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Abstract: Detecting pulmonary nodules early significantly contributes to the treatment success of lung
cancer. Several deep learning models for medical image analysis have been developed to help classify
pulmonary nodules. The design of convolutional neural network (CNN) architectures, however,
is still heavily reliant on human domain knowledge. Manually designing CNN design solutions
has been shown to limit the data’s utility by creating a co-dependency on the creator’s cognitive
bias, which urges the development of smart CNN architecture design solutions. In this paper, an
evolutionary algorithm is used to optimise the classification of pulmonary nodules with CNNs.
The implementation of a genetic algorithm (GA) for CNN architectures design and hyperparameter
optimisation is proposed, which approximates optimal solutions by implementing a range of bio-
inspired mechanisms of natural selection and Darwinism. For comparison purposes, two manually
designed deep learning models, FractalNet and Deep Local-Global Network, were trained. The results
show an outstanding classification accuracy of the fittest GA-CNN (91.3%), which outperformed
both manually designed models. The findings indicate that GAs pose advantageous solutions for
diagnostic challenges, the development of which may to be fully automated in the future using GAs
to design and optimise CNN architectures for various clinical applications.

Keywords: genetic algorithm; evolutionary algorithm; lung cancer; pulmonary nodules; deep
learning; medical imaging; computer-aided diagnostics; hyperparameter optimisation

1. Introduction

Lung cancer is an uncontrolled neoplastic growth in pulmonary tissues [1,2]. With
18.4% of all cancer-related deaths, lung cancer has the highest mortality rate not just in
Australia, but globally [3]. Moreover, lung cancer is the 4th leading cause of death in
Australia as of 2015 [4]. That year, 1.7 million people died from lung cancer worldwide [5].
Since its mortality is almost interrelated with the spread of uncontrolled cell growth
from the lung into other tissues also known as metastasis, early diagnosis and treatments
considerably increase treatment success and survival rates in affected patients [6]. Across
Europe, there are significant differences in five-year survival rates for metastatic cases,
ranging from 20% in Sweden and Austria, to only 8% in Bulgaria, further underpinning
the importance of an early diagnosis and treatment onset [7]. The five-year survival rate
for non-metastatic patients was 58.2% in 2010, whilst that of metastatic cases was less
than 21% [8]. Whilst not visible on X-ray scans, small lung nodules can be detected via
computed tomography (CT) [9]. In most cases, additional biopsies are ordered to examine
the target nodule’s histopathology [10]. With an ever-increasing amount of medical data,
the described elevated mortality rates of lung cancer, additional financial incentives such as
cost reduction and the need for improved diagnostic aid further promote research incentives
to optimise data-driven solutions for computer-aided diagnostic (CAD) systems [11].

The increasing number of patient records and medical images as shown in Figure 1
makes clinical decision-making exceedingly time consuming. Vast quantities of CT scans,
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usually multiple hundreds per patient, can make it challenging to identify small, malig-
nant, or suspicious lung nodules in the available timeframe [2,10]. Pulmonary nodules
appear in various shapes with heterogeneous properties, such as diversified densities or
malignancy-implicant calcification properties [2]. Hence, further complicating the scan-
ning and classifying of such for radiologists [2]. In this paper, however, the focus lies on
improving lung nodule classification performance only, as combinations with additional
segmentation CNNs such as U-Net could pose a sustainable approach for a stand-alone
CAD system in radiology diagnostics [12–14].
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For the classification of any accumulated cell mass’s malignancy that is visible on
CT scans, however, specialised machine learning (ML) applications could be used in the
future [15,16]. In particular, deep learning (DL) methods and convolutional neural networks
(CNNs) have demonstrated outstanding potential to analyse both feature-complex and large
datasets [17], such as AlexNet [18], DenseNet [19], GoogLeNet [20]. Examples of models
with outstanding performance on CT-lung scans include Resnet and FractalNet [16,17].
However, other approaches, such as deep local–global networks (DLGNs), too, have
demonstrated remarkable lung nodule classification performance [18,19].

FractalNet, a CNN approach that does not incorporate residuals, allows repeated use
of simple expansion rules, hence supporting the widened depth of image analysis by its
truncated fractals [21–23]. In contrast to the FractalNet, the DLGN relies on shortcuts to
help minimise residuals between layers while preserving the identity and weights of the
previous layer’s outputs upon residual summation [24,25]. DLGNs have demonstrated to
be able to outperform ResNet and other models, partly due to their ability to extract multi-
scale features with high generalisation ability [24]. In contrast to other CNN approaches,
DLGNs aim to perceive both local and global features without demanding a full connection
to all its layers, which helps reduce computing time by cutting down the number of
computations of weights and connections. Since many CNNs with small kernel sizes fail
to capture global features, DLGNs were developed with the concept of not dilated, but
residual convolution [24], which has been proven to help identify both local and global
features. The extraction of global features, without increasing the kernel size here, is
enabled by implementing self-attention layers [26].

The described high-performing models have been manually designed with the incor-
poration of both domain-specific knowledge in the problem space and expertise of deep
learning hyperparameters [14]. While this combinatory approach creates excellent results,
the discovery and design of optimised or even novel architectures are yet dependant on
CNN-specific expertise, which can hinder the discovery of optimal solutions [27]. Studies
on hyperparameter and network optimisation have shown that the performance of models
with the same hyperparameter and network architectures can vary significantly when
applied to datasets of different domains, data properties, target class quantity, training
example count and event probabilities [28]. Therefore, the absence of a holistic recipe for
a flawless deep learning architecture often results in a model design based on previous
approaches, as well as extensive conducted trial and error. Since DL training can be in-
credibly time consuming, smart solutions for CNN structure design are needed to ensure
efficient optimisations of model designs in the future. The need for a smart and automated
CNN design solution is resilient particularly in settings, where it is not possible to allocate
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experts from all necessary disciplines to the task. In a clinical setting, for instance, medical
professionals have a strong expertise regarding their patient’s datasets and the underlying
physiology, yet usually do not have deep artificial intelligence (AI) knowledge or experts at
their disposal. In such cases, an automated network design with automated hyperparame-
ter optimisation could be used to deploy sophisticated classification models without having
to rely on additional experts and resources from other fields. Moreover, such an approach
additionally can remove the influence of cognitive bias during the network design and
optimisation process, which can limit the resulting network’s performance.

To save time and resources for the computation during the optimisation process,
evolutionary algorithms can be deployed to automate the CNN architecture design with
all its entailed parameters. Just as neural networks resemble computational replicas of
natural concepts, genetic algorithms were developed to solve computational problems by
approximating the optimal solution by simulating evolutionary processes [29,30]. Genetic
algorithms (GAs) are a subset of evolutionary algorithms and have successfully demon-
strated outstanding performance on several different network optimisation problems [31].
They are used in various fields to help solve the computational ‘Knapsack’ problem for
combinatory puzzles, as described by Tobias Dantzig in 1930 [32], since GAs circumvent
the necessity to naïvely testing all possible solutions [33,34].

GA-evolved solutions are represented by a sequential encoding, i.e., the genome [35].
To find the best solution for any given problem and therefore, to evolve the best genome
(=creation of the fittest individual), GAs uses bio-inspired, genetic processes such as
selection, crossover and mutation [36]. A generic pseudo-code for genetic algorithms
is depicted in Figure 2. The structure and design for the genome and therefore, the
tools or building blocks to find a solution for any problem, might be tailored for each
approach [14,37]. As for image classification, GAs can therefore help to automatically
and efficiently find optimal solutions for CNN hyperparameter settings, as well as overall
CNN architecture design [34]. Recently, GAs have demonstrated exceptional performance
in automatically generating state-of-the-art CNNs—such as for classifying images of the
CIFAR10 dataset with accuracies of up to 96.78 %, higher than most by DL experts manually
tuned models [14]. Current research and recent advances of algorithms that can genetically
design CNNs (CNN-GAs) do not only focus on algorithmic aspects such as variable-
length encoding strategies with adaptive crossover operator length, but also address
computational aspects, such as utilising all computational hardware resources efficiently to
optimise computing time and costs [14].
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In this paper, a genetic algorithm to automatically evolve and select the best CNN
architecture design for classifying lung nodules from the Lung Image Database Consortium
(LIDC) image collection was implemented by adopting both the proposed variable-length
encoding and the proposed evolutionary operators by Sun et al. [14], to ultimately select
the best-performing lung nodule classification model since naïve approaches of network
architecture optimisation are not feasible, given the elevated amount of hyperparameters
and other architectural features in CNN designs, such as layer count and type.

2. Materials and Methods

In this section, the design of the manually designed FractalNet and DLGN is presented.
Furthermore, the design of the automatic CNN architecture design via genetic algorithm is
described. All three models were configured and trained independently, with subsequent
comparison of their respective classification performances on the validation data splits for
cross validation.

