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Abstract: Trackers for activity and physical fitness have become ubiquitous. Although recent work
has demonstrated significant relationships between mental effort and physiological data such as
skin temperature, heart rate, and electrodermal activity, we have yet to demonstrate their efficacy
for the forecasting of mental effort such that a useful mental effort tracker can be developed. Given
prior difficulty in extracting relationships between mental effort and physiological responses that are
repeatable across individuals, we make the case that fusing self-report measures with physiological
data within an internet or smartphone application may provide an effective method for training
a useful mental effort tracking system. In this case study, we utilized over 90 h of data from
a single participant over the course of a college semester. By fusing the participant’s self-reported
mental effort in different activities over the course of the semester with concurrent physiological
data collected with the Empatica E4 wearable sensor, we explored questions around how much
data were needed to train such a device, and which types of machine-learning algorithms worked
best. We concluded that although baseline models such as logistic regression and Markov models
provided useful explanatory information on how the student’s physiology changed with mental
effort, deep-learning algorithms were able to generate accurate predictions using the first 28 h of data
for training. A system that combines long short-term memory and convolutional neural networks is
recommended in order to generate smooth predictions while also being able to capture transitions in
mental effort when they occur in the individual using the device.

Keywords: cognitive load; mental effort; deep learning; wearable sensor; learning analytics

1. Introduction

From activity trackers to smartwatches, the use of wearable sensors (henceforth
referred to as wearables) for collecting physiological and movement data is becoming
commonplace. For some time, researchers have investigated how to leverage wearables
to facilitate a number of outcomes in varied domains, such as physical activity [1,2],
disease management or monitoring [3,4], and even education [5,6]. In some areas, such as
physical activity tracking, the research base is well established, having been systematically
reviewed and meta-analyzed [2,7,8]. However, in other areas, such as education, research is
just emerging.

As an interdisciplinary team of computer scientists and education researchers, we are
interested in the use of wearables in education. Specifically, we questioned how wearables
can be used to facilitate learning inside and outside of formal educational settings. This
work faced a number of challenges in the educational space, from deciding on what type
of sensor to use (e.g., wrist-worn or head-worn) to understanding what wearable data
correlated with in relation to learning processes, through identifying the most effective
ways to analyze data from wearables.
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Despite these challenges, research on the use of wearables in education is expanding.
Researchers have proposed the use of wearables for varied purposes, such as detecting
a student’s mood [9], detecting a student’s hand motions [10], or predicting students’
cognitive load and mental focus [11]. While these cases represent only specific areas
of work in the field, they highlight three important themes: detecting mood, detecting
movements, and predicting cognitive outcomes.

In this study, we focused on the third theme, predicting cognitive outcomes from
data collected via wearables. Specifically, we sought to investigate if it was possible to
predict the mental effort of a learner based on the physiological parameters collected from
a wearable, and to study the efficacy of the system to detect transitions in mental effort
from one activity to another. We believe that this work can build toward the creation of
sensor-based tools that can help students self-regulate their own learning [11].

2. Review of Literature
2.1. The Use of Wearables in Education

As noted, researchers have investigated the use of wearables in various ways within
the educational domain or wearable data in relation to educationally relevant variables.
In addition to the themes already discussed, researchers have also examined critical is-
sues such as the feasibility and usability of wearables in educational environments [12,13],
how wearables influence teaching practices [14], and detecting attention or interest [15,16].
However, work involving wearables in educational settings has often encountered chal-
lenges. Two prominent challenges are linking the data from the wearable to the learning
process and finding an effective way to analyze the data.

The question of what is being measured by the wearable in relation to education is
particularly notable and deserves closer examination. First, it is critical to define what
physiological outcomes can be measured through wearables and may be of interest to
educational researchers. Wearables such as the Empatica E4 have been used to measure
electrodermal activity, skin temperature, and heart rate [11]. Some have linked wearable
data to engagement [17–19], while others have used the data as indexes or measures of
mental effort, mental workload, or cognitive load (for the purposes of this paper, we use
these terms synonymously, referring to the load placed on the working memory during
a task). Based on existing research, we believe that mental effort or mental workload is
an appropriate correlate [1] to physiological activity, because mental workload demands
can cause an unconscious, automatic response by the autonomic nervous system [20]. In
addition, there is a plethora of research around using physiological measures to examine
mental workload or mental effort (for reviews, see [21–23]).

