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Abstract: Estimating the heart rate (HR) response to exercises of a given intensity without the need of
direct measurement is an open problem of great interest. We propose here a model that can estimate
the heart rate response to exercise of constant intensity and its subsequent recovery, based on soft
computing techniques. Multilayer perceptron artificial neural networks (NN) are implemented and
trained using raw HR time series data. Our model’s input and output are the beat-to-beat time
intervals and the HR values, respectively. The numerical results are very encouraging, as they indicate
a mean relative square error of the estimated HR values of the order of 10−4 and an absolute error
as low as 1.19 beats per minute, on average. Our model has also been proven to be superior when
compared with existing mathematical models that predict HR values by numerical simulation. Our
study concludes that our NN model can efficiently predict the HR response to any constant exercise
intensity, a fact that can have many important applications, not only in the area of medicine and
cardio-vascular health, but also in the areas of rehabilitation, general fitness, and competitive sport.

Keywords: cardio-vascular kinetics; heart rate estimation; neural networks; soft computing;
physical activity

1. Introduction

The heart rate (HR), i.e., the number of heart beats per minute, is probably the most
informative cardiovascular variable. The analysis of the HR response to physical activi-
ties may provide valuable information regarding cardiovascular health, as it can detect
hidden physiological responses or abnormalities. HR estimation is of great interest in
pre-diagnostics, rehabilitation, recuperation as well as prevention of cardiovascular dis-
eases [1].

Traditionally, the HR of a person may be monitored by use of an electrocardiogram
(ECG), which requires multiple sensors attached to the body surface and is, thus, rather
uncomfortable to the user [2,3]. Research on the field has been aimed at monitoring the HR
from photoplethysmography (PPG) sensors, which are simple and may be embedded in
wearable devices [2–8]. Several techniques have been developed for the HR monitoring
from PPG signals, such as the processing of a raw PPG signal and a simultaneous acceler-
ation signal [2], as well as the combination of short-time Fourier transform and spectral
analysis (SFST) [4]. Moreover, a method based on Wiener filtering [5] and a particle filter-
based algorithm [6] have been presented. Recently, estimation of HR through the phase
information provided by the polar representation of PPG signals has been proposed [7].

This study focuses on the estimation of the HR response to exercise of various constant
exercise intensities. Mathematical models based on exponential fitting or, more recent
dynamical systems models based on a system of coupled ordinary differential equations,
have been proposed for the numerical simulation and prediction of the HR response to
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exercise [9,10]. Several methods may be found in the literature for the estimation of the
parameters involved in the HR variability signals [11–13]. A review of the most popular
techniques for the time-frequency representation of the HR variability signals is presented
in [11], whereas Khan et al. [12] compare the performance of five kernel-based time-
frequency distributions in terms of their ability to estimate the instantaneous frequency of
HR signals.

Estimating the HR response to any exercise intensity and any cardiovascular condition
is an open problem and a challenging task. Thus, we believe that the implementation of
neural networks (NNs) is an attractive alternative for the problem of HR estimation. It
may be worth testing the performance of NN models to such problems, since NNs have
proven to be very efficient in various medical applications. The implementation of NNs
may be very effective as regards dynamic, real-time prediction of the HR, which is of utter
importance, not only for the general public, but especially for population groups for which
direct HR recordings at intense exercise are not possible or not allowed, such as elderly
people and pregnant women.

Pertinent studies include, among others, the identification of the connection between
exercise intensity and HR values [14], the estimation of the oxygen uptake from the HR
values [15] and the prediction of the digoxin concentration for specific cardio-activities [16].
Furthermore, a feedforward NN has been proposed to reflect the effects of physical activity
on the HR [17] and various NN models have been developed to monitor the HR and its
variabilities from PPG signals [3,8].

Our study implements suitable Multilayer Perceptron (MLP) NNs to estimate the
HR response to constant intensity exercise. The NNs are trained using beat-to-beat time
intervals recorded during exercises of constant intensity. After describing the data collection
process, as well as the basic steps of the NN modeling, we examine the performance of
our proposed NN when compared to raw HR data of constant exercise intensity. We also
provide a comparison between the estimated HR values provided by our NN model and
the simulated values provided by a dynamical systems model [9,10].

2. Materials and Methods
2.1. Raw HR Measurements

The data collection [18] took place in the Department of Physical Activity and Sport of
the Technical University of Madrid, Spain, under the approval of the local ethics committee.
A written informed consent was signed by the participant before data collection. The
present research meets the highest ethical standards and has been performed in accordance
with the guidelines of the Helsinki Declaration of 1975, as revised in 2013 [19].

A healthy male (age 33, height 1.83 m and weight 82 kg) served as the test subject. His
HR parameters were: hrmax = 185 beats per minute (bpm) and hrmin = 40 bpm; the former is
defined as the highest HR value achieved in an all-out-effort to the point of exhaustion,
whereas the latter refers to the HR at absolute rest [1]. The participant was a high-level
professional runner, so he was able to keep the exercise intensity at constant levels and, thus,
provide raw HR data of exceptional accuracy, as required by the study. He performed four
running bouts of constant intensity exercise [9,10], ref. [18] followed by a passive recovery
period, during which he laid horizontally and still on the floor. The experiment was carried
out on a tartan track. Care was taken to ensure that the data recording environment was
free of any additional electromagnetic signals, such as high-tension power lines, engines
producing electromagnetic fields, or mobile phones.

The data recording protocol resulted in four sets of HR data, hereafter named as set
(I), (II), (III), and (IV), respectively. Each set corresponds to the recorded HR response
(beat-to-beat intervals) to exercises of constant intensity followed by a recovery period. The
velocity of each exercise was measured by a Garmin Forerunner 201 GPS system and a
Polar S625x speed-distance heart rate monitor. The latter provided measurements of the
beat-to-beat time interval as well.
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Table 1 presents the exercise intensity and the duration of each exercise/recovery
set, whereas Figure 1 shows, as an example, the HR time series recorded during the
second exercise and its subsequent recovery, i.e., set (II). In Figure 1, oscillations in the
HR time series data can be observed, as is expected for any un-edited physiological
signals. These oscillations are more pronounced in the recovery period, a fact that may
be attributed to factors more apparent during recovery such as environmental or mental
distractions. It should be noted here that the HR time series used in this study (as shown
in Figure 1) underwent minimum editing, in order to preserve all information included in
the raw data. Occasional errant data points that sporadically appeared due to technical or
physiological reasons, such as missed/misread R or T waves, or abnormal ectopic beats,
were excluded when their values were larger than 10 standard deviations from the local
mean HR values [18].

Table 1. Velocity and duration of each exercise set (the subscripts “ex” and “rec” refer to the exercise
and recovery set, respectively).

Set v (km/h) Duration (s)

(I)ex 13.4 431
(I)rec 0 600
(II)ex 14.4 401
(II)rec 0 600
(III)ex 15.7 366
(III)rec 0 600
(IV)ex 17.0 338
(IV)rec 0 600

Figure 1. Set (II) of HR time series data.

2.2. Neural Network Modelling

The block diagram of the NN model applied in this study is displayed in Figure 2. It
consists of four pairs of NNs; each pair corresponds to an exercise set and its subsequent
recovery at the specific velocity shown in the second column of Table 1. The NN architecture
implemented for each block of Figure 2 is the MLP, which is a common choice for similar
applications [16]. The input layer consists of one neuron, its input being the value of the
beat-to-beat time interval, denoted as tbi, I = Iex, . . . , IVex or Irec, . . . , IVrec, whereas the
output layer comprises a single neuron that sums the weighted outputs of the last hidden
layer and produces the HR, i.e., hri. The specific structure of the MLP-NN applied for set
(I)ex, i.e., for I = Iex, is shown in Figure 3; the circles denote the neurons in each layer.
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Figure 2. Block diagram of the proposed NN model.

Figure 3. Structure of the proposed MLP-NN for set (I)ex; the circles denote the neurons.

The appropriate number of hidden layers and the number of hidden neurons in each
layer have been determined by applying a trial-and-error process. Both parameters are
depicted in the second and third column of Table 2, respectively, for each exercise set.
For example, the MLP-NN shown in Figure 3 consists of two hidden layers; the first one
comprises 25 neurons, whereas the second one includes 15 hidden neurons. A logistic
sigmoid activation function, given by f (x) = 1/(1 + e−x), has been considered for all
hidden layers, whereas a linear activation function has been selected for the neuron of the
output layer [20–24]. The symbol wj

g,h (Figure 3) stands for the synaptic weight between the
gth and the hth neuron, whereas the superscript j = 1, 2, 3 denotes the layer. The synaptic
weights are adjustable parameters; at first, they are initialized and during training they are
iteratively updated until the end of the training process. After training, their values remain
constant [22–24].

Table 2. MLP-NN parameters, MSEtr and M for each exercise set.

Set Hidden Layers Number of Neurons MSEtr M

(I)ex 2 25 × 15 0.892 605
(I)rec 3 50 × 30 × 20 3.854 412
(II)ex 2 15 × 5 1.364 581
(II)rec 2 60 × 20 1.694 462
(III)ex 2 15 × 10 1.278 587
(III)rec 2 65 × 25 3.946 496
(IV)ex 2 15 × 5 1.997 539
(IV)rec 3 50 × 30 × 20 5.273 471

Simulations have been performed in MATLAB environment, where the NN toolbox
has been used [25]. The first step into the estimation of the HR is taken by training the NNs.
The four sets of HR data, collected as described in the previous subsection, were used to
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train the NNs. Although the data corresponds to one level of cardiovascular condition, it
includes the response to various exercise intensities. Thus, the NNs were trained success-
fully to a sufficient number of cardiovascular stress levels and the corresponding ways of
recovery. The training dataset consists of sample pairs

(
tbtr

m, hrtr
m
)
, m = 1, 2, . . . , M, where

tbtr
m represents the input, i.e., the values of the beat-to-beat time interval and hrtr

m stands for
the desired output of the NN. Henceforth, the subscript i = Iex, . . . , IVex or Irec, . . . , IVrec
is omitted for the sake of brevity; tbtr

m and hrtr
m may belong to any exercise or recovery set.

The integer M denotes the number of samples that compose the training dataset and is
given in the last column of Table 2. Training of the MLP-NN has been carried out by using
the Levenberg–Marquardt algorithm [22–25].

The performance of the training process is evaluated by calculating the training mean
square error defined as follows:

MSEtr =
1
M

M

∑
m=1

(
hrpr

m − hrtr
m

)2
(1)

where hrpr
m stands for the m-th predicted value of the HR by the NN and hrtr

m is the desired
output of the NN, after the training process, as mentioned above. Training has been
terminated when the number of epochs has reached its maximum value, which has been
set equal to 1000. The MSEtr achieved for each exercise set is given in the fourth column of
Table 2. The latter suggests that MSEtr is generally higher during the recovery than the
exercise periods. This is a reasonable outcome, since HR decreases steeply during recovery,
and it will be further discussed below.

A synoptic view of the whole procedure followed in this work, from HR data collection
to the performance evaluation of the NNs, is displayed in Figure 4. The block on the left-
hand side of the chart, enclosed in the dashed contour, refers to the data collection and
processing, whereas the dashed block to the right includes the design, training, testing, and
performance evaluation of the NN model.

Figure 4. Flow chart of the whole procedure from end to end.

2.3. Mathematical Analysis

The architecture of the single-input and single-output NN model proposed by the
present study is equivalent to a non-linear function hr(t) that defines a mapping between
two scalars, the beat-to-beat heart rate (hr) values and the time (t). Mathematical evaluations
of this function have been proposed and extensively studied, as to their goodness of fit
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to raw HR data, as well as to their rigor and mathematical validity. In this sub-section,
we will briefly reference the two main mathematical approaches, the exponential 3-phase
model and the dynamical systems model (both discussed in more detail in [9,10]).

The 3-phase model has been emerged as the best fit to the data, from a statistical point
of view. To simulate the body’s response to exercise, the hr values are calculated by use of
the following exponential relation (the two last distinct terms are activated at the beginning
of the last two phases):

hr(t) = hr(0) +A1

(
1 − e−t/τ1

)
phase 1

+A2

(
1 − e−(t−TD2)/τ2

)
phase 2

+A3

(
1 − e−(t−TD3)/τ3

)
phase 3

(2)

where τ1, τ2, and τ3 are the time constants used to fit the exponentials, the parameters A1,
A2, and A3 control the asymptotic HR values, and the constants TD2 and TD3 are the time
delays that correspond to each one of the assumed phases. The hr values during recovery
are modeled using one exponential.

It should be noted that much debate exists as to the validity of this model as, despite
many attempts for a number of years, no convincing physiological mechanism for such
discontinuous behavior has been proven to exist. It is very likely that the observed three
phases are a figment of the incorrect and overly simple treatment of the data (such as
averaging). Moreover, the above 3-phase model cannot be used for prediction, as the
model’s parameters reflect the body’s physiological response to the particular exercise
intensity only.

An alternative mathematical approach based on dynamical systems assumes the hr
values to arise as solutions of the following set of coupled ordinary differential equations,
regarding the rates of change of heart rate hr and velocity v:

dhr
dt = − fmin(hr, λ) · fmax(hr) · fD(hr, hr(0), v, λ, t)

dv
dt = I(t)

(3)

where λ is a global parameter that defines the current cardio-vascular condition (takes
values between 0 and 1), fmin and fmax are functions that act as repellers and control the
dynamics near the minimum and the maximum heart rate respectively, fD is a function
that acts as an attractor and controls the dynamics near the heart rate demand, and I(t) is
the exercise intensity. In this dynamical systems model, the resulting hr is a smooth and
continuous function of time, as no phases or time-delays in the body’s response to exercise
are assumed to exist. This model is able to simulate and predict heart rate kinetics for any
given exercise intensities. Examples of the HR values simulated by the above dynamical
systems model are provided in the following section.

3. Results

The evaluation of the performance of the NN model proposed herein is the last step
in the flow chart of Figure 4, as indicated by the block at the lower right-hand corner of
the chart. The testing procedure is performed with an independent dataset, which is kept
unseen from the NNs during training. The testing dataset comprises samples of the form(
tbte

k , hrte
k
)
, k = 1, 2, . . . , K with tbte

k and hrte
k being the input and the output, respectively, of

the NN during testing; K stands for the number of samples used for testing. The testing
mean absolute error is defined as follows:

MAEte =
1
K

K

∑
k=1

∣∣∣hrpr
k − hrte

k

∣∣∣ (4)
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whereas the testing relative mean square error is given by:

RMSEte =
1
K

K

∑
k=1

(
hrpr

k − hrte
k

hrte
k

)2

(5)

Both MAEte and RMSEte have been calculated for all exercise sets; their values are
listed in Table 3. The latter indicates that the RMSEte may vary between 10−3 and 10−5,
while the MAEte for all sets is 1.19 bpm on average; this is a satisfactory outcome, since
results reported by other researchers, that employ techniques based on PPG signals to
estimate HR, refer to average absolute errors of the order of 1.06 [4], 1.37 [5], 1.17 [6], 1 [7],
and 1.03 [3] bpm.

Table 3. MAEte, RMSEte, and K for each exercise set.

Set MAEte RMSEte K

(I)ex 0.649 4.6297 × 10−5 97
(I)rec 1.665 1.029 × 10−3 66
(II)ex 0.875 7.441 × 10−5 93
(II)rec 1.354 4.927 × 10−4 74
(III)ex 0.899 5.055 × 10−5 94
(III)rec 1.369 5.269 × 10−4 79
(IV)ex 0.936 4.855 × 10−5 86
(IV)rec 1.758 8.998 × 10−4 75

The main remark about Table 3 is that both the MAEte and the RMSEte are smaller
during the exercise than the recovery period for all sets presented herein; a similar remark
has been reported for the MSEtr. On average, the MAEte is 0.84 bpm during exercise,
whereas it increases to 1.54 bpm for the recovery periods. As regards the RMSEte, it deteri-
orates by roughly one order of magnitude for the recovery compared to the exercise periods.
This may be attributed to the high non-linearity and the steep decrease of the HR during
recovery, as well as to the inherent physiological noise, which is much more pronounced
during the recovery than the exercise periods. Future work may focus on improving the
accuracy of the model by applying the appropriate noise suppression techniques.

A comparison of the HR predicted from the NN models with measured HR time series
data is presented in Figure 5, for the exercise and recovery periods of sets (I) and (II). It is
readily apparent from Figure 5 that the proposed NN models are able to predict the HR
accurately. Moreover, the familiar remark that the performance of the NNs is slightly better
during the exercise than the recovery periods may be verified by the diagrams of Figure 5.
Still, the overall performance of all NNs is of sufficient accuracy, since the RMSEte does
not exceed 10−3 for all cases examined, as indicated by Table 3.

Figure 6 offers a comparison of results predicted by the proposed NN model (denoted
as predicted hereafter) with the corresponding results produced by the mathematical
model presented by Zakynthinaki [9,10] (denoted as simulated hereafter). The exercise
and recovery periods of sets (III) and (IV) are considered, while the measured HR time
series data (henceforth denoted as measured) are also included for reference. A careful
examination of the results in Figure 6 leads to the conclusion that the NN model provides
more accurate predictions than the mathematical model. This remark is more apparent
from the plots for the recovery period, i.e., for k > 100; where the NN model is more efficient
in capturing the frequent variations of the hr. It is worth mentioning that the dashed and
dash-dotted lines in Figure 6 are representative examples of the HR values simulated by
the dynamical systems model of Equation (3).
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Figure 5. Measured, hrte
k , and predicted, hrpr

k , HR values for sets (I) and (II).

Figure 6. Measured, predicted, and simulated HR values for sets (III) and (IV).

The superiority of the proposed NN model over the mathematical model [9,10] may
be verified from Table 4, where the testing mean relative absolute error (MRAE) is given
for all datasets. The predicted MRAE, displayed in the second column of Table 4, is defined
as follows:

MRAEpr =
1
K

K

∑
k=1

∣∣∣hrpr
k − hrme

k

∣∣∣
hrme

k
(6)

where hrpr
k stands for the k-th predicted value of the HR by the NN and hrme

k is the cor-
responding k-th measured value. The simulated MRAE, denoted as MRAEsi hereafter
and depicted in the third column of Table 4, may be defined by Equation (6) provided
that hrpr

k is replaced by hrsi
k ; the latter represents the k-th simulated value of the HR, i.e.,
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the output of the mathematical model [9,10]. Table 4 suggests that the MRAEpr is less
than 1%, regarding the exercise period, whereas the MRAEsi exceeds 1% for the same
dataset. The MRAE is greater for both models as regards the recovery period. However,
the MRAEpr does not exceed 2.5% for any dataset, while the MRAEsi is much greater
and may reach the value of 5.87%. The last column of Table 4 offers a direct comparison
between the results obtained by the NN and the mathematical model by displaying the

MRAEpr−si, defined as: MRAEpr−si = 1
K

K
∑

k=1

(∣∣∣hrpr
k − hrsi

k

∣∣∣/hrpr
k

)
. The difference between

the two models, regarding the MRAEpr−si, varies in the range 0.83–1.7% for the exercise
period, whereas it increases up to 5.75% for the recovery period.

Table 4. Comparison between the proposed NN model and the corresponding mathematical
model [9,10], regarding the mean relative absolute error (%) for each exercise set.

Set MRAEpr (%) MRAEme (%) MRAEpr-si (%)

(I)ex 0.48 1.77 1.7
(I)rec 2.45 5.87 5.75
(II)ex 0.59 1.17 1.07
(II)rec 1.77 3.74 3.47
(III)ex 0.56 1.13 1.15
(III)rec 2.02 4.98 4.21
(IV)ex 0.56 0.98 0.83
(IV)rec 2.15 3.70 3.26

4. Conclusions

Soft computing techniques, when used with raw HR time series data can be success-
fully used to predict the HR values during exercise of constant intensity and its subsequent
recovery. In the present study, HR time series have been estimated by implementing and
training MLP-NNs, using the beat-to-beat time intervals as input to the model. The quality
of the estimation scheme has been assessed by calculating the MAEte and the RMSEte be-
tween the predicted and the testing HR samples. Our results demonstrated that the MAEte
does not exceed 1.2 beats per minute, on average, and the RMSEte may vary between
10−3 and 10−5, albeit the performance of the model is generally better during the exercise
than the recovery periods. Moreover, comparisons between the results of the proposed
NN model and an existing mathematical model that simulates the HR values have shown
that the former produces results closer to the measured values of the HR than the latter,
especially during the recovery period. The superiority of our proposed NN model over the
dynamical systems model is reflected in its applicability to the problem of predicting the
HR values, without the need of numerically solving differential equations (as it is the case
with the simulated values that the mathematical model provides). Its efficiency to provide
accurate estimations of the HR time series proves our model to be of great value, in the
fields of cardiovascular health, diagnosis, recuperation and recuperation, in the areas of
competitive sport as well as general fitness, as well as in cases where direct HR measure-
ments cannot be performed, and so HR predictions are indispensable. Our future work
includes the application of the proposed NN model to HR data corresponding not only to
a larger variety of cardiovascular stress, but also to a variety of physical condition levels.
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