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Abstract: A hybrid procedure that incorporates grammatical evolution and a weight decaying
technique is proposed here for various classification and regression problems. The proposed method
has two main phases: the creation of features and the evaluation of these features. During the first
phase, using grammatical evolution, new features are created as non-linear combinations of the
original features of the datasets. In the second phase, based on the characteristics of the first phase,
the original dataset is modified and a neural network trained with a genetic algorithm is applied to
this dataset. The proposed method was applied to an extremely wide set of datasets from the relevant
literature and the experimental results were compared with four other techniques.
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1. Introduction

Artificial neural networks (ANNs) are programming tools [1,2], based on a series of
parameters that are commonly called weights or processing units. They have been used in
a variety of problems from different scientific areas such as physics [3–5], chemistry [6–8],
economics [9–11] and medicine [12,13]. A common way to express a neural network is a
function N(−→x ,−→w ), with −→x as the input vector (commonly called pattern) and −→w as the
weight vector. A method that trains a neural network should be used to estimate the vector
−→w for a certain problem. The training procedure can be also formulated as an optimization
problem, wherein the objective is to minimize the so-called error function:

E
(

N
(−→x ,−→w

))
=

M

∑
i=1

(
N
(−→x i,

−→w
)
− yi

)2 (1)

In Equation (1), the set
(−→xi , yi

)
, i = 1, . . . , M is the dataset used to train the neural

network, with yi being the actual output for the point −→xi . The neural network form used
here was also considered in [14]. Suppose we have a neural network with a processing
level that uses the sigmoid function as an output function. Every output of the network is
defined as

oi(x) = σ
(

pT
i x + θi

)
, (2)

where pi is the weight vector and θi is the bias for the output i. For a neural network with
H hidden nodes, the final output function can be written as

N(x) =
H

∑
i=1

vioi(x), (3)

where vi is the output weight for the processing unit i. Hence, by using one vector for all
parameters (weights and biases), the neural network can be written in the following form:

N
(−→x ,−→w

)
=

H

∑
i=1

w(d+2)i−(d+1)σ

(
d

∑
j=1

xjw(d+2)i−(d+1)+j + w(d+2)i

)
(4)
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where H is the number of processing units of the neural network and d is the dimension of
vector −→x . The function σ(x) is the sigmoid function defined as

σ(x) =
1

1 + exp(−x)
(5)

From Equation (4), one can obtain that the dimension of the weight vector w is
computed as: w = (d + 2)H. The function of Equation (1) has been minimized with
a variety of optimization methods during the past years, such as the back propagation
method [15,16], the RPROP method [17–19], Quasi Newton methods [20,21] and particle
swarm optimization [22,23]. All the previously mentioned methods have to overcome two
major problems:

• Excessive computational times, because they require a processing time proportional
to the dimension of the objective problem and the number of processing units as well.
For example, a neural network of H = 10 processing units applied to a test data with
d = 3 is considered an optimization problem with dimension w = (d + 2)H = 50.
This means that the total number of network parameters is growing extremely quickly,
which results in a longer computation time than the corresponding universal optimiza-
tion method. An extensive discussion of the problems caused by the dimensionality
of neural networks was presented in [24]. A common approach to overcome this
problem is to use the PCA technique to reduce the dimensionality of the objective
problem [25–27], i.e., the parameter d.

• The overfitting problem, which is quite common for these methods to produce poor
results when they are applied to data (test data) not previously used in the training
procedure. This problem was discussed in detail in the article by Geman et al. [28]
as well as in the article of Hawkins [29]. A variety of methods have been proposed
to overcome this problem, such as weight sharing [30], pruning [31–33], the dropout
technique [34], early stopping [35,36], and weight decaying [37,38].

This article proposes a method that tackles both the above problems using two major
steps. During the first step, a new set of features was created from the initial features using
a procedure based on the grammatical evolution technique [39]. A feature is a measurement
that defines a property of the objective problem and the series of all measurements forms
a pattern. A feature can be an integer value, a double precision value or even a string
literature. In our case, we only consider numeric values for the features. The number of
features of each pattern is the dimensionality of the problem defined as d in this work. The
procedure of feature construction with grammatical evolution was introduced in the work
of Gavrilis et al. [40] and it has been used with success in spam identification [41], fetal heart
classification [42], epileptic oscillations in clinical intracranial electroencephalograms [43],
etc. The outcomes of the first phase are the training and testing data which have been
modified according to the created features. During the second step, a genetic algorithm
that incorporates a weight decaying procedure is used to train a neural network on the
modified data of the first step.

Genetic algorithms are methods based on biological observations such as reproduc-
tion and mutation [44,45]. The genetic algorithms work by creating and maintaining a
population of candidate solutions (chromosomes). This population is iteratively altered
though operations such as crossover and mutation until some stopping criteria are met.
They have many advantages, such as simplicity of implementation, endurance in noise, can
be easily parallelized, etc. Furthermore, they have been applied to many problems such
as aerodynamic optimization [46], steel structure optimization [47] and brain images [48].
They have been used to train neural networks in various research papers, such as in the
work of Leung et al. [49] which estimates the structure and weights of a neural network
through a genetic algorithm, the evolution of a neural networks for daily rainfall–runoff
forecasting [50], and the evolution of neural networks to predict the deformation modulus
of rock masses [51] etc.
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The idea of feature construction has been examined by various researchers in the
relevant literature, such as the work of Smith and Bull [52], who used a tree genetic
programming approach to construct features from the original ones. Another approach to
constructing features using genetic programming was proposed by Neshatian et al. [53],
where the genetic programming utilizes an entropy-based fitness function that maximizes
the purity of class intervals. Another evolutionary approach was proposed by Li and Yin
for feature selection using gene expression data [54]. Finally, a recent work that utilizes a
genetic programming approach and the information gain ratio (IGR) was proposed by Ma
and Teng [55] to construct features from the original ones.

In problems of classification and regression, as the number of features increases,
additional examples are needed in order to achieve good results in training a model but
also to maintain good generalization skills in unknown data. Of course, adding new
examples to the training process is almost never possible and this results in the poor
performance of the control data. For this reason, the original dataset must be transformed
into a new one, which gives better generalization skills to the learning models. According
to Cover’s theorem [56], there is at least one non-linear extension of the original feature
vector, so that with this extension, a linear separation of the set of patterns can be made.
Many techniques have been proposed in this direction that try to detect such non-linear
extensions. The proposed method uses a hybrid approach, in which first new features are
constructed using grammatical evolution and then these features are evaluated by a neural
network that appropriately trains a genetic algorithm. In the first phase, the creation of new
features is performed in such a way as to achieve the best possible learning accuracy. The
methods that can be used to convert attributes are grouped into three categories: feature
selection, feature construction, and feature reduction. The second case is the most difficult,
as it does not simply require reducing the size of the problem, but also the non-linear
creation of new features from old ones.

The proposed technique can outperform other techniques from the modern literature
as it does not require prior knowledge of the objective problem, and can thus be applied
with the exact same procedure to both categorization problems and function learning
problems. In addition, it can be used to discover hidden function dependencies between
the original features of the problem and, because it is based on grammatical evolution, the
user can add and subtract functions or even allow the algorithm to construct new functions
to better learn the dataset. Nonetheless, the final characteristics of the method can be
evaluated by any computational intelligence model without any additional processing. In
the present method, these characteristics are evaluated by an artificial neural network, but
this is something that could change.

The rest of this paper is organized as follows: in Section 2, the proposed method is
described in detail; in Section 3, the proposed method is tested on a series of well-known
datasets from the relevant literature and the results are compared to those of a simple
genetic algorithm; and finally, in Section 4, some conclusions are presented.

2. Method Description

The proposed method has two major phases. In the first phase, a procedure that
exploits the grammatical evolution technique is used in order to create new features from
the old ones. The new features are evaluated using a radial basis function (RBF) [57] neural
network with H hidden nodes. The RBF network is used during this phase instead of a
neural network because the training procedure for RBF networks are much faster than
those of neural networks. In the second phase, a hybrid genetic algorithm trains a neural
network using the constructed features of the first phase.

2.1. The Usage of Grammatical Evolution

Grammatical evolution is an evolutionary procedure whereby the chromosomes repre-
sent production rules from a BNF (Backus–Naur form) grammar [58], which is very often



Signals 2022, 3 177

used to describe the syntax of programming languages, document formats, etc. These
grammars are defined as the set G = (N, T, S, P) where:

• N is the set of non-terminal symbols, which produce a series of terminal symbols
through production rules.

• T is the set of terminal symbols.
• S is a non-terminal symbol which is also called the start symbol.
• P is a set of production rules in the form A→ a or A→ aB, A, B ∈ N, a ∈ T.

The production procedure starts from the start symbol of the BNF grammar and
iteratively produces programs by replacing non-terminal symbols with the right hand
of the production rules that will be selected according to the value of each element in
the chromosome. In the proposed method, the BNF grammar of Figure 1 was used to
create a new feature from the initial features. The symbols that are in <> are considered
non-terminal symbols. The parameter N denotes the number of original features. Typically,
a chromosome x in grammatical evolution is expressed as a series of binary values 0 or 1. In
the current work, in order to simplify the mapping procedure and to increase the speed of
the algorithm, every element of each chromosome is considered an integer in a predefined
range. In our case, the range [0, 255] was used but of course, this could be easily changed.

Take, for example, the chromosome x = [9, 8, 6, 4, 16, 10, 17, 23, 8, 14] and N = 3. The
valid expression f (x) = x2 + cos(x3) is created using a series of production steps shown
in Table 1. An expression is considered valid if it only contains terminal symbols. Each
number in the parentheses stands for the sequence number of the production rule. Hence,
the process to produce N f features from the original is as follows:

1. Every chromosome Z is split into N f parts. Each part gi will be used to construct a
feature.

2. For every part gi construct a feature ti using the grammar given in Figure 1.
3. Create a mapping function:

G(−→x , Z) =
(

t1
(−→x , Z

)
, t2
(−→x , Z

)
, . . . , tN f

(−→x , Z
))

(6)

where −→x is a pattern from the original set and Z is the chromosome.

Table 1. Steps to produce a valid expression from the BNF grammar.

String Chromosome Operation

<expr> 9,8,6,4,16,10,17,23,8,14 9 mod 3 = 0

(<expr><op><expr>) 8,6,4,16,10,17,23,8,14 8 mod 3 = 2

(<terminal><op><expr>) 6,4,16,10,17,23,8,14 6 mod 2 = 0

(<xlist><op><expr>) 4,16,10,17,23,8,14 4 mod 3 = 1

(x2<op><expr>) 16,10,17,23,8,14 16 mod 4 = 0

(x2 + <expr>) 10,17,23,8,14 10 mod 3 = 1

(x2 + <func>(<expr>)) 17,23,8,14 17 mod 4 = 1

(x2 + cos(<expr>)) 23,8,14 23 mod 2 = 1

(x2 + cos(<terminal>)) 8,14 8 mod 2 = 0

(x2 + cos(<xlist>)) 14 14 mod 3 = 2

(x2 + cos(x3))
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S::=<expr> (0)
<expr> ::= (<expr> <op> <expr>) (0)

| <func> ( <expr> ) (1)
|<terminal> (2)

<op> ::= + (0)
| - (1)
| * (2)
| / (3)

<func> ::= sin (0)
| cos (1)
|exp (2)
|log (3)

<terminal>::=<xlist> (0)
|<digitlist>.<digitlist> (1)

<xlist>::=x1 (0)
| x2 (1)
.........
| xN (N)

<digitlist>::=<digit> (0)
| <digit><digit> (1)
| <digit><digit><digit> (2)

<digit> ::= 0 (0)
| 1 (1)
| 2 (2)
| 3 (3)
| 4 (4)
| 5 (5)
| 6 (6)
| 7 (7)
| 8 (8)
| 9 (9)

Figure 1. BNF grammar of the proposed method.

2.2. Feature Construction

The first phase of feature construction presented below has also been used as a feature
construction mechanism in the initial work of Gavrilis et al. [40]. In this phase, a genetic
algorithm constructs new features from the original and the training error of an RBF
network on the dataset created with the new features is used. The steps of the algorithm
for the first phase are:

1. Initialization step

(a) Set iter = 0, generation number.
(b) Construct the set TR =

{(−→x1 , y1
)
,
(−→x2 , y2

)
, . . . ,

(−→xM, yM
)}

, which is the origi-
nal training set.

(c) Set Nc as the number of chromosomes and N f as the number of desired
constructed features. These options are defined by the user.

(d) Initialize randomly in range [0, 255] the integer chromosomes Zi, i = 1 . . . Nc
(e) Set Ng as the maximum number of generations allowed.
(f) Set ps ∈ [0, 1] as the selection rate and pm ∈ [0, 1] the mutation rate.

2. Termination check. If iter ≥ Ng go to step 6.
3. Estimate the fitness fi of every chromosome Zi with the following procedure:

(a) Use the procedure described in Section 2.1 and create N f features.
(b) Create a modified training set :

TN =
{(

G
(−→x1 , Zi

)
, y1
)
,
(
G
(−→x2 , Zi

)
, y2
)
, . . . ,

(
G
(−→xM, Zi

)
, yM

)}
(7)
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(c) Train an RBF neural network C with H processing units on the modified
training set TN using the following train error:

fi =
M

∑
j=1

(
C
(
G
(−→xj , Zi

))
− yj

)2 (8)

4. Genetic Operators

(a) Selection procedure: initially, the chromosomes are sorted according to their
fitness value. The best chromosomes are placed in the beginning of the pop-
ulation and the worst at the end. The best (1− ps) × Nc chromosomes are
transferred to the next generation intact. The remaining chromosomes are sub-
stituted by offspring created through the crossover and mutation procedures.

(b) Crossover procedure: in this process, for every produced offspring, two mat-
ing chromosomes (parents) are selected from the previous population using
tournament selection. Tournament selection is a rather simple selection mech-
anism defined as: first a set of K > 1 randomly selected chromosomes is
constructed and subsequently the chromosome with the best fitness value in
the previous set is selected as the mating chromosome. Having selected the two
parents for the offspring, the offspring is formed using the one point crossover.
In one-point crossover, a random point is selected for the two parents and their
right-hand side subchromosomes are exchanged.

(c) Mutation procedure: for every element of each chromosome, a random num-
ber r ∈ [0, 1] is taken. If r ≤ pm, then this element is randomly altered by
producing a new integer number.

5. Set iter = iter+1 and go to Step 2.
6. Get the best chromosome in the population defined as Zl with the corresponding

fitness value fl and Terminate.

2.3. Weight Decay Mechanism

The quantity x in Equation (5) of the sigmoid function is calculated through many
calculations involving the input patterns as well as the weight vector. If the value within
the function is excessively large, then the sigmoid function tends towards one and this
will result in the neural network losing what generalization possibilities it has. In order
to estimate the effect of this issue, the quantity B

(
N
(−→x ,−→w

)
, F
)

is defined as shown in
Algorithm 1.

Algorithm 1 Calculation of the bounding quantity for neural network N(x, w)

1. Define b = 0
2. For i = 1 . . . K Do

(a) For j = 1 . . . M Do

i. Define v = ∑d
kT=1 w(d+2)i−(d+i)+kxjk + w(d+2)i

ii. If |v| > F set b = b + 1
(b) EndFor

3. EndFor
4. Return b

K?M

2.4. Application of Genetic Algorithm

The following is a hybrid genetic algorithm used to train artificial neural networks in
the modified dataset. The purpose of this algorithm is to train the artificial neural network
in such a way that it does not lose its generalizing abilities. For this purpose, it uses a
fitness function that consists of the neural network training error, but also a punitive factor
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is added. This penalty factor aims to ensure that network weights do not attain excessively
high values during training. This technique can be directly applied to a neural network
without having previously performed the first phase of feature construction. The main
steps of the hybrid genetic algorithm used in the second phase are:

1. Initialization step

(a) Set iter = 0 as the generation number.
(b) Set TN as the modified training set, where:

TN =
{(

G
(−→x1 , Zl

)
, y1
)
,
(
G
(−→x2 , Zl

)
, y2
)
, . . . ,

(
G
(−→xM, Zl

)
, yM

)}
(9)

(c) Initialize randomly the double precision chromosomes Di, i = 1 . . . Nc in

range [LN , RN ]. The size of each chromosome is set to W =
(

N f + 2
)

H.