The second prominent challenge researchers face is how to best analyze the data from
wearables in educational contexts. Some researchers have analyzed physiological vari-
ables individually, such as heart rate, electrodermal activity, or skin temperature [18,24,25].
However, a recent systematic review revealed that there was no single physiological mea-
sure that captured all aspects of mental workload measurement [21]. This could explain
why some studies that have examined individual variables have found reasonably accu-
rate results, whereas studies that have taken a multimodal data analysis approach have
found more promising results. For instance, one study found that heart rate could pre-
dict mental workload changes 62.5% of the time, while galvanic skin response showed
75% accuracy [26]. Meanwhile, [11] used a multimodal approach and found that using
a random forest classifier resulted in strong classification accuracy when classifying stu-
dents as being engaged in activities that required different levels of mental workload (area
under the receiver operator characteristic (ROC) curve (AUC) = 0.93–0.99, F1 = 0.85–0.94).
While unimodal or multimodal data analysis is a concern, the analysis techniques that are
best suited for this type of work have also been explored, ranging from descriptive [18]
through machine-learning methods [11,27]. At the present time there is not enough evi-
dence to say which machine-learning algorithm works best for predicting mental workload.
That is one gap in the literature that this study addresses.
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While a basis for connecting physiological measures to mental workload is important,
in educational realms it is also important to understand how these measures can be tied
back to theoretical foundations about how people learn. In the next section, we explore
cognitive load theory (CLT), a widely used theory for designing instruction.

2.2. Cognitive Load Theory

Cognitive load theory has been used in educational research for more than 30 years,
but has increasingly been used as a framework for research across various disciplines. The
central idea of CLT is that the working memory is limited and can only process a certain
amount of information at one time [28–30]; this limitation is well known and has been
shown in psychological research [31,32]. Furthermore, CLT specifies that working memory
load can be caused by two distinct sources. Intrinsic load is caused by the complexity
of the materials being learned, while extraneous load is due to other factors not related
to the content itself, such as the way the material is presented, with optimal instruction
being designed to appropriately manage the intrinsic load placed on the learners while
minimizing the extraneous load they experience [28–30].

Given the widespread use of CLT as a theoretical framework over the last three
decades, it should not be surprising that there have been many approaches to measuring
cognitive load. Unfortunately, few have been theoretically and psychometrically sound,
and they have been critiqued in the literature (for reviews and critiques, see [33–35]).
However, many of the challenges in relation to measuring cognitive load are in relation
to measuring specific types of cognitive load (i.e., intrinsic or extraneous) rather than
measuring the broader construct of overall cognitive load. In fact, some have stated that it
may not be possible to measure the different types of cognitive load through self-report [36],
although recent measures [37,38] have been argued to be worthy of further research [39].

While measures of the different types of cognitive load have been critiqued in the
literature, measuring overall cognitive load has also been common. This approach has
been critiqued when it has been misaligned with study goals; for example, when trying
to make claims about extraneous load but measuring overall load, but otherwise it has
been a relatively common practice. In particular, a one-item measure of mental effort
has been commonly used as an indicator of overall cognitive load [40]. Furthermore,
physiological measures have also been used as indicators of overall cognitive load, such as
electroencephalography [41] and eye tracking [42].

2.3. Purpose of the Present Study

Previous work around cognitive load theory has laid the groundwork for using
physiological measures for measuring overall cognitive load [41,42], and research around
mental workload has shown that a variety of physiological measures can be used to
measure different aspects of mental workload [21]. Building from these foundations and
leveraging machine learning, in this study we explored the prediction of mental effort
based on multimodal physiological measures collected from a wrist-worn wearable. In
particular, we focused on the efficacy of merging self-report data and sensor data to train
a device to predict cognitive load into the future, and further studied the efficacy for
detecting the transition from one activity to another. Our research questions included:

(1) How much data does it take to train a device to accurately detect an individual’s level
of mental effort into the future, and how robust are these predictions over time?

(2) Which machine-learning algorithms are most and least effective for merging self-
report data with physiological data toward making accurate longitudinal predictions,
including the automated detection of transitions between different levels of mental
effort associated with different learning activities?

By exploring these research questions, we ultimately make a case for the current
state of the art for automated tracking of mental effort using a wearable device, including
offering insight into current limitations of the technology and best practices for training
an automated mental effort detection system.
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3. Materials and Methods
3.1. N = 1 Case Study Design

In this study, we sought to understand how physiological data from a wearable
fitness tracker could be used to train a wearable mental effort detection system for a single
participant. We were primarily interested in how many data were necessary to train such
a system for an individual and the efficacy of different machine-learning models in learning
temporal trends. To satisfy these goals, we used a longitudinal n = 1 case study design [43].
The goal of a case study is to generate a rich description of a single case, which typically
constitutes a single participant or entity [44]. Since our aim in this study was to evaluate
the efficacy of a device for long-term monitoring of mental effort, it made sense to focus on
a single participant over an extended time period. When context-dependent generalizability
is desired, [44] argued that studying a case that is situated within that context is among
the strongest approaches available. With the fields of psychology and medicine focusing
less on giving general answers applying to everyone and more on individualizing care,
it is not surprising that the n = 1 design has increased in popularity in the medical research
community [45,46], and it is especially applicable for a study to understand how we might
go about training an automated system to track mental effort for an individual [47].

3.2. Data Collection and Preparation

The case in this study was a 19-year-old college student obtaining a bachelor of science
in medical laboratory science. The proclaimed gender of the participant was female with
an ethnicity of Caucasian. She was a sophomore in her studies, making class attendance
and learning a familiar process. The college student logged physiological and self-report
data while attending her class sessions, which were online due to the COVID-19 pandemic,
from 1 September 2020 to 3 December 2020. Online instruction was a new route of learning
for her.

Data were obtained through the use of the Empatica E4 wristband device [48] over the
course of the Fall 2020 semester. The E4 collected data for activities such as actively paying
attention in class, asking questions, collaborative small group discussions, organizing
due dates in a personal planner, and emailing teaching assistants and professors. There
were also data sessions that included studying and doing homework outside of class time.
These activities included online homework assignments, studying with fellow students,
and watching online lecture videos for review of class material. Finally, there were everyday
tasks performed while collecting data, such as scrolling on social media, cooking, tutoring,
grocery shopping and eating dinner. Overall, the data collection process for all sessions was
the same. The E4 wristband was turned on promptly at the start of each class or task and
kept on throughout the entire duration of the activity. The watch data collection session
ended promptly at the end of a session, and a cognitive load survey was completed [40].
The participant’s self-reported cognitive load rating after each activity was based on Paas’
mental effort 1–9 ordinal scale [40], with 1 being very very low mental effort and 9 being
very very high mental effort.

To predict the mental effort based on the physiological parameters, six measures from
the Empatica E4 device were recorded and utilized. These measures were acceleration
(ACC) on three orthogonal axes X, Y, and Z; electrodermal activity (EDA) (µS); skin temper-
ature (TEMP) (◦C); and heart rate (HR) (beats per minute). These measures were recorded
by the E4 wristband while the student was performing different activities (descriptive
statistics in Table 1).
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Table 1. Descriptive analysis of the physiological features extracted from the Empatica E4.

Mental Effort Level
EDA (mS) TEMP (◦C) HR (bpm) ACC X ACC Y ACC Z

Time (s) Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

1 21,593 0.16 0.12 32.1 1.9 83.2 14.2 −32.8 28.0 −4.0 33.7 17.0 32.2
2 29,858 0.15 0.12 30.3 1.7 84.3 14.6 −36.3 23.6 −4.6 33.8 18.2 30.2
3 28,424 0.14 0.13 31.9 1.8 85.0 13.7 −36.0 22.9 −3.1 32.2 20.2 32.0
4 33,296 0.15 0.12 30.9 1.7 83.4 12.3 −30.4 25.1 −2.5 34.0 24.3 30.6
5 10,271 0.13 0.11 33.2 1.0 87.0 17.9 −31.7 22.4 −5.2 36.7 19.6 31.2
6 50,703 0.17 0.13 31.4 1.4 81.7 13.2 −32.6 24.8 −9.9 28.8 29.1 27.5
7 71,633 0.13 0.10 31.4 1.4 83.5 14.2 −30.2 24.8 −12.2 30.5 25.8 30.5
8 64,138 0.15 0.12 30.9 1.6 82.6 14.2 −29.4 22.3 −14.2 29.8 31.4 27.3
9 22,330 0.19 0.20 29.9 .5 82.7 12.0 −27.1 23.8 −15.9 37.1 21.8 27.9

The E4 wristband sampled heart rate at a frequency of 1 Hz, EDA and skin temperature
at 4 Hz, and acceleration at 32 Hz. In order to remove the false readings at the beginning of
each session as the device stabilized, we removed the initial 40 readings from heart rate,
which was sampled at 1 Hz. Likewise, as EDA and temperature were sampled at 4 Hz,
and acceleration was sampled at 32 Hz, we removed the corresponding readings from these
physiological parameters as well. Thereafter, to combine all the physiological parameters in
a consolidated data set, EDA, temperature, heart rate, and acceleration were downsampled
to 1 Hz while accounting for the fact that heart rate was calculated as a moving average of
the previous 10 s of data. For each activity, these corresponding physiological parameters
were combined and arranged chronologically, after which we found that a total of 92.3 h of
data over 91 separate activities were recorded; these data were used for further analysis.

3.3. Training and Testing the Machine-Learning Models

To predict the mental effort based on the physiological parameters and to predict tran-
sition from one activity to another, traditional machine-learning models, a time-dependent
baseline model, and deep-learning models were implemented. All models took a super-
vised approach in attempting to predict the participant’s self-reported level of mental
effort based on her physiological data at each second. As traditional machine-learning
models, logistic regression, random forest, and k-nearest neighbors were implemented
with six physiological parameters as the predictors and mental effort as the outcome.
As our data set was arranged in a chronological manner, time-series modeling was also im-
plemented using aMarkov switching effects regression model as the baseline model. Finally,
we explored the efficacy of using deep learning models including long short-term memory,
recurrent neural networks, and convolutional neural networks. Toward understanding
how many data were needed to train these models in order to provide a reasonable forecast
at a later time, training sets were divided into first 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,
and 90% of data; and correspondingly, the respective test set was divided into the last
90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, and 10% of the total data. We implemented the
traditional machine-learning models, a time-dependent baseline model, and deep-learning
models on all these training and test split ratios. We selected the best-performing algo-
rithms and examined the minimum training and test split ratios for which they returned
satisfactory results based on the F1 and R-squared values of the models on the test data.

3.4. Traditional Machine-Learning Models

The traditional machine-learning models used in this study were designed to make
a categorical prediction of the participant’s mental workload based on the assumption that
the outcome of each time point was independent and identically distributed. Within the
traditional machine-learning methods, we utilized logistic regression as a baseline model
using scikit-learn’s logistic regression function on the training data set, which used the one-
vs-rest (OvR) scheme to model multiclass output. Random forest is an ensemble-learning
technique in which many decision trees are used to provide solutions, and was shown to
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perform well in previous work [11]. The scikit-learn random forest implementation was
used for this purpose, with the number of decision trees set to 1000. K-nearest neighbors
(KNN) classifies the outcome on new data based on the k-nearest training examples. We
used the scikit-learn k-nearest neighbors function to model KNN on our data set, with 3 as
the number of neighbors using the Euclidean distance metric.

3.5. Time-Dependent Baseline Model

Given the temporal nature of the data, we utilized the Markov-switching dynamic
regression model [48] in Stata as a temporal baseline model. This is an interpretable
machine-learning model that describes how an outcome changes its state over time.
At their most basic level, Markov models predict a current state based on the previous state
and a transition probability matrix. Markov-switching models build upon this by allowing
incorporation of state-specific relationships, thereby improving our understanding of how
the physiological parameters related to mental effort within each state. Given our interest
in a device that was able to distinguish between high and low states of mental effort,
we utilized a 2-state Markov-switching model that allowed for switching effects and
variances, which was shown to be successful in a previous work [49].

3.6. Deep-Learning Models

Deep-learning models are based on artificial neural network models in which many
hidden neurons arranged in multiple layers extract features from raw data and adjust their
weights to best predict the output. We implemented deep-learning models using Python’s
Keras library. For this study, we implemented three deep-learning models on our data set.

Convolutional neural networks (CNNs) [50] take advantage of the hierarchical pattern
in data for regularization. They employ a mathematical operation called convolution
in one of the layers. They consist of multiple layers such as the convolutional layer,
the pooling layer, the rectified linear unit (ReLU) correction layer, and the fully connected
layer. Earlier researchers [51] demonstrated the use of CNNs for time-series modeling
using convolution and pooling operations. To model CNN for time-series forecasting,
we divided the sequence into multiple input/output patterns called samples, with 10 time
steps as input and 1 time step as output for the next-step prediction that was learned by
the model.

Recurrent neural networks (RNNs) [52] are used to model temporal sequences. They
have feedback loops in the recurrent layers that help them maintain information in ‘memory’
over time, but they are unable to learn long-term memory dependencies. We implemented
an RNN using Keras sequential model [53] implementation in Python with one hidden
RNN layer of 10 neurons and one dense output layer. We used the default batch size of
32 and the number of epochs was 10, with the mean absolute error as the performance
metric and ‘adam’ [54] as an optimization technique.

Long short-term memory (LSTM) [55] is an extension to the RNN architecture that
overcomes the vanishing gradient problem encountered in RNN that enables it to have
a long-term memory. We implemented LSTM using Keras sequential model [53] imple-
mentation in Python with 1 hidden LSTM layer of 10 neurons and 1 dense output layer.
We used the default batch size of 32 and number of epochs was 10, with the mean absolute
error as a performance metric and ‘adam’ [54] as an optimization technique.

4. Results
4.1. Interpretive Modeling

To begin exploring the relationships between the physiological features and self-
reported mental effort, we first inspected the parameter estimates from our interpretable
machine-learning models: logistic regression (ordinal logit link) (Table 2) and the two-state
Markov-switching dynamic regression (Table 3). The logistic-regression model suggested
that although all of the features were highly significant due to the large number of time
samples, EDA and skin temperature had the biggest effect sizes. Specifically, the model
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indicated that a higher EDA was indicative of a higher level of mental effort (odds ratio
(OR) = 2.48, p < 0.001), while a drop in skin temperature may be indicative of higher levels
of mental effort (OR = 0.82, p < 0.001). Of the three acceleration axes, acceleration in the Y
and Z directions may be indicative of mental effort, with negative (OR = 0.99, p < 0.001)
and positive (OR = 1.01, p < 0.001) relationships, respectively.

Table 2. Parameter estimates from the ordinal logistic regression model (threshold values omitted).

Feature a Estimate SE χ2 (df = 1) OR

EDA 0.91 0.026 1200.9 2.48
TEMP −0.19 0.0019 10,369.3 0.82

HR −0.0012 0.0002 29.7 1.00
ACC X 0.0011 0.00014 62.2 1.00
ACC Y −0.0087 0.00010 7164.4 0.99
ACC Z 0.0063 0.00011 3263.0 1.01

a All relationships were significant at p < 0.001.

Table 3. Parameter estimates for the two-state Markov-switching dynamic regression model.

State Feature Estimate SE Z

1 EDA * −0.274 0.028 −9.8
TEMP * −0.057 0.0018 −32.4

HR * 0.0012 0.0002 4.9
ACC X * 0.0012 0.0001 9.1
ACC Y * 0.0012 0.0001 11.8
ACC Z * 0.0035 0.0001 32.1
Const * 4.36 0.057 77.1

Variance 1.08 0.0023
2 EDA * 0.96 0.0175 55.0

TEMP * −0.27 0.0014 −194.0
HR −0.000002 0.0001 0.0

ACC X * 0.0009 0.0001 9.9
ACC Y * −0.0023 0.0001 −31.5
ACC Z * −0.0009 0.0001 −11.8
Const * 15.35 0.044 347.2

Variance 0.96 0.0014
* Significant at p < 0.001.

The two-state Markov switching model expanded on this story by providing a glimpse
of the relative effects of these features in low and high mental effort states. When the
participant was in a low mental effort state (State 1), it appeared that skin temperature
was the most important physiological response indicator, with lower values indicative of
higher levels of mental effort (estimate = −0.057, standard error (SE) = 0.0018, Z = −32.4,
p < 0.001). In this state of lower mental effort, EDA (estimate = −0.274, SE = 0.028, Z = −9.8,
p < 0.001) tended to go down with increasing mental effort. This relationship switched,
however, when the participant entered the high mental effort state (State 2), with higher
EDA values indicating higher levels of mental effort (estimate = 0.96, SE = 0.0175, Z = 55.0,
p < 0.001). In this state, we also observed that the effect of skin temperature retained its
negative relationship, but the strength of the association became stronger (estimate = −0.27,
SE = 0.0014, Z = −194.0, p < 0.001). As far as movement was concerned, in the low mental
effort state, movement tended to have a positive relationship with mental effort. While this
positive relationship was retained for acceleration in the X direction when the participant
entered the higher mental workload state, acceleration in the Y and Z directions switched
to being indicators of lower mental workload. From these relationships, it appeared that
motion of the arms tended to increase with mental workload until the point when the
participant entered a state of more intense concentration (higher mental effort), at which
time movement slowed down as concentration further increased.
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4.2. Forecasting Mental Effort Using the Traditional Machine-Learning Models

Looking at the results of logistic regression as shown in Table 4, we found that with
this model, the maximum R-squared and F1 values for the test data were achieved for
80:20 train and test split ratios. The F1 score and R-squared for the test data increased
marginally as the test set ratio decreased from 70% to 40%, after which they decreased
further for the 30% test ratio. For the 20% test ratio, they again increased and then decreased
for the 10% test ratio. The difference in the number of transitions predicted on the test data
and the actual number of transitions reduced with the decrease in the test set ratio.

Table 4. Forecasting efficacy of the logistic regression model for different training and testing partitions.