In this study, all models were trained and validated with data sourced from the LIDC
only. The sourced data consisted of thoracic CT scan files with additional annotations
of a total of 1018 patients [8]. Utilised annotations included ratings of the nodules by
radiologists ranging from 1 to 5, in which 1 indicates a low probability of the nodule’s
malignancy and 5 indicates the highest chance for malignancy [38]. Examples for scans
with different annotations for malignant nodules are displayed in Figure 3.
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However, not all nodules were selected. The following criteria were applied to deter-
mine each sample’s inclusion and class membership for both the test and validation dataset:
(a) at least 3 or more radiologists acknowledged the nodule with annotations; (b) each sam-
ple with a mean annotation value greater than 3 was labelled as ‘malignant’, otherwise as
‘benign’ if less than 3; and (c) samples with an average value of 3 were considered ‘ambigu-
ous’ and therefore, were not to be included for training or validation purposes. Under those
assumptions, 380 malignant and 421 benign nodules were identified. No further balancing
of the dataset was performed, as the target class ratio of benign/malignant 1.07 indicates
slight class imbalances only. To augment the dataset, further samples were created by
following general DL conventions, such as rotating images by 90, 180 and 270 degrees.
Furthermore, images were cropped from random sides with fixed stride, whilst relocating
the centre of lung nodules as an area of interest. The described augmentation of the dataset
was performed eight times.

For both FractalNet and CNN-GA training, a total of 6408 images were used—3040
of which were labelled as malignant, and 3368 labelled as benign. The first classification
model, FractalNet, was implemented with the pre-processed dataset assorted into training
and validation sets with a ratio of 8:2. With an overall total of 4 fractal blocks, a maximum
pooling size of 2 and a convolutional filter size of 4, the training was performed for
50 epochs. The adjustment of weights was performed via the adaptive learning rate
algorithm method (ADAM) with an initial learning rate of 0.002. Cross entropy was
used for computing the loss function. The global drop probability was set 0.2. Dropout
layers of the FractalNet were initialised with event probabilities of 0.1, 0.2, 0.3, 0.4 and
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0.5, respectively. As the first layer was set with the lowest dropout probability, significant
features are less likely to be overseen at the beginning of the convolutional training.

The same data split was utilised for the training and validation of the DLGN, the
training of which was performed with a batch size of 150 for both 50 and 100 epochs.
The comparison of target and output was conducted via binary cross entropy, whilst the
subsequent adaption of weights was performed by using ADAM with an initial learning
rate of 0.1. Generally, the linear transformations used in DLGN models characterise all
regions of interest and analysed features, whilst Softmax classifiers are utilised to further
extract regions with non-zero attention values.

For the CNN-GA, all digital imaging and communications in medicine (DICOM) files
were transformed from the 3-channel RGB format with dimensions of 3 × 32 × 32 to
greyscale NumPy arrays with dimensions of 1 × 32 × 32 each. The training-validation data
split was randomised with rations between 10/90 and 60/40 for each performed CNN. Since
the pre-processed CT-scans did not carry significant information which would be accessible
by the RGB channel only, the transformation to the singular, monochrome format is not
to impact classification performance whilst reducing the necessary use of computational
resources. All generated monochrome NumPy arrays were subsequently transformed
by using PyTorch. The pre-processed data were then converted into Tensor images with
dimensions of 1 × 32 × 32 (input channels × height × width). Here, normalisation and
additional, randomised horizontal flipping of all images was performed.

During the fitness evaluation, a fitness function evaluated all individuals per genera-
tion. Individuals whose genome encoded for CNNs with final validation performances
below 50% were deemed unfit, and therefore were assigned a fitness score of 0. All
other individual’s fitness values were derived by their classification performances using
cross-validation.

The utilised GA design was developed to increase the depth of the CNN depth and
therefore, its classification capability [14]. Hence, fully connected layers were replaced
with skip layers, which can prevent the overfitting of the model. Following the mutation,
the environmental selection was conducted by deploying the binary tournament selection
approach, which is commonly used in single-objective optimisation with CNN-GAs [14,39].

Upon the selection of individuals, variable crossover and mutation relied on randomi-
sation. Therefore, it was possible that, via genetic drift, the currently fittest individual and
its corresponding genome may be deconstructed during either of the previously described
random procedures [40]. Therefore, elitism was implemented by checking whether the
fittest individual had already been selected to generate the new offspring for the next gen-
eration. If the fittest individual is not represented by the new parent generation yet, it will
replace the least fit individual in the list of the current selection, which ensures the survival
of the fittest individual. After each generation, a new population was initialised with all
selected individuals and their freshly acquired genome. After evaluating and ranking
all individuals according to their fitness, parents for the new generation were selected to
generate new offspring for the new generation via mutation and crossover functions.