2. Termination check. If iter ≥ Ng goto step 6
3. Fitness calculation step.

(a) For every chromosome Di:

i. Calculate the quantity Bi = ∑x∈TN(B(N(x, Di), F)) using Algorithm 1.
ii. Calculate the quantity Ei = ∑(x,y)∈TN(N(x, Di)− y)2, the training

error of the neural network where the chromosome Di is used as the
weight vector.

iii. Set fi = −Ei
(
1 + λB2

i
)
, where λ > 0 as the fitness of Di.

(b) End for

4. Genetic operations step. Apply the same genetic operations as in the first algorithm
of Section 2.2.

5. Set iter = iter + 1 and go to step 2
6. Local search step.

(a) Get the best chromosome D∗ of the population.
(b) For i = 1. . . W Do

i. Set pi = D∗i
ii. Set LMi = −α|pi|
iii. Set RMi = α|pi| , α > 1 .

(c) End for
(d) Set L∗ = L(D∗, LM, RM) where L() is a local optimization method procedure

that searches for a local optimum of N(x, D∗) inside the bounds
[−→

LM,
−→
RM

]
.

The TOLMIN [59] local optimization procedure used in the above algorithm is
a modified version of the BFGS local optimization procedure [60].

(e) Apply the optimized neural network N(x, D∗) to the test set, which has been
modified using the same transformation procedure as in the train set, and
report the final results.

3. Experiments

The software for the algorithm was coded using ANSI C++ and was utilized for
parallelization and to accelerate the genetic algorithm for all of the OpenMP library [61].
Every experiment was executed 30 times with a different speed for the random generator
each time and averages were measured and reported. The function used for random
numbers was the drand48() function of the C programming language. The classification
error is reported for the classification datasets on the test set and the average mean squared
error for regression datasets. Furthermore, for more reliability in the results, the commonly
used method of 10-fold cross-validation was used. The values for the parameters of the
used algorithms are reported in Table 2.
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Table 2. Experimental parameters.

Parameter Value

H 10

Nc 500

N f 2

ps 0.10

pm 0.05

Ng 200

LN −10.0

RN 10.0

F 20.0

λ 100.0

α 5.0

3.1. Experimental Datasets

The method was tested on a series of regression and classification datasets which were
mostly obtained from two repositories:

1. The Machine Learning Repository http://www.ics.uci.edu/~mlearn/MLRepository.
html (accessed on 1 April 2022);

2. The Keel Repository https://sci2s.ugr.es/keel/ (accessed on 1 April 2022).

The description for these datasets is as follows:

1. Balance dataset [62], used in psychological experiments.
2. Dermatology dataset [63], which is used for differential diagnosis of erythemato-

squamous diseases.
3. Glass dataset. This dataset contains a glass component analysis for glass pieces that

belong to 6 classes.
4. Hayes Roth dataset [64].
5. Heart dataset [65], used to detect heart disease.
6. Ionosphere dataset, a meteorological dataset used in various research papers [66,67].
7. Parkinsons dataset,[68] which is created using a range of biomedical voice measure-

ments from 31 people, among which 23 have Parkinson’s disease (PD). The dataset
has 22 features.

8. Pima dataset, related to diabetes.
9. PopFailures dataset [69], used in meteorology.
10. Spiral dataset, which is an artificial dataset with two classes. The features in the first

class are constructed as: x1 = 0.5t cos(0.08t), x2 = 0.5t cos
(
0.08t + π

2
)

and for the sec-
ond class the used equations are: x1 = 0.5t cos(0.08t + π), x2 = 0.5t cos

(
0.08t + 3π

2
)

11. Wine dataset, which is related to the chemical analysis of wines and it has been used
in comparison in various research papers [70,71].

12. Wdbc dataset, which contains data for breast tumors.
13. As a real-world example, consider an EEG dataset described in [72,73] which is used

here. This dataset consists of five sets (denoted as Z, O, N, F and S), each containing
100 single-channel EEG segments which each have 23.6 s duration. With different
combinations of these sets, the produced datasets are Z_F_S, ZO_NF_S, ZONF_S.

The regression datasets are available from the Statlib URL http://lib.stat.cmu.edu/
datasets/ (accessed on 1 April 2022) and other sources:

http://www.ics.uci.edu/~mlearn/MLRepository.html 
http://www.ics.uci.edu/~mlearn/MLRepository.html 
https://sci2s.ugr.es/keel/
http://lib.stat.cmu.edu/datasets/
http://lib.stat.cmu.edu/datasets/
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1. BK dataset. This dataset comes from smoothing methods in statistics [74] and is
used to estimate the points scored per minute in a basketball game. The dataset has
96 patterns of 4 features each.

2. BL dataset. This dataset can be downloaded from StatLib. It contains data from
an experiment on the effects of machine adjustments on the time to count bolts. It
contains 40 patters of 7 features each.

3. Housing dataset, described in [75].
4. Laser dataset, which is related to laser experiments.
5. NT dataset [76], which is related to body temperature measurements.
6. Quake dataset, used to estimate the strength of an earthquake.
7. FA dataset, which contains a percentage of body fat and ten body circumference

measurements. The goal is to fit body fat to the other measurements.
8. PY dataset [77], used to learn quantitative structure–activity relationships (QSARs).

The numbers of features and patterns for every dataset used in the experiments are
listed in Table 3.

Table 3. Features and patterns for every experimental dataset.

Dataset Features Patterns

Balance 4 625

BK 4 96

BL 7 41

Dermatology 34 359

Glass 9 214

Hayes Roth 5 132

Heart 13 270

Housing 13 506

Ionosphere 34 351

Laser 4 993

NT 2 131

Parkinson’s 22 195

Pima 8 768

PopFailures 18 540

PY 27 74

Quake 3 2178

FA 18 252

Sprial 2 2000

Wine 13 179

Wdbc 30 569

Z_F_S 21 300

Z_O_N_F_S 21 500

ZO_NF_S 21 500

3.2. Experimental Results

Table 4 represents the comparative results for the classification datasets and Table 5
shows the results for the regression problems. For the case of classification problems, the
average classification error is reported, while for the regression problem, the average per
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point error is reported. The proposed method is denoted as FC MLP and it is compared
against four other approaches from the relevant literature:

1. The minimum redundancy maximum relevance feature selection method [78,79] with
two selected features. This approach is denoted as MRMR in the experimental tables.
The features selected by MRMR are evaluated using an artificial neural network
trained by a genetic algorithm with Nc chromosomes.

2. The principal component analysis (PCA) method as implemented in the Mlpack
software [80]. The PCA method is used to construct two features from the original
dataset. Subsequently, these features are evaluated using an artificial neural network
trained by a genetic algorithm with Nc chromosomes.

3. A genetic algorithm with Nc chromosomes and the parameters of Table 2 used to train
a neural network with H hidden nodes. This approach is denoted as MLP GEN in the
experimental tables.

4. A particle swarm optimization (PSO) with Nc particles and a Ng number of genera-
tions used to train a neural network with H hidden nodes. This method is denoted as
MLP PSO in the experimental tables.

Table 4. Experimental results for classification datasets.

Dataset MRMR PCA MLP GEN MLP PSO FC MLP

Balance 56.80% 56.48% 8.23% 8.07% 0.30%

Dermatology 68.54% 62.11% 10.01% 17.57% 4.98%

Glass 58.35% 50.16% 58.03% 57.35% 45.84%

Hayes Roth 61.21% 61.13% 35.26% 36.69% 23.26%

Heart 38.04% 35.84% 25.46% 25.67% 17.71%

Ionosphere 12.93% 21.22% 13.67% 15.14% 8.42%

Parkinson’s 17.16% 16.96% 17.47% 18.35% 10.10%

Pima 26.29% 39.43% 32.98% 30.45% 23.76%

PopFailures 7.04% 31.42% 7.66% 6.24% 4.66%

Spiral 44.87% 45.94% 45.71% 42.10% 26.53%

Wine 30.73% 30.39% 20.82% 19.31% 7.31%

Wdbc 12.91% 10.28% 6.32% 6.95% 3.47%

Z_F_S 32.71% 44.81% 9.42% 10.38% 5.52%

Z_O_N_F_S 43.04% 56.45% 60.38% 63.56% 31.20%

ZO_NF_S 33.79% 40.02% 8.06% 8.84% 4.00%

Table 5. Experiments for regression datasets.

Dataset MRMR PCA MLP GEN MLP PSO FC MLP

BK 0.03 0.17 0.21 0.15 0.03

BL 0.15 0.19 0.84 2.15 0.005

Housing 67.97 319.08 30.05 33.43 10.77

Laser 0.031 0.145 0.003 0.038 0.002

NT 1.79 0.69 1.11 0.03 0.01

Quake 0.06 0.59 0.07 0.28 0.03

FA 0.02 0.08 0.04 0.08 0.01

PY 1.56 0.30 0.21 0.07 0.02
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Furthermore, the average classification errors for some of the classification datasets
are graphically illustrated in Figure 2. An additional experiment was performed, wherein
the number of chromosomes for the genetic algorithm of feature construction (Section 2.2)
varied from 50 to 500. This experiment was performed on four datasets and the results
are presented in Table 6. This table shows the reliability and durability of the proposed
method, and partially because of a low number of chromosomes, it achieves quite good
generalization results.

As the experimental results clearly show, the proposed method is significantly superior
to the other techniques and in many cases the percentage gain reaches 90%. The proposed
technique for each dataset created two artificial features with non-linear combinations of
the original features. This process is based on grammatical evolution. Because the previous
procedure is extremely time consuming, it was chosen to evaluate the characteristics to
train a radial basisnetwork which has a fast training time. Then, another genetic algorithm
is used to train an artificial neural network on the new features. The overall process is the
same regardless of the type of data and this means that the method can be applied to a wide
range of datasets. However, because the method requires the presence of two phases using
genetic algorithms, it is considered a very slow method compared to other techniques in
the literature. Execution times, however, could be drastically reduced by using parallel
techniques such as the OpenMP technique used during the experiments. Furthermore, as
was clear from the additional experiments performed with the number of chromosomes,
this method is quite robust, even for a small number of chromosomes.

Table 6. Experiments with the number of chromosomes for the algorithm of Section 2.2.

Dataset Ng = 50 Ng = 100 Ng = 200 Ng = 500

Heart 21.26% 21.34% 18.73% 17.71%

BK 0.02 0.02 0.02 0.03

BL 0.02 0.02 0.01 0.005

FA 0.01 0.01 0.01 0.01

Figure 2. Graphic representation of some of the classification datasets.

4. Conclusions

In the present work, a hybrid feature construction technique was presented with two
phases: (a) feature construction and (b) feature evaluation. In the first phase, new features
were created as non-linear combinations of old features using grammatical evolution and
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radial basis networks. In the second phase, the original dataset was transformed based on
the new features and an artificial neural network with a genetic algorithm was trained to
learn the new dataset. The genetic algorithm used tried to train the artificial neural network
in such a way that it did not lose its generalizing abilities. The proposed technique was
applied to a number of datasets from the relevant literature and the results were more
than satisfactory. Furthermore, with a series of additional experiments, the stability of the
proposed methodology was shown, since it produces satisfactory results even with a small
number of chromosomes. However, the proposed technique is much slower than other
processes as it requires two computational phases to reach a conclusion. However, with the
use of parallel techniques, acceleration can be achieved. The method can be made more
efficient in a number of ways. For example, this can be achieved by using parallel genetic
algorithms; smarter evaluators to construct features instead of radial basis networks such
as SVM; and more sophisticated termination techniques for genetic algorithms to achieve
the acceleration of the export of the results.
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