
Citation: Nanni, L.; Lumini, A.;

Loreggia, A.; Formaggio, A.; Cuza, D.

An Empirical Study on Ensemble of

Segmentation Approaches. Signals

2022, 3, 341–358. https://doi.org/

10.3390/signals3020022

Academic Editors: Yinsheng Chen,

Aili Wang and Haibin Wu

Received: 21 April 2022

Accepted: 27 May 2022

Published: 1 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

signals

Article

An Empirical Study on Ensemble of Segmentation Approaches
Loris Nanni 1,* , Alessandra Lumini 2 , Andrea Loreggia 3 , Alberto Formaggio 1 and Daniela Cuza 1

1 Department of Information Engineering (DEI), University of Padua, Viale Gradenigo 6, 35131 Padova, Italy;
alberto.formaggio@studenti.unipