task (i.e., excessively simple or complex for the observed data).
These methods learn pattern structures from the data without the need for labels (i.e.,
unsupervised learning), having the advantage of using all the available data.

A major challenge of working with time series in astronomy is that they are usually
noisy, meaning that values are missing for several timestamps or that the measurements
are not uniform throughout the series. Different approaches have been proposed to solve
this representation issue such as binning the light curve based on a previous folding of the
periodic behavior [6], extracting specialized features based on subsets of data points [12], or
explicitly modeling the time dependencies [13]. Based on the latter, some approaches have
included the time information in the input representation of the learning model, showing
improved results [10,14,15].

Motivated by the success of deep learning techniques [16] in different research fields,
we focused on using the auto-encoder models. In this paper, we propose using variational
(stochastic) models as dimensionality reduction techniques in order to learn a quality deep
representation for Kepler light curves. Specifically, we propose two variational recurrent
auto-encoder extensions that can process the noisy Kepler time series by using the time
information of each observation. We extend the idea of using all the information on the
time series by including the standard re-scaling pre-processing task into the learning model
as an end-to-end architecture. The motivation to extract the information on the original
scale of the light curve, based on Flux standard deviation (F-std), emerges from the fact
that the relative sizes of exoplanets and noise are correlated with the F-std of the signal.

The concept of quality used and proposed in this paper is based on obtaining a compact
yet robust representation (i.e., parsimonious), with the capability of smooth time series
and with less correlated features (disentangled). In addition, good quality should imply
an informative representation of the behavior on the time series, for example by having
a better performance on classification tasks (such as time series categories). The need to
learn quality representation in astronomy has potential uses in cases such as denoising,
large-scale data processing, clustering, manifold learning, characterization, and other
unsupervised applications.

https://exoplanets.nasa.gov
http://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
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Our experiments show that the proposed variational models are robust in learning
patterns with less noise (denoising effect), having a balanced behavior between reproduc-
ing the original time series and smoothing. Indeed, the resulting light curve could be
compared to the isolated simulation of a transit object. The proposed quality factor of the
representation was also achieved, representing an improvement over the deterministic
counterparts proposed thus far.

This paper is organized as follows. In Section 2, the main methods for light curve
representation are jointly described with our proposed methods and their main differences.
Then, the experiment setting and results were introduced in Section 3. A brief discussion
is presented with regard to the advantage of the proposed methods in Section 4. Finally,
Section 5 summarizes the conclusions of this work.

2. Materials and Methods

We review the most relevant current works for light curve representation in Section 2.1.
Then, we introduce the proposed methods for learning light curve representation in Section 2.2,
a simple extension in Section 2.2.2, and another more complex in Section 2.2.3.

2.1. Light Curve Representation Methods

A light curve is a time series (function of time) containing measurements of the light
intensity of a celestial object or region. When one celestial body crosses in front of another
astronomical object and blocks any fraction of its light, it is called a transit. In this section,
we briefly introduce different representation approaches used to study transit light curves
(detection, vetting, classification, characterization) and related fields with model-based and
self-generated representations.

2.1.1. Model-Based Representations

The Mandel–Agol simulation [3] models the transit of a spherical planet around a
spherical star assuming a non-linear limb darkening model on the light source. It does this
by modeling the opacity observed on the light intensity according to the planet’s position
with a function over time `c(t). When the planet is in front of the star, the opacity is at
maximum (`c < 1). On the other hand, when the planet orbits without blocking the star
light, the opacity is minimum (`c = 1). When the planet is close to being in front of the star,
the intensity `c(t) is modeled as a polynomial based on the limb darkening of the star. This
requires knowing the distance from the center of the planet to the center of the parent star,
as well as the radius of each one of the bodies, the transit period, the inclination, and the
limb darkening models (coefficients). There are techniques that find the model parameters
through least squares (LS) or Markov Chain Monte Carlo (MCMC).

However, light curves can be observed not only by a transit, but several inherent and
exogenous processes might be involved in the variability of the observed intensity of a star.
Therefore, several machine learning techniques have been used to classify variable stars,
typically by manually extracting specialized features from the light curve as representation
and then applying classic pattern recognition methods to them. For example, Richards et
al. [12] presents a catalog of variable stars where 53 specialized features are extracted from
light curves through statistics such as kurtosis, skewness, standard deviation, and Stetson,
plus other features based on the period and frequency analysis of a Lomb–Scargle [13]
fitted model. Donalek et al. [17] also worked on classifying variable stars on the Catalina
Real-Time Transient Survey (CRTS) and the Kepler Mission, extracting similar features
from the light curves. In the work of Nun et al. [18], statistical descriptors are used as
inputs for a random forest algorithm that can detect anomalous light curves based on
probabilistic learning models. These outliers are removed from the training set used in
variable stars’ classification.

For transit vetting, we found the so-called Autovetter [5] which uses the random
forest model over the features derived from the statistics pipeline on the Kepler mission
for vetting candidate objects on the Kepler Threshold-Crossing Event (TCE) data. Another
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approach is to represent the light curve as phase-aligned sections called “folds” to address
the problem of irregular sampling in transits. This folded light curve centers the transit and
stacks all the times on which it occurs, as shown in Figure 1. In this sense, the most common
is to bin the folded light curve based on a window proportional to the estimated transit
period. For example, as a dimensionality reduction method (embedding representations)
of folded light curves, Thompson et al. [11] proposed a locality preserving projection to
filter out light curves with non-transit-like shapes, while Armstrong et al. [19] proposes a
self-organization map on the classification of true planets.

Neural networks and deep learning [16] algorithms have become very popular in
solving problems where feature extraction from data is non-trivial. These algorithms have
been successfully applied for transit vetting in recent years by using the binned folded
light curve representation. For example, Shallue & Vanderburg [6] used a one-dimensional
convolutional neural network (1D CNN) model on vetting candidate exoplanets on the
Kepler TCE data with the global and local representation of the folded light curve. Pearson
et al. [7] used a similar approach to [6] for detecting transit shape objects trained on
simulated data and evaluated using the Kepler mission dataset. Schanche et al. [8] also
used a 1D CNN model for distinguishing and vetting candidate exoplanets among variable
stars (four classes) on the Wide Angle Search for Planets dataset.

2.1.2. Self-Generated Representations

While most of the representations focus on using astrophysical knowledge to ease
a specific task (task-based), e.g., classifying star variability or vetting transits, only a few
of them tried different representation approaches without direct human intervention or
being especially designed for some task (task-free), which may have the advantage of
using unlabeled data and being used for different purposes. Mackenzie et al. [9] used an
unsupervised learning algorithm known as affinity propagation with a custom distance
function to build a new representation from light curves and then use it on a linear support
vector machine to classify variable stars. The representation is based on the similarity
between fragments of the light curves and cluster exemplars or centroids. Bugueño et
al. [20] also used an unsupervised learning algorithm to build a new representation on the
Kepler mission, and in a second phase, used supervised learning to classify true planets.
The principal component analysis (PCA) to extract features on the frequency domain
representation of light curves, based on a discrete Fourier transform, was used in [20].

In the work of Mahabal et al. [21], an image representation (i.e., grid) was obtained
from the variations of magnitude through time from light curves with missing values. This
work used the variable star data from the CRTS dataset and completed the classification
task using two-dimensional convolutional neural networks (2D CNN), which are models
that learn local spatial dependencies [22]. Aguirre et al. [14] also obtained variations in
magnitude from variable stars light curves and the delta times of each sample. These were
used as different input channels to train a 1D CNN classifier with shared-weights through
novel data augmentation techniques.

In the work of Naul et al. [10], time was used as an additional input channel but
through recurrent neural network (RNN) models, which are models that learn temporal
dependencies [23]. Naul et al. [10] presented a recurrent auto-encoder (RAE) that learned
how to embed and then reconstruct a light curve by setting the original times using RNN
models in the encoder and decoder phase—which we named “RAEt” (RAE plus time
information). The authors in [10,15] showed that learned representations are useful for
classifying variable stars, thus improving the results obtained using statistical features [12].
It also explores the use of the folded light curve representation which further improves the
obtained results.

Other types of research have been performed to characterize noisy signals. The most
common approach is to estimate the missing values. Rehfeld et al. [24] presented the
principal techniques used to analyze the correlation on irregularly sampled time series.
Mondal & Percival [25] proposed an estimator for wavelet variance for time series with
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missing data. There is also the Lomb–Scargle periodogram [13] for period analysis on data
with missing values and the previously discussed Mandel–Agol model.

Marquardt & Acuff [26] included delta times (time differences between two adjacent
samples) to obtain a spectral analysis from time series. However, to the best of our
knowledge, including delta times as an input in neural networks models of noisy times
series was first explored by Che et al. [27]. This study presents a modification of a gated
recurrent unit (GRU) model [28], namely GRU-D, which uses a binary mask for missing
values and the delta times as input channels. The objective was to impute (fill) the missing
values to improve the predictions on medical problems.

2.1.3. Variational Auto-Encoders

The variational auto-encoder (VAE) is a stochastic auto-encoder (AE) learned in a
probabilistic fashion based on the variational lower bound or evidence lower bound. The
VAE framework [29] is extended to work with uniform time series on the variational
recurrent auto-encoder (VRAE) proposed by Fabius & van Amersfoort [30]. The motivation
behind this is that VAEs are deep generative models trained on an unsupervised scenario,
learning latent variable representation as it trains. These variables are learned through the
observed distribution, so they are built to adapt to the variations in the behavior of the
data. This is the main difference of standard (deterministic) AEs that learn an invariable
specific point for the input pattern [31].

The use of the VRAE on different time series applications is associated with anomaly
detection [32–34], with the objective of detecting outliers. It usually compares the recon-
structed (or generated) input with the original values and sets some threshold of tolerance
to normal behavior. The sampled values from the latent distribution have smooth transi-
tions [29], so the reconstructed data should reduce the bias of the specific patterns [34]. In
addition, a VAE for generating transit-shape light curves as a data augmentation technique
was presented by Woodward et al. [35].

In the work of Locatello et al. [36], the importance of disentangled representations
for better unsupervised learning was discussed—better in the sense that the representation
should contain the information of the data in a compact and interpretable structure, among
other points. In [37], a good representation was defined as a representation that discovers
and disentangles some underlying factors in variation that the data may reveal. These
should be explanatory factors of the data that are a priori unknown and need to be learned.
Locatello et al. [36] showed that the VAE regularization also aims to achieve this.

2.2. Extending VRAE to Include Temporal Information

Based on the effectiveness of deep stochastic models, we propose two VRAE extensions
that incorporate the time information in the dimensionality reduction of light curve time
series, based on the time processing proposed by [10]. The first model is a natural extension
from VRAE that includes the temporal information of the signal, while the second model
adds the information of the Flux standard deviation for the dimensionality reduction task.

2.2.1. Problem Setup

Consider a dataset D = {~x(1),~x(2), . . . ,~x(N)} of N input patterns ~x distributed ac-
cording to an unknown probability distribution p(~x). These inputs pattern are vectors of
variable length, ~x(i) = (x(i)1 , x(i)2 , . . . , x(i)Ti

), where x(i)j ∈ R represent the j-th observation of

the time series ~x(i) of length Ti. Let t(i)j be the timestamp when the j-th observation was ob-
tained for datum i. Furthermore, we define the time interval, or delta, for each observation:
δ
(i)
j = t(i)j − t(i)j−1, with δ

(i)
0 = 0 ∀i. Let s(i) = std(~x(i)) be the standard deviation of the i-th

time series. This paper focuses on transit-shape domain objects over a light curve ~x(i) in
order to recognize patterns of exoplanets orbiting its host star. An example is shown in
Figure 1 (the time unit used is explained in Section 3.1).
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Assuming a detrended light curve ~x(i) (with zero mean), the standard deviation, s(i) ∈

R+, expresses the scale magnitude of the variability on flux ~x(i): s(i) =

√
1

Ti−1

Ti
∑

j=1

(
x(i)j

)2
,

which we abbreviate to F-std (Flux standard deviation).

Figure 1. Examples of Kepler mission light curves. The first column corresponds to 4 years’ worth of
detrended measurements with a sampling rate of half an hour, while the second column corresponds
to the phase-folded transit. The time unit is BKJD, with BKJD = BJD− 2454833.

2.2.2. VRAE Including Delta Times

A VAE, as any other auto-encoder architecture, is composed of a tangled encoder and
decoder models trained on an unsupervised scenario (unsupervised refers to the fact that
no labels are used as inputs to the model). The encoder model qφ(~z|~x), with parameters
φ, codifies the input pattern ~x to a multi-dimensional latent variable~z, which has fewer
dimensions than the original space (data compression). The decoder model pθ(~x|~z), with
parameters θ, reconstructs the input pattern from the codification ~z. The objective of
the model is to maximize a (variational) lower bound L(θ, φ; D) of the log-likelihood
`(θ, φ; D) [29]. For example, for an input pattern ~x, we have:

` ≥L(θ, φ;~x) = Eqφ(~z|~x)
[
log pθ(~x,~z)− log qφ(~z|~x)

]
L(θ, φ;~x) = Eqφ(~z|~x)[log pθ(~x|~z)]− DKL

(
qφ(~z|~x)‖pθ(~z)

)
, (1)

where the first term of L is related to the expected reconstruction likelihood and the second
enforces the consistency between the posterior obtained by the encoder qφ(~z|~x) and some
prior pθ(~z), based on the Kullback–Leibler (KL) divergence [38]. In the standard VAE,
the distribution qφ(~z|~x) is typically normal, N (µ(~x), diag(σ(~x))), where µ(~x) and σ(~x) are
modeled with neural networks yield vectors. However, the common choices of pθ(~z) lead
to a KL divergence that can be analytically integrated. However, the first term of L needs to
be approximated with the so-called re-parametrization trick: ~̂z = ~µ +~σ�~ε, with an auxiliary
noise variable ~ε ∼ N (~0, I). The operator � symbolizes the Hadamard product, i.e., an
element-wise product of vectors and matrices.

The fully connected VAE for light curves proposed by [35] could be extended to adapt
RNN models into the encoder qφ(~z|~x) and decoder pθ(~x|~z) as a VRAE model. However, to
adapt the model to incorporate the time information of the light curves, we need the time
intervals (~δ) as an extra input channel. To do this, we followed the idea of the RAEt archi-
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tecture proposed by Naul et al. [10] (shown in Figure 2), which adds the time information
in both encoding and decoding sections of the auto-encoder. The proposed extension is
named VRAEt model (VRAE plus time information). This model could be expressed by the
encoder qφ(~z|~x,~δ) and the decoder pθ(~x|~z,~δ), which have the time information ~δ of every
observation on the time series ~x as an extra input signal.

The motivation behind the variational extension is that the generative (stochastic)
model learns a latent variable with smoother transitions, meaning that their latent space
must be continuous [29]. Furthermore, since the model learns the distribution of the
encoded variable, it becomes robust to input variations, similarly to a denoising auto-
encoder [31]. Indeed, the learned distribution must have more likely regions or confidence
intervals where the input data should be.

Figure 2. Diagram of the RAEt (RAE plus time information) architecture for irregularly sampled
time series proposed by [10]. The sequence is processed by recurrent layers and produce a final
fixed-length embedding with a single fully connected layer on last state. The decoder first repeats
this embedding Ti times, and then appends the delta times (δt, in Figure ∆t). To determine the points
at which the function will be evaluated, the delta times are input to both the encoder and decoder.

2.2.3. VRAE with Embedded Re-Scaling

Currently, deep learning methods need a standardized version of the input represen-
tation ~x(i) that retains the original distribution but re-scaled to more tractable magnitudes.
This is used for properly training neural network models, based on the generalization princi-
ple that magnitudes of weights and activation functions must be somehow bounded [39,40].
Furthermore, Ioffe & Szegedy [41] recommend that a normalization step is added after each
layer to obtain more stable training. On a time series, this transformation is usually based
on its own magnitude behavior, e.g., the range, standard deviation, and norm. For example,
~x′(i) = (~x(i) −min(~x(i)))/(max(~x(i))−min(~x(i))) change the range magnitudes to [0, 1],
or ~x′(i) = (~x(i) −mean(~x(i)))/std(~x(i)) could lead to ~x′(i) ∼ N (0, 1) if ~x(i) is normally
distributed. These transformations are necessary for the model to detect pattern behaviors
instead of magnitude behaviors. The problem is that the information on the original scale
of variability is lost in the process, which can be useful in some cases. Focused on light
curves, we propose adding the Flux standard deviation s(i) of the flux time series ~x(i) as
an additional input to the VRAEt model, but still use the re-scaled version of the data for
achieving bounded weights and activations. To the best of our knowledge, this is the first
approach to do this as a end-to-end architecture.
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We consider the F-std s(i) (Section 2.2.1 for problem notation) as another input pattern
of the auto-encoder model VRAEt that also needs to be reconstructed. With this, the
objective of the VRAEt with re-scaling or S-VRAEt is to reconstruct the time series on the
un-scaled values, based on the F-std.

S-VRAEt architecture: The outline of the main components of the S-VRAEt model
which clarify the differences with respect to VRAEt, as summarized here:

1. Re-scale data: The first layer of the encoder qφ(·) re-scales the data by dividing on the
F-std. This step is performed in order to use the standardized version of the data, as
the literature recommends.

2. Encode: The encoder qφ(·) adds the F-std as an input pattern to the coding task by
qφ(~z(i)|~x(i),~δ(i), s(i)) = N (~µ(i), diag(~σ(i))) in order to extract the information on it.

3. Sample: The sampled latent variable is given by: ~̂z(i) = ~µ(i) +~σ(i) �~ε, with ~ε ∼
N (~0, I).

4. Reconstruct: The decoder pθ(~x(i)|~z(i),~δ(i)) adds the F-std to the reconstruction task in
order to estimate the original F-std by pθ(s(i)|~z(i)).

5. Re-scale reconstruction: The last layer of the decoder re-scales the data, by returning
the reconstructed F-std (multiplied by it). This final step is performed in order to
obtain a reconstructed time series on the un-scaled values’ representation.

Based on the high variability in the range of values of the F-std and inspired by [41],
we introduced a normalization logarithm layer (NormL) that is applied to s(i). Considering
a random variable a, the forward pass to obtain a new value b is given by

b = NormL(a) =
log a−mean(log a)

std(log a)
. (2)

The mean and standard deviation (std) are previously computed over the whole
dataset. Furthermore, another layer is introduced to reverse this transformation, given by

a = RevNormL(b) = exp(b · std(log a) + mean(log a)) = Norm−1
L (b). (3)

Compared against the VRAEt on Algorithm 1, a pseudo-code of the S-VRAEt forward
pass is presented on Algorithm 2. Here, it can be seen that the main differences are the
re-scaling process inside the model and the additional input pattern to be used. The
first thing to formalize is that gw(·) and fw(·) are non-linear functions (i.e., deep learning
models) parameterized by the weights w. The E(·), which stands for the embedding function,
corresponds to the first layers of a deep learning model. Inside fφ(·), the E1(·) is an RNN
model and E2(·) is a multi-layer perceptron (MLP) model with NormL(·) as the first
layer. Here, E1(·) codifies the information from the noisy standardized time series, while
E2 codifies the F-std. On the decoder phase, the g1

θ(·) is similar to a mirror model of
E1(·), while reversing what E2(·) does, the last layer of g2

θ(·) is RevNormL(·). Then, g1
θ(·)

reconstructs the standardized version of the time series and g2
θ(·) reconstruct the F-std.

The architecture of the proposed S-VRAEt is illustrated in Figure 3. Please note that
the Encode and Reconstruct blocks are the same as the RAEt in Figure 2 but without the
F-std transformations. In summary, S-VRAEt learns a coded deep representation of the
noisy un-scaled time series in an unsupervised way. The advantage is that those features
are optimized for the specific input behavior (rather than classification) and are more
disentangled (more independent between each other) than human-crafted counterparts.
The evidence for this claim can be found in Section 3.3.
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Algorithm 1 Forward pass VRAEt.

Input: ~x(i)s — scaled measurements of the time series
~δi)— delta times of the time series

Output: ~̂x(i)s — reconstructed scaled time series
1: // Encode to distribution:
2: ~µ(i) ← f 1

φ

(
E1(~x(i)s ,~δ(i))

)
3: ~σ(i) ← f 2

φ

(
E1(~x(i)s ,~δ(i))

)
4: ~ε ∼ N (~0, I) // Auxiliary noise
5: ~̂z(i) ← ~µ(i) +~σ(i) �~ε
6: // Decode or Reconstruct:
7: ~̂x(i)s ← g1

θ

(
~z(i),~δ(i)

)

Algorithm 2 Forward pass S-VRAEt.

Input: ~x(i)— measurements of the time series
~δ(`)— delta times of the time series

Output: ~̂x(i)— reconstructed time series
1: s(i) ← std(~x(i)) // F-std
2: ~x(i)s ← ~x(i)

s(i)
// Step-1

3: // Encode to distribution: Step-2
4: ~µ(i) ← f 1

φ

(
E1(~x(i)s ,~δ(i)), E2(s(i))

)
5: ~σ(i) ← f 2

φ

(
E1(~x(i)s ,~δ(i)), E2(s(i))

)
6: ~ε ∼ N (~0, I) // Auxiliary noise
7: ~̂z(i) ← ~µ(i) +~σ(i) �~ε // Step-3
8: // Decode or Reconstruct: Step-4
9: ~̂x(i)s ← g1

θ

(
~z(i),~δ(i)

)
10: ŝ(i) ← g2

θ

(
~z(i)
)

11: ~̂x(i) ← ~̂x(i)s · ŝ(i) // Step-5

In any VAE model, the objective of learning the distribution of the latent variable is
to obtain the more likely reconstructed input pattern. In our S-VRAEt, the time series is
reconstructed on the original un-scaled behavior ~̂x(i), so we can consider it as a smoothing
or denoising model in a data-dependent way (based on data behavior). As the model
processes the F-std inside it, it allows a robust F-std reconstruction (based on the noise).
For example, consider the following decomposition of a time series: ~x(i) = ~x(i)p +~n(i),

with ~x(i)p , flux measurements with an isolated or perfect environment such as the one
modeled by [3], and~n(i) as the intrinsic noise of these measurements, both with zero mean.
Based on this decomposition, we can express the noised and denoised dispersion, F-std, as
s(i)n = std(~x(i)p +~n(i)) and s(i)p = std(~x(i)p ), respectively. The denoised F-std s(i)p could only
be close-estimated by S-VRAEt in order to re-scale the denoised reconstructed time series
~̂x(i)p = ~̂x(i)p,s · s

(i)
p (Step 5 of Algorithm 2). Other models, with a fixed re-scaling process, will

always use the noised F-std: s(i)n . This shows the capacity of S-VRAEt to learn to smooth an
un-scaled time series.
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Figure 3. Diagram of the S-VRAEt (VRAEt with re-scaling) architecture for time series. Firstly, the
raw time series input is re-scaled and passed to the RNN encoder block together with the delta
times. In parallel, the F-std input is also encoded. A concatenation is performed on both learned
embedding values to obtain the Normal distribution parameters of the latent variable. After a sample
is performed over this distribution, the value is used to reconstruct the F-std. In parallel, the sample
is repeated and concatenated with the delta times in order to reconstruct the scaled time series on the
time space. Finally, the F-std is returned to the time series through the network estimation.

2.2.4. Loss Function

In this section, we describe the optimization objectives of the proposed variational
auto-encoder models (VRAEt and S-VRAEt) for the time series domain.

Reconstruction loss: We used a modified version of the mean squared error (MSE)
function for the un-scaled variable time series, named weighted or re-scaled MSE, given by

SMSE(X, X̂) =
1
N

N

∑
i=1

w(i) · 1
Ti

Ti

∑
j=1

(
x(i)j − x̂(i)j

)2
, (4)

where the additional weight w(i) is associated to every input pattern (as a sample weight [42])
and is defined as the inverse of the variance in the time series: w(i) = (var(~x(i)))−1. The
weight value comes from wi = (s(i))−2, with the idea of normalizing and removing the
intrinsic dispersion of the time series ~x(i), and so every input pattern has the same impact
in the objective (note that SMSE is similar to the chi-square error of a linear least-squares fit
with (uncorrelated) uncertainties that follows from a maximum likelihood approach). In
order to perform a proper reconstruction of the input patterns, the SMSE is applied as a
loss function for the deterministic counterpart of VRAEt, i.e., the RAEt model.

Variational loss: The two factors to optimize on the variational lower bound (Equation (1))
could be expressed by: (i) a reconstruction factor through the SMSE described above; and
(ii) the closed solution for the KL divergence with normal priors [29]. Following Higgins et
al. [43], we combine these two factors using a regularization parameter β obtaining the loss
function of the VRAEt model:

V(X, X̂) = SMSE(X, X̂) + β · DKL

(
Z‖N (~0, I)

)
. (5)
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Our earlier experiments on the validation set led us to set the β hyper-parameter to a
small value of 10−3. This means that the priority is set on the reconstruction task but with
a variational component of regularization.

Variational loss with re-scaling: As our proposed S-VRAEt adds the F-std to the
reconstruction task, we need to specify an additional loss that guides this reconstruction.
We used the mean squared logarithm error (MSLE) as a loss function, given by

MSLE(~S, ~̂S) =
1
N

N

∑
i=1

(
log s(i) − log ŝ(i)

)2
. (6)

Then, the learning objective of the S-VRAEt model is given by

SV
(
(X,~S), (X̂, ~̂S)

)
= V(X, X̂) + α ·MSLE(~S, ~̂S) , (7)

where the α hyper-parameter was set to 10−1/var(log~S). The same motivation used for β
led to set the 10−1 value, firstly giving relevance to the reconstruction loss SMSE inside
V. However, the var(log~S) value is to re-scale the values of the MSLE loss (by removing
the standard deviations) to the same proportions of SMSE loss. The loss function used
helps the models, guiding them into the right reconstruction. As each component has a
hyper-parameter weight, this does not force the model to explicitly predict the exact value,
as it only acts as a data-driven loss.

3. Experimental Setup and Results

This section presents the experimental setup in which the proposed methods were
validated and the results obtained through that setup.

3.1. Dataset

Our work used the Kepler Objects of Interest (KOI, [44]) dataset described by the
NASA Exoplanet Archive [45]. It is composed of 8054 light curve records (https://archive.
stsci.edu/kepler/koi/search.php accessed on 20 September 2019) where every KOI de-
scribes a target star in the field of view that exhibits transit-like signatures in its light curve.
Primarily, a TCE that was accepted as a valid astrophysical signal based on the diagnos-
tic tests described in [44] was designated as a KOI. According to the NASA Exoplanet
Archive (https://exoplanetarchive.ipac.caltech.edu/ accessed on 10 July 2021), KOIs are
categorized into three tags: Confirmed, claimed exoplanets through extensive scientific
analysis and follow ups; False Positive, evidence indicates that they correspond to another
type of behavior not associated with transit exoplanets (e.g., eclipsing binary systems),
and Candidate, those that are still under study (unlabeled data). In some cases, multiple
KOIs are obtained from the analyzed host star, where each object contains the raw flux
measurements with the timestamps (in BKJD), including the instrumental error associated
with each measure. The time unit Barycentric Kepler Julian Day (BKJD) corresponds to
BKJD = BJD− 2454833, while the Barycentric Julian Day (BJD) is simply Julian days (the
continuous count of days since the beginning of the Julian period) with some corrections
based in the Earth’s position and the barycenter of the Solar System. The long-cadence
sampling rate of the 4-years’ worth of measurements was 0.0204 BKJD on average (i.e.,
half an hour); however, there is 22.98% of missing values on average in the collected and
used light curves. The light curve data [46–48] described here may be obtained from
the Mikulski Archive for Space Telescopes (MAST) (https://doi.org/10.17909/T9RP4V
accessed on 10 July 2021).

The archive also provides a set of metadata values (https://exoplanetarchive.ipac.
caltech.edu/docs/API_kepcandidate_columns.html accessed on 10 July 2021), some of
which (usually those related to the host star such as its effective temperature and metallicity)
are cross-matched from other catalogs, while others are calculated following a Mandel–Agol
modeling fit [3] according to LS and MCMC. For comparing our self-generated features

https://archive.stsci.edu/kepler/koi/search.php
https://archive.stsci.edu/kepler/koi/search.php
https://exoplanetarchive.ipac.caltech.edu
https://doi.org/10.17909/T9RP4V
https://exoplanetarchive.ipac.caltech.edu/docs/API_kepcandidate_columns.html
https://exoplanetarchive.ipac.caltech.edu/docs/API_kepcandidate_columns.html
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with model-based ones, we selected those that could be obtained from the light curves
based on the modeling, which are: Period; First Transit Time; Inclination; Planet Radius (over
Stellar Radius); Semi-Major Axis (over Stellar Radius); Transit Duration; Impact Parameter; and
Fitted Stellar Density. Furthermore, we included the Limb Darkening Coefficients (quadratic
model) even though they are not solved –they are fixed in the fit for each star, but they are
still involved in the modeling of the light curves.

For data pre-processing, we used a detrending process that also normalized the stellar
flux and apriori removed low frequency noise. It combines ideas from the combined
differential photometric precision proxy used by [49]—subtract polynomial fit and sigma-
clipping, and the Argabrightening detection by [50]—subtract polynomial fit and subtract
median filter. This detrending process was performed over the raw flux measurements by
using time. It consists of applying and then subtracting a two-degree polynomial fit with
a window of 151 points (approximate 3 days on Kepler), the Sav-Gol filter [51]. Then, it
subtracts a moving median filter with a window of 25 points. Finally, during the sigma-
clipping, we remove positive outliers that are greater than 5σ and remove negative outliers
less than −40σ.

3.1.1. Data Representation

For the detrended flux light curve ~f (i), we used the global-folded representation
proposed by Shallue & Vanderburg [6]. First, it produces ~p(i), a vector with the same
number of points by folding the detrended light curves on the period (P with the event
centered (fold step). Then, a median window was applied every P/T times over the folded
light curve ~p(i) (global step) producing ~x(i), a vector with T points (empty values masked
with 0) such that each light curve has the same length with the width interval depending
on the period P. The parameter T controls the trade-off between a detailed representation
and having enough points on each window for the median to be meaningful.

Figure 4 shows examples of folded and global-folded representations of some light
curves (based on Kepler). The second example illustrates a general disadvantage of this
method, where long-period KOIs may end up with very narrow transits that fall entirely
within a small number of bins. On the other hand, the third example shows how the
global-folded representation helps obtain a cleaner version of the light curve when the
planets are small.

As explained in Section 2.2, the delta times (~δ(i)) of ~x(i) are considered as an additional
input for the learning models. Furthermore, please recall that the measurements of the
global-folded light curve ~x(i) were previously scaled through ~x(i)s = ~x(i)

s(i)
for VRAEt, while

the proposed S-VRAEt model directly uses the un-scaled global-folded light curve x(i).

3.1.2. Data Selection and Augmentation

We set a data-driven mask over all the objects (labeled and unlabeled) of the KOI data
(8054 records) to filter out light curves without a transit behavior, obtaining 4317 objects to
train in an unsupervised fashion. The process is described below:

• Check for Kepler flags (in the metadata) and remove objects with “secondary event”
or “not transit-like” flags;

• Remove objects with a “transit score” (in the Kepler metadata) less than 0.55;
• Perform a Mandel–Agol fit and remove objects with (SMSE) residual greater than 1.

The candidate objects that are not transits (“not transit-like” flags) could be because
the detection was from instrumental artifacts errors, non-eclipsing variable stars or another
object (non-planetary) in the background. On the other hand, the objects with a statistically
different secondary event (“secondary event” flag) are most likely caused by an eclipsing
binary system, i.e., two stars orbiting around their barycenter.

Furthermore, as a data augmentation step, we doubled this dataset by mirroring each
folded light curves [52]. This represents of the same object, with the same properties, orbits
the star in the opposite direction.
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Example 1

Example 2

Example 3

Figure 4. Examples of the different representations that can be obtained from a periodic light curve
by knowing the period P. The example images on every column are the raw detrended light curve,
the folded (phase-space), and global-folded (setting the bins to T = 1000), respectively. The third
column is the representation used in this work. The time unit is BKJD.

3.2. Model Assessment and Implementation

For assessing the quality in the latent representation of global-folded light curves
learned by the proposals, we propose validating the reconstruction task based on that
representation, the representation disentanglement, and the true planet classification by
using the representation (extrinsic validation).

3.2.1. Reconstruction Validation

Using the encoder–decoder architecture, we assessed the reconstruction task by com-
paring the estimated input pattern ~̂x and real value ~x using the root mean squared error
(RMSE) and mean absolute error (MAE) as performance metrics. For evaluating the denois-
ing effect on the reconstruction, we used the estimated input pattern ~̂x and measure the
auto-correlation (Auto-C) and the mean of the differences (Diff-M) between consecutive
values. A high Auto-C and low Diff-M, is associated with a smoother time series. For
measuring the structure left within the residual noise (difference between real and estimated
time series), we used an information theory score called spectral entropy (Spectral-H) [53].
A high value of this entropy means a less structured residual in terms of signal frequencies.

Smoothing a time series is a classical signal processing task. Unfortunately, this is not
straightforward for transits because transits are (statistically speaking) isolated behaviors
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or anomalies as shown in Figure 4. Therefore, a standard denoising model will remove
transits by considering them anomaly deviations of the “normal” stellar flux. Based on
this, we selected the following signal processing baselines to compare our models: the
Butterworth passband filter [54], a moving average filter with different window sizes, and
the RAEt [10]. In addition, we performed a Mandel–Agol (M-A) fit over the global-folded
light curves, modeling points on the phase-space of this representation. The M-A fit was
performed to obtain a reasonable time period for the exoplanet population analysis, using
the same model calculation given by Kepler. This was implemented using the ktransit
library [55] with an LS optimization based on a quadratic limb darkening model and the
star coefficients of the Kepler metadata, given by [56]. At this point, the LS optimization
hyper-parameters were set to the library defaults.

To make a fair comparison, the initial estimate for the period and mid-transit time was
the same as that used in the folding of the light curves.

3.2.2. Disentanglement Validation

Using the encoder sub-architecture, we analyzed the disentanglement of the latent
representation based on the features’ dependency. To perform this in an unsupervised
way [36], we used the Pearson correlation between all the features on the representation to
determine how orthogonal the generated features are. We report the average over all the
values (Pcorr) and the average over the absolute values (Pcorr-A). The mutual information
(MI) between the continuous features was also measured, including a normalized version
(of a value in the range [0, 1]) that is obtained by dividing on the entropy of every feature
(N-MI). The calculation of MI is a discrete approximation of the real continuous space
calculation, based on the k-neighbors’ implementation [57].

Here, we compare the high-level specialized features included in Kepler’s metadata
with the features learned by RAEt [10] and the PCA features extracted over the frequency
domain (spectrum) representation of the time series (Fourier followed by PCA or F-PCA) [20].

3.2.3. Classification Validation

Using the latent representation learned by the encoder sub-architecture, we analyzed
the performance in a binary classification task (is the object a true exoplanet?). This is an
extrinsic assessment of the quality of the representation since the model did not have
learning as a specific objective (task-free). The classification was made using an MLP model
built over the representation with 128 units and relu activation, ending with a sigmoid
classification layer (one-unit) as output. The dataset labels were used to carry out this
evaluation, with 2281 exoplanets and 3976 non-exoplanets (1797 of the KOIs are unlabeled,
i.e., candidates). The network is trained in 70% of the labeled data with 30% remaining as a
test set. The best parameters found over 200 epochs are stored (with 128 batch size). As
the dataset contains a larger number of non-exoplanet objects (in an unbalanced scenario),
an F1 score macro averaged (F1-Ma) criterion was used to assess the results, where a high
value means high precision and recall simultaneously on both classes.

3.2.4. Model Implementation

Following the RAEt model [10], the recurrent layers of our models implement GRU
over the widely known long short-term memory (LSTM, [58]) as it presents roughly the
same performance [59], but has fewer parameters and needs to store less information per
time (i.e., it is faster). The encoder and decoder recurrent blocks of the models (i.e., E1(·)
and g1(·) on Algorithms 1 and 2) are a stack of two bidirectional RNN layers of 64 units in
order to increase representation complexity as [10] presented. The models were trained for
300 epochs with a batch size of 64 and an Adam optimizer [60]. The implementation was
performed using the Keras library (https://keras.io, accessed on 10 July 2021).

https://keras.io
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3.3. Results

The following results were obtained at the Chilean Virtual Observatory (ChiVO)
datacenter [61] on an Intel Xeon CPU E5-2680 2.50 GHz with 12 cores and 64 GB of RAM.
For the experiments, we set T = 300 and the dimension of the encoder representation D
to 16, generating 95% compression. The results correspond to just one sample set. All the
implementations are available in our repository (Github, accessed on 12 October 2021).

3.3.1. Is the Time Needed?

Table 1 shows the results on the behavior of the model when using the time infor-
mation. The first thing to mention is that the learning models, on average, manage to
reconstruct the data without the time channel. However, including the delta time channel
as input to both sub-architectures (encoder and decoder) helps the methods to regularize
the reconstruction. This phenomenon can be seen by the RMSE and MAE metrics since they
report an increase when using time, while the Spectral-H indicates that the models leave
more noise in the residual reconstructing non-uniform patterns of the original time series.
In that sense, the denoising results report that the consecutive values of the reconstructed
time series are more auto-correlated and with smoother transitions. All this indicates that
the model does not focus on exactly imitating each measurement but generates smoother
light curves with more residual noise. This effect is stronger on the RAEt model, since the
variational loss on VRAEt already forces some regularizations.

Table 1. Reconstruction and denoising results with the associated metrics. In both, compared
methods are shown if the time information is used (as delta intervals δ). ↑ symbol means that a
higher value is better on that task, while ↓means that a lower value is better.

Reconstruction Denoising Residual Noise
Method Time RMSE ↓ MAE ↓ Auto-C ↑ Diff-M ↓ Spectral-H ↑

RAEt
× 0.630 0.448 0.429 0.206 0.889
X 0.680 0.475 0.502 0.125 0.895

VRAEt
× 0.689 0.480 0.559 0.074 0.900
X 0.688 0.484 0.594 0.068 0.901

3.3.2. Quality Evaluation

The reconstruction and smoothing scores for different methods and configurations
are presented in Table 2. As expected, passband methods offer a very good denoising
behavior, but fail to properly reconstruct the signal. For example, if we vary the filter on the
passband, by specifically narrowing the pass frequency, the reconstruction error increases
and becomes smother (high Auto-C and low Diff-M). The same effect occurs for the moving
average method when we increase the window size. Compared to the passband, the
moving average method presents smaller reconstruction errors but producing a rougher
time series (low Auto-C). The Mandel–Agol fit has a smaller reconstruction error compared
to the passband and moving average methods, which is because it performs a specific and
specialized problem fit (transit light curves). The simulation function does not consider
factors of smoothness, as it models the ideal behavior of the transit objects. Nevertheless,
the auto-correlation is still strong as in the previous methods, with the smallest difference
on consecutive values.

It is clear that the learning-based methods (auto-encoders), due to data learning, have
the lowest reconstruction errors only comparable with a moving average with a window
size of 3. Furthermore, the reconstructed data are still significantly smoother than those
of the original time series (denoising effect). Between them, variational proposals have a
greater auto-correlation (i.e. smoother) than their deterministic counterpart RAEt. Except
for the Mandel–Agol fit and the narrowest passband, they have the smallest difference on
consecutive values (Diff-M), showing smoother transitions in the local behavior of the time
series.

https://github.com/Buguemar/PIIC19/tree/master/code/obj4
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Table 2. Reconstruction validation. Reconstruction and denoising results with the associated metrics
on different methods. The configuration of the passband corresponds to low and high-pass filters,
respectively, while for moving average corresponds to window size. For the Mandel–Agol it indicates
the library used for the fit, while deep auto-encoder methods have the dimension of the encoder
representation. The ↑/↓ symbols mean that a higher/lower value is better on that task respectively.

Reconstruction Denoising Residual Noise
Method Config. RMSE ↓ MAE ↓ Auto-C ↑ Diff-M ↓ Spectral-H ↑

Light Curve - - 0.273 0.784 0.840

Passband
1–500 1.081 0.624 0.968 0.047 0.824

50–1500 1.041 0.655 0.831 0.200 0.842
50–2500 0.959 0.640 0.670 0.363 0.846

Moving avg
3 0.719 0.461 0.704 0.274 0.876
5 0.841 0.513 0.784 0.170 0.860

10 0.937 0.553 0.843 0.089 0.843

M-A fit ktransit 0.799 0.514 0.693 0.028 0.873

RAEt 16 0.680 0.475 0.502 0.125 0.895

VRAEt 16 0.688 0.484 0.594 0.068 0.901
S-VRAEt 16 0.724 0.489 0.611 0.064 0.898

If we take a look at the spectral entropy of the residual, we clearly identify that
learning-based methods exhibit the best scores. This means that these methods really focus
on learning the time series patterns to perform the reconstruction instead of removing
structure for achieving high smoothness as in the generic denoising methods presented.
Please note that the spectral entropy has a reference value of 0.840 (i.e., on the original light
curve) and its maximum value is 1.000 (i.e., a uniform distribution of frequencies).

Figure 5 shows a few examples of reconstructed light curves for a better understanding
of the previous results. The RAEt approach tends to keep the noise on the edges of the
time series (in order to perform a good reconstruction), while our proposal (S-VRAEt)
generates a smoother transit to the extent of being comparable with the M-A transit model,
removing more high-frequency noises, as can be seen in the figure. The VRAEt model is not
shown because visually it is quite similar to S-VRAEt. On the other hand, the Mandel–Agol
model residuals show that the reconstruction errors are related to the positive values, as
the function models that the measured light could not be greater than the regular/normal
star’s light intensity (without objects in front of the observer), i.e., it is limited by the model
itself.

In Table 3, we present the disentanglement of the representation based on the feature
dependence. Here, it can be seen that learning-based methods (AEs) obtain features with
less information duplicity than the metadata features obtained by Kepler, i.e., the learned
features are more disentangled. Minimizing the correlation and mutual information could
simplify the task of identifying independent linear and non-linear processes in the system,
respectively.

We computed an F-PCA representation from the whole (unfolded) raw measurements
and from the folded representation. Both obtained components were linearly indepen-
dent between them based on the orthogonality of the PCA formulation. However, the
F-PCA method over the fold representation produces less MI, as an example of optimal
independence for the problem. The closer values to F-PCA (in the folded curve) are from
the proposed model with re-scaling (S-VRAEt) showing the good impact of including the
F-std into the model. It is worth noting that the variational proposed models (VRAEt and
S-VRAEt) learn a space with more independent components (linearly and based on mutual
information) than the deterministic counterpart RAEt.
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(a) Original Light Curves.
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(b) M-A transit model [3].
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(c) RAEt [10].
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(d) S-VRAEt.

Figure 5. Examples of the reconstructed and simulated light curves by different methods in (b–d)
of the corresponding light curves in (a). The red line with stars is the residual generated from the
methods with respect to the original curves in (a).

Table 3. Disentanglement evaluation: Pearson correlation (Pcorr) between features expresses the
linear dependence of all features on the representations, while Pcorr-A is the absolute mean. Mutual
information (MI) between the features expresses an approximation of the information dependence
of all features on the representation, while N-MI is a normalized value between 0 and 1. All the
representations are generated with 16 dimensions, except metadata which has 10 features.

Representation Pcorr Pcorr-A MI N-MI

Metadata 0.064 0.162 0.275 0.044

(Raw) F-PCA 0.000 0.000 0.210 0.027
(Fold) F-PCA 0.000 0.000 0.061 0.008

RAEt 0.057 0.277 0.255 0.033
VRAEt 0.012 0.168 0.122 0.016

S-VRAEt −0.003 0.138 0.072 0.009
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3.3.3. Application of the Learned Representation

An extrinsic way to assess the quality of a representation is to impose a task: in this
case, classifying candidate light curves as true exoplanets (Confirmed) or another variability
(False Positive).

Table 4 presents the results of this binary classification. Here, we compare different
representations, including the auto-encoders and supervised methods from the global-
folded light curve shape (with T = 300 bins). The “1D CNN” is a supervised method
that extracts features based on convolutions, while “RNNt” does it based on recurrence,
both with the classification layer mentioned in Section 3.2.3 on top. The 1D CNN network
architecture is inspired by [6], until the third convolutional block using only the global
view on this KOI dataset (a subset of the TCE). While the RNNt architecture is the recurrent
encoder of RAEt/VRAEt without the decoder phase.

Table 4. Classification validation: Performance of the representation generated by different methods
and techniques. The precision (P), recall (R), and F1 score per class and macro averaged are presented.
The length of the curve used was T = 300.

Representation Input Non-Exoplanet Exoplanet Global
Dim P R F1 P R F1 F1-Ma

Metadata 10 94.62 86.05 90.13 77.81 90.91 83.85 87.00
Global-Folded T 83.55 83.48 83.51 69.35 69.45 69.36 76.45

Unsupervised Methods

(Raw) F-PCA 16 77.24 75.55 76.38 59.15 61.40 60.26 68.32
(Fold) F-PCA 16 81.82 87.27 84.46 75.04 66.37 70.44 77.45

RAEt 16 85.35 82.55 83.93 71.37 75.44 73.35 78.64
VRAEt 16 87.37 85.75 86.55 76.06 78.51 77.27 81.91

S-VRAEt 16 88.88 86.93 87.89 78.17 81.14 79.63 83.76

Supervised Methods

RNNt T 88.88 88.45 88.67 78.73 79.43 79.09 83.87
1D CNN T 91.57 87.09 89.27 78.01 85.10 81.40 85.33

In Table 4, it can be seen that the representation of the variational extension (VRAEt)
gives an improvement on all the classification metrics with respect to the RAEt representa-
tion, as well as being better than the other unsupervised methods. This can be explained
due to the generalization capacity of the implemented latent variables within the variational
model. Furthermore, the results of the S-VRAEt suggest that the method succeeds in using
the Flux standard deviation of the light curve, as it is able to codify better patterns in the
representation to distinguish in the classification task. Indeed, the S-VRAEt representation
has the best classification performance among unsupervised techniques on all the metrics,
being quite close to the supervised ones. This indicates that, without access to labels, we
are obtaining a representation almost as good as the supervised method on that task and at
the same time, useful in other factors.