In this paper, CNN building blocks were implemented as per the proposal by Sun et al.
shown in Figure 4.
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The utilised genetic algorithm encodes CNN architectures with a variable genome
length. This means that layer counts can vary, which gives more flexibility when adapting
the overall network architecture. Please note that the resulting genome encodes pooling lay-
ers and skip layers, as this setup was inspired by Resnet’s architecture, which demonstrated
high performances with the described skip layer-based network architecture [41,42].

3. Experimental Setup

The evolutionary simulation of the CNN-GA was initiated with a population count
of n = 20. Each population inherited an initial fitness of zero. For each generation, each
population was trained for 100 epochs with a subsequent mutation and crossover. All
generated models were trained using stochastic gradient descent (SGD) with a learning
rate of 0.1. Each training was followed by a fitness evaluation, in which all final validation
accuracies of the current models were compared.

The probability of evolving the architecture with an additional skip layer by random
mutation was furthermore set to be seven-fold higher than other possible mutations, which
included adding pooling layers with random settings, removing layers, and changing
hyperparameters of the currently encoded CNN design with all its components [14,30].

Randomised values for layer counts were generated within pre-determined convolu-
tional layers count of min = 5, max = 15, with output channels generated between min = 64
and max = 512. The number of convolutional layers for each network architecture design is
to be changed using the genetic operators of the proposed GA, as well as each layer’s input
channel dimensions.

Rectifier activation functions and batch normalisation were appended to each con-
volutional layer. The final classification of each iteration was generated using a SoftMax
classifier for both target classes.

Each CNN architecture was predetermined to inherit three pooling layers, with an
analogue setup as per convolutional layer channel limits. Pooling layers were initialised
with a kernel size of 2 × 2 and a stride of 2.

Skip layers that connected the prior convolutional layers to the following convolutional
layer were assigned filter sizes of 3 × 3 with a stride of 1.

After 19 generations, the algorithm was set to terminate the evolutionary process,
and the performance of populations throughout all generations as well as classification
performance of all generated architectures were evaluated. For comparison purposes,
FractalNet [22,24] and DGLNs [25,43] were used to compare with the CNN-GA. Cross-
entropy was deployed with pytorch, using

loss(x, y) = −∑ x log(y) (1)

to compute loss the functions in this paper.
Notation 1. Cross-entropy loss function.

x = the label’s probability; y = the predicted label’s probability
All here-presented solutions that were generated by the CNN-GA were tracked using

an individual identifier, as well as their generation count, whilst the generation count
is indexed with 0 for the first generation: i.e., the ID 09-02 corresponds to the genomic
encoding of the solution of individual number 2 in the 10th generation, the ID 01-15
corresponds to individual number 15 in the second generation, etc.

4. Results

The FractalNet training accuracy peaked at 87% during the 46th epoch of training.
The final classification performance was 85% with a loss of 36% for cross-validation. After
subsequently increasing the batch size, the performance was further reduced. Increasing
the number of filters of the convolution layers did not result in testing accuracy. Upon
increasing the learning rate by 50% (to 0.003), the accuracy was reduced furthermore.
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The DGLN demonstrated a final classification performance of up to 92% during
training. However, validation accuracy was significantly lower at 81%. Its performance
during the validation was less constant, whilst the training accuracy improved more
constantly over time. As for the training over 100 epochs, the classification accuracy
plateaued and fluctuated between 80% and 90% with a final validation accuracy of 88.2%.
However, the loss function did not approximate its final plateau after 100 iterations.

The CNN-GA was able to generate models with classification accuracies for training
and validation data of up to 96.5% and 91.3%, respectively, the best-performing network
architecture of which is depicted in Figure 5. Throughout the evolutionary process, under-
performing individuals with elevated loss functions were eliminated. The summary of the
population’s performance progression is shown in Figure 6. Note that the average final
accuracy for each generation includes even the worst individuals of each generation, which
was terminated prematurely due to their inability to classify.
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Figure 6. Average and top validation performances of CNNs on for all populations during the
evolutionary optimisation.

The fittest individuals varied among the generations and therefore, the fittest indi-
vidual was selected for each generation and plotted in Figure 6. Thus, the graph does not
represent the classification performance progression of one single individual, i.e., one net-
work architecture design solution. Despite having fit individuals with good performance
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after the first generation, the top performances improved only slowly over the course of
19 generations.

With the here utilised genomic encoding’s building blocks, the best classification
performance on the validation dataset was achieved by a CNN with nine convolutional
layers, and three pooling layers as shown in Figure 5.

However, loss functions for validation datasets were significantly higher than their
training data counterparts in most cases. Nonetheless, most models started to approximate
a classification accuracy of more than 80% after evolving more than 9 generations. Many individ-
uals remained unreliable despite demonstrating satisfactory final performances. As exemplarily
shown in Figure 7, accuracies showed stark fluctuations across certain models training.
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Figure 7. CNN-GA classification performance for selected individuals during training. (a) Selected
individuals “15” and “09” from generation 15; (b) best-performing model overall of all 19 generations
(individual identifier: 14–15).
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5. Discussion

Both the manually designed and off-the-shelf CNN can demonstrate respectable
classification performance on hundreds of test cases within only one hour of computing,
whilst the CNN-GA required over 79 h to compute the final CNN architecture, which
demonstrated validation accuracies of over 91%. However, once the CNN-GA is well
trained, its operation time is very fast. The comparison of all models is summarised in
Table 1.

Table 1. Comparison of the validation performances of all three models.

Method Training Time [h] Classification Accuracy [%]

FractalNet 1 82.0
Local-Global-Master 1 89.0

CNN-GA 79 91.3

To further improve the CNN-GA results, however, it is advisable to refrain from
randomised data splitting, as the observed loss values showed stark variances for certain
validation datasets. One may expect elevated validation accuracies if the CNN-GA was to
be deployed with a fixed data split ratio. Additional runs would enable better a judgement
of the CNN-GA’s reproducibility, which is not as high when compared to other classifiers
since both evolutionary algorithms and the CNN training themselves rely heavily on ran-
domised parameters [44]. Furthermore, the utilised SGD might be replaced by ADAM, since
it is generally a more favourable choice for stochastic optimisation methods—particularly
when facing noisy gradients [45].

The fittest individuals of the first generation accumulated a surprisingly high fitness of
over 85%, and it is yet to prove that the relatively high mutation probability was favourable
for optimising the evolutionary design approximation. To enhance classification reliability
for future applications, decreased mutation probabilities could be set with an increased
number of generations—even if such an approach would require significantly more time
and perhaps, better computational resources.

To further develop the GA’s ability to find the best CNN architecture, additional
building blocks may be added to the setup to boost the number of possible solutions of
the gene pool. Whilst the used algorithm focuses on convolutional layer quantity and
hyperparameter, it is recommended to investigate an evolutionary simulation that provides
a ‘from scratch’ approach, which would allow adding a plethora of different layer types,
hyperparameters, epochs, batch sizes, filters, learning rate methods, loss functions, and
even automated data pre-processing structures.

6. Conclusions

In this paper, an implementation of a GA-designed, automated CNN architecture to
address medical CT-imaging problems in lung cancer classification was successfully imple-
mented, demonstrating that CNN-GAs can outperform manually tuned CNN classifiers,
even in the absence of data-science expert knowledge. The proposed implementation of
the CNN-GA for lung cancer classification may be deployed in various clinics in the future,
as it may be possible to generate highly accurate, population-specific CAD tools for lung
nodule malignancy classification on DICOM images with this approach.

The reproducibility of genetically evolved CNN classifiers may pose additional hurdles
towards a full-on CAD implementation, as clear clinical and medical regulation standards
are yet to be established in many countries [45–47]. Furthermore, the automatic design
process of deep learning models adds an additional layer of concern to ethical hurdles,
such as questions regarding the liability of the artificially generated CAD system [48]. In
the future, one can expect clearer standards to arise, even for automatically generated CAD
systems [49,50]. In the meantime, further research in the field of automatically designing
CNN architectures with evolutionary algorithms is to be expected, with particular focus on
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optimizing reproducibility of the results for different populations. Additionally, further
research may focus on speeding up CNN modelling and fitness evaluation to overcome
computational limitations [14].

Overall, the outstanding performance of the GA-designed CNN classifier is an indica-
tor for the future of deep learning and AI, with a plethora of possible applications outside
of healthcare. The ability to develop optimised DL solutions in various fields, discrete of
any field of interest with the given independence of machine learning expertise, may pave
the way for a new era of developing AI.

Thus, being able to deploy optimised mathematical classifiers for various problems
without being dependent on the presence of deep learning expertise has a high potential
to coin the evolution of data-driven applications in the future and may increasingly drive
new DL models to be discovered, the impact of which is yet to be defined. Accelerating
computational performance (e.g., with quantum computing) in combination with computa-
tional optimisation (e.g., with population-based algorithms) may fundamentally change
society and our relationship with computed intelligence.
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