Train % Test % Test Data

First Last F1 RMSE No. of Transitions
Present in the Test Set

No. of
Transitions Detected R-Squared *

10 90 0.09 3.78 73 36,931 0.13
20 80 0.06 3.46 65 28,983 0.09
30 70 0.08 3.42 58 25,521 0.10
40 60 0.08 3.21 51 22,901 0.11
50 50 0.17 3.00 42 18,048 0.20
60 40 0.20 2.72 32 12,284 0.25
70 30 0.19 2.50 24 6348 0.24
80 20 0.21 2.43 16 4837 0.27
90 10 0.13 1.81 8 1291 0.18

* R-squared for test data.

After implementing the random forest algorithm, the results given in Table 5 showed
that the F1 score was very low and the R-squared value was negative for all train and
test split ratios, which indicated poor performance of this model on our data set and
indicated overfitting on the training data set [56]. The difference in the number of transi-
tions predicted on the test data and the actual number of transitions were also very high,
which indicated that random forest was not able to predict the transitions in the test
data set.

Table 5. Forecasting efficacy of the random forest model for different training and testing partitions.

Train % Test % Test Data

First Last F1 RMSE No. of Transitions
Present in the Test Set

No. of
Transitions Detected R-Squared *

10 90 0.09 3.76 73 165,339 0
20 80 0.09 3.43 65 227,071 0
30 70 0.15 2.96 58 196,789 0
40 60 0.14 2.84 51 188,303 0
50 50 0.15 2.80 42 157,930 0
60 40 0.14 2.76 32 127,209 0
70 30 0.18 2.39 24 96,467 0
80 20 0.18 2.32 16 64,127 0
90 10 0.18 2.04 8 32,282 0

* R-squared for test data was negative and therefore set to 0.

The results of KNN implementation on our data set, as shown in Table 6, demonstrated
that the F1 score was very low and the R-squared value was negative for all the train and
test split ratios, which again indicated that the model overfitted the training data and
performed very poorly on the test data set. The difference in the number of transitions
predicted on the test data and the actual number of transitions was also very high as
compared to that with logistic regression.

When we implemented logistic regression, KNN, and random forest as machine-
learning models on our data set with different train and test split ratios, we found that
these models performed poorly on the test data and were not good models for time-
series modeling and predicting the transitions from one activity to another. However,
the predictions of the logistic regression model were stationary across time (Figure 1),
and provided a useful starting point for understanding the relationship between the
physiological measures and mental effort and the relative importance of the respective
features in the prediction of mental effort.
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Table 6. Forecasting efficacy of the k-nearest neighbors (k = 3) model for different training and
testing partitions.

Train % Test % Test Data

First Last F1 RMSE No. of Transitions
Present in the Test Set

No. of
Transitions Detected R-Squared *

10 90 0.10 3.17 73 177,875 0
20 80 0.10 2.94 65 176,784 0
30 70 0.16 2.87 58 165,135 0
40 60 0.16 2.81 51 146,844 0
50 50 0.17 2.72 42 124,335 0
60 40 0.17 2.68 32 99,789 0
70 30 0.19 2.48 24 74,603 0
80 20 0.21 2.40 16 49,196 0
90 10 0.22 2.21 8 24,564 0

* R-squared for test data was negative and therefore set to 0.
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Figure 1. Absolute error versus observations in seconds for the logistic regression model with
a 30%/70% training/testing split.

4.3. Forecasting Mental Effort Using the Time-Dependent Baseline Model

After implementing a two-state Markov-switching effects model, the results as shown
in Table 7 indicated that this model offered a marked improvement over logistic regression.
The highest F1 score (F1 = 0.33) was calculated with a 50:50 train test ratio, which carried
a root-mean-square error (RMSE) of 1.06 and an R-squared value of 0.75. The relatively
low RMSE indicated that although many of the predictions missed the user’s self-reported
level of mental effort, these were nonetheless close in proximity, which is an important con-
sideration for an ordinal measure. R-squared values between 0.44 and 0.76 were obtained
across all train and test split ratios. Although the model predicted many transitions that
did not actually occur in the data, the predictions offered by this model were smoother
than those offered by the logistic regression model. Inspection of the absolute error over
time (Figure 2) indicated that efficacy for prediction remained stationary across time.
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Table 7. Forecasting efficacy of the two-state Markov-switching effects dynamic regression model for
different training and testing partitions.