4. Discussion

In Section 3.3.1, we show that the time is needed if a regularization effect and smooth-
ing is desired. We briefly discuss the reasoning behind why time could contribute to
phase-space light curves. As [10] introduced, the time information is not only used as input
in the first stage (encoder process), as the decoder process needs the space reference where
to reconstructs it. Each light curve has its own phase-space based on its period, then the
delta times of the bins for different light curves will be different. Even if the delta times are
similar for some light curves, the decoder does not know that information. The model will
have to learn to reconstruct in each phase-space, since the decoder processes the previous
time and its memory with a recurring operation. By having the same vector ẑ repeated at
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each time-step in the first decoder layer (Figure 3), the temporal information of each point
for the different light curves could be beneficial in the reconstruction.

Section 3.3.2 shows that the proposed methods offer a good combination of recon-
struction and denoising of the light curves. In addition, adding the re-scaling into the
model (S-VRAEt) seems to produce a smoother reconstructed time series but with the cost
of increasing the reconstruction error, but both results are quite similar. The disadvantage
in reconstruction is expected because the model needs to learn to simultaneously codify
and reconstruct the F-std of the data. These results indicate that the representation learned
by the variational proposals allow a smoother version of the light curve reconstruction
that is the most similar (except for RAEt) to the original curves, these being the methods
that perform the best removal of unstructured patterns (noise) on the light curves among
all the methods. While the results in Table 3 illustrate that more exclusive information
could be stored through the learned variational features of the proposed models (as every
feature represent a more different structure) and used for different proposes, as shown in
the following. In addition, as shown in [36], a more disentangled representation indicates
that the features found are closer to the underlying factors that explain the data behavior.

The unsupervised feature extraction methods are useful based on the classification
improvement over the raw global-folded representation, as shown in Section 3.3.3. This
suggests that it is easier to discriminate using these compact representations than the raw
folded measurements (95% compression). In addition, the 16-dimensional representation
is computationally lighter, taking a fraction of the time to train the supervised network
(i.e., 10%). However, supervised methods that train an internal representation explicitly
specialized for the task have better classification results over all unsupervised techniques.
This is expected if we take a look at the input mapping for the desired output y with a
classification model C(·; w) parameterized by w. For example, (considering that the input
~x should be (~x,~δ)), the VRAEt will estimate ŷ = C( f (~x; φ); w) by learning w with φ fixed,
since the representation µ = f (~x; φ) is already learned (in the unsupervised auto-encoder
objective without knowing y). However, the supervised version of this method (RNNt)
will estimate ŷ by learning φ as well (in the supervised objective knowing y). Despite this,
it is worth noting that our proposed S-VRAEt achieves a performance quite close to the
maximum model capacity for this specific task (RNNt) by learning φ without labels (y). In
this case, we refer to the capacity to extract the information from the input ~x, and it would
be given by the structure of f (~x; φ), e.g., a linear function or not, in the case of a neural
network, the architecture, or how φ is organized within the network.

5. Conclusions

In this work, we used variational (stochastic) auto-encoder models to learn quality
deep representations for global-folded transit light curves. We focused on adapting the
variational auto-encoders to properly include the time information as delta times outper-
formed all of their deterministic competitors. We presented two methods, one of which
included a re-scaling pre-processing of time series (as an end-to-end architecture) which
led to significant improvements on different quality evaluation schemes that we proposed.

The evaluation of the learned representation showed that the variational proposals
obtain a better quality. This means that the representation is: (i) more informative, i.e.,
more independent features, so more information could be stored; (ii) more useful, i.e., more
effective for the classification of exoplanets; and (iii) more robust, i.e., learn a smoother
light curve reconstruction. By adding the re-scaling into the model, these three effects
increase. For example, the S-VRAEt model ends up being almost as informative as the
optimal PCA, at the same time that it produces a denoising effect on the reconstruction that
is visually comparable to a Mandel–Agol fitted model. Furthermore, the model achieves a
classification performance quite close to its maximum model capacity.
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Future Remarks

Future work includes performing a sensitivity analysis on the architecture parameters.
Furthermore, we believe that interpreting these informative, useful, and robust features by
mapping each dimension to an astronomical concept could enrich current knowledge about
orbiting objects. Furthermore, this could be a useful tool for characterizing exoplanets
and identifying non-conventional planetary properties, such as magnetic bow shocks,
exomoons, or exorings. Another exciting line of study considers the use of the S-VRAEt
model to help elucidate which characteristics of a transit model are most relevant. With
this, we could generate new synthetic transit light curves and face other learning tasks
such as classification problems.
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Abbreviations
The following abbreviations are used in this manuscript:

AE Auto-Encoder
Auto-C Auto-Correlation
BKJD Barycentric Kepler Julian Day
BJD Barycentric Julian Day
CRTS Catalina Real-Time Transient Survey
CNN Convolutional Neural Network
Diff-M Mean of the Differences
F-PCA Fourier plus PCA
GRU Gated Recurrent Unit
KOI Kepler Objects of Interest
LS Least Squares
LSST Legacy Survey of Space and Time
M-A Mandel–Agol
MAST Mikulski Archive for Space Telescopes
MAE Mean Absolute Error
MCMC Markov Chain Monte Carlo
MI Mutual Information
MLP Multi-Layer Perceptron
MSE Mean Squared Error
MSLE Mean Squared Logarithm Error
NASA National Aeronautics and Space Administration
N-MI Normalized MI
PCA Principal Component Analysis
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Pcorr Pearson Correlation
Pcorr-A Pcorr in Absolute Values
RNN Recurrent Neural Network
RAE Recurrent Auto-Encoder
RAEt RAE plus Time Information
S-VRAEt VRAEt with Re-Scaling
SMSE Re-Scaled Mean Squared Error
RMSE Root Mean Squared Error
Spectral-H Spectral Entropy
TESS Transiting Exoplanet Survey Satellite
TCE Threshold-Crossing Event
VAE Variational Auto-Encoder
VRAE Variational Recurrent Auto-Encoder
VRAEt VRAE plus Time Information
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