Train % Test % Test Data

First Last F1 RMSE No. of Transitions
Present in the Test Set

No. of
Transitions Detected R-Squared *

10 90 0.24 1.46 73 37,639 0.62
20 80 0.06 1.78 65 6624 0.44
30 70 0.30 1.18 58 12,658 0.73
40 60 0.31 1.11 51 9968 0.74
50 50 0.33 1.06 42 6615 0.75
60 40 0.30 1.04 32 3967 0.76
70 30 0.26 1.00 24 2567 0.72
80 20 0.31 0.88 16 2205 0.75
90 10 0.22 0.95 8 830 0.61

* R-squared for test data.
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Figure 2. Absolute error versus observations in seconds for the two-state Markov-switching dynamic
regression model with a 30%/70% training/testing split.

4.4. Forecasting Mental Effort Using the Deep-Learning Models

The LSTM algorithm, as shown in Table 8, depicted that the F1 and R-squared values
were about 0.99 for all test and train split ratios. This model was able to predict the number
of transitions in the test data set accurately for the train ratio of 30% and above. However,
after examining the graph of absolute error versus observations in seconds (Figure 3),
it was found that the transition was not predicted correctly at the exact moment when it
occurred, but rather predicted it a step later.

Table 8. Forecasting efficacy of the LSTM model for different training and testing partitions.

Train % Test % Test Data

First Last F1 RMSE No. of Transitions
Present in the Test Set

No. of
Transitions Detected R-Squared *

10 90 0.9998 0.22 73 413 0.99
20 80 0.9998 0.18 65 71 0.99
30 70 0.9998 0.13 58 58 0.9967
40 60 0.9997 0.13 51 51 0.9967
50 50 0.9997 0.09 42 42 0.9983
60 40 0.9998 0.08 32 32 0.9985
70 30 0.9998 0.07 24 24 0.9987
80 20 0.9998 0.06 16 16 0.999
90 10 0.9998 0.05 8 8 0.9989

* R-squared for test data.
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The RNN results (Table 9) showed that when the training ratio was 40% and above,
the number of transitions predicted for the test data and the actual number of transitions
were equal. Similarly to LSTM, the transition was not predicted at the exact moment when
it occurred in the test data set. The F1 score and R-squared for the data test set was about
0.99 at a test ratio of 40% and above.

Table 9. Forecasting efficacy of the RNN model for different training and testing partitions.

Train % Test % Test Data

First Last F1 RMSE No. of Transitions
Present in the Test Set

No. of
Transitions Detected R-Squared *

10 90 0.87 0.31 73 4473 0.98
20 80 0.64 0.42 65 2946 0.97
30 70 0.9997 0.29 58 68 0.98
40 60 0.9997 0.128 51 51 0.9965
50 50 0.9997 0.109 42 42 0.9974
60 40 0.9998 0.177 32 32 0.993
70 30 0.9998 0.098 24 24 0.9974
80 20 0.9998 0.182 16 16 0.9893
90 10 0.9998 0.121 8 8 0.9937

* R-squared for test data.

CNNs were not originally developed for time-series modeling, but the layers can be
defined in a way to support time-series-based predictions. When we implemented the
CNN, the results as shown in Table 10 indicated that there was a significant difference in
the number of transitions predicted on the test data and the actual number of transitions;
however, the high R-squared values (>0.9 for when 20% or more of the initial data were
used for training) and RMSE below 1 indicated that missed predictions tended to be quite
close in proximity to the actual reported values. The prediction efficacy improved steadily
as the proportion of training data increased. When more than 50% of the initial values
were used for training, F1 scores above 0.9 were achieved, indicating that CNNs could be
potentially useful for forecasting.
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Table 10. Forecasting efficacy of the CNN model for different training and testing partitions.

Train % Test % Test Data

First Last F1 RMSE No. of Transitions
Present in the Test Set

No. of
Transitions Detected R-Squared *

10 90 0.37 0.87 73 85,971 0.87
20 80 0.65 0.61 65 70,808 0.93
30 70 0.78 0.49 58 43,039 0.95
40 60 0.88 0.38 51 26,973 0.97
50 50 0.91 0.35 42 14,400 0.97
60 40 0.95 0.31 32 6369 0.98
70 30 0.97 0.27 24 3948 0.98
80 20 0.96 0.32 16 2469 0.97
90 10 0.99 0.21 8 457 0.98

* R-squared for test data.

5. Discussion

Previous work has demonstrated both the utility and limitations of the current state
of the art of the EduFit system: using wearables to facilitate near real-time monitoring of
mental effort. A cross-sectional study with multiple participants showed that learning
activity, as well as whether or not a participant was in a high mental effort state, could
be predicted accurately, and that ensemble models such as random forest showed the
greatest utility for prediction, even when training sets were comparatively limited [11].
However, in all cases, the attempt to predict a person’s mental effort using another person’s
physiological data was met with limited success, even when the data were normalized
with respect to the individual’s unique average and variability. With regards to moving
forward with the effort to develop an automated tracker for mental effort, this showed that
it is currently unrealistic to develop and implement a pretrained universal algorithm for
the prediction of mental effort; individual variability in physiology and its relationship
with mental effort is too great for such an algorithm to work well. We therefore began this
study by hypothesizing that an individual could train their own device through the fusion
of physiological data and manual entry of self-reported mental effort on various tasks
through a web or smartphone application. The key question was: how long would it take
to adequately train a device on an individual, and which machine-learning approaches are
most useful in generating accurate predictions into the future?

Although random forest was the best-performing algorithm in previous work, it was
among the worst-performing algorithms for forecasting the participant’s mental workload
in this study. Although the RMSE dropped consistently as more training data were added,
the R-squared value for the testing set was negative in all cases, implying that simply
using the participant’s most commonly reported mental effort state performed better as
a predictor than the random forest model. This meant that although random forest may
have worked well for interpolation between time points, it lacked efficacy for forecasting
due to overfitting. Within the scope of traditional machine-learning approaches, logistic
regression actually performed better, showing low, but nonetheless positive, R-squared
values, indicating that it tended to perform better in forecasting situations than simply
using the most commonly reported mental effort level as the sole predictor. The statistical
significance of the physiological and activity measures in the logistic regression model
(Table 2) also testified to this.

Within the scope of models that account for time dependency, the two-state Markov-
switching dynamic regression model performed relatively well as a baseline model,
with the first 30% of the data being sufficient to train the model to forecast the remainder of
the data, with an RMSE around 1 and an R-squared value above 0.7. This model was simple
to implement and carried interpretability, but the deep-learning algorithms showed better
performance. With the first 30% of data used for training, LSTM converged to an R-squared
of above 0.99, and was able to model all transitions remaining in the data. The absence of
short-term memory in the RNN meant that it took slightly longer to train, with an extra
10% of training data needed to reach the level of performance of the LSTM. As seen in
Figures 1 and 3, the reliance on previous observations in making predictions caused them
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to model the transition a short time after the transition in mental effort actually occurred.
This was where the efficacy of the CNN may have come into play—its less strict temporal
dependency meant that it was less dependent on immediately previous data, including
transitions in the data, and so it provided predictions that were relatively independent
of the immediate transitions that were occurring. Although the CNN’s predictions indi-
cated many transitions in the data that did not actually occur, the high R-squared value,
low RMSE, and high F1 scores indicated that the predictions were relatively close to the
actual reported level of mental effort, reaching the best performance when 50% or more
of the data were used for training. A next step in the research will be to develop a way to
combine the CNN and LSTM models such that both smoothness of the predictions and the
ability of the system to capture transitions when they occur can be optimized.

6. Conclusions

The objective of conducting this study was to train a device to predict cognitive load
into the future, and for detecting the transition from one level of mental effort to another.
Our research findings included the amount of data it took to train a device to accurately
detect an individual’s level of mental effort into the future, and that deep-learning methods
are the most effective algorithms in making accurate longitudinal predictions.

Earlier studies [11,49] focused on using physiological measures for measuring overall
cognitive load and leveraging machine learning to predict mental effort. Similar to [49],
in this study, we focused on data from one student; however, in this study we focused on the
efficacy of self-training their device by focusing on merging self-report data and the sensor
data to predict their cognitive load in the future and detect transitions from one activity to
another. In addition to traditional machine-learning algorithms, we experimented with
deep-learning methods and found that these algorithms performed well in predicting
mental effort of a student into the future; however, further work is needed in order to better
detect transitions in mental effort.

Despite an abundance of literature documenting meaningful relationships between
physiological changes and cognitive load, our analysis showed that predicting mental
effort was not as straightforward as making predictions around physical processes such
as exercise and sleep. It is unlikely that we will find a single model that will work well
for everybody, and so the EduFit framework will necessarily rely on the willingness
of an individual to train their own device with respect to their lifestyle and individual
interpretation of their mental effort. Our models suggested that the first 30% of the
data, which equates to 33 activity transitions over approximately 28 h of data collection,
was sufficient to train a deep-learning model to make useful predictions for an additional
65 h when the measures were sampled at 1 measurement per second. Since these data were
collected across a semester-long (approximately 3 months) timeframe, we feel reasonably
confident that deep learning may represent a promising approach for fusing self-report
and sensor data to create a useful mental-effort tracking system. However, testing over
a longer period of time may be necessary before we can draw conclusions around how this
type of model would perform over years, which is more representative of the duration of
a program of study.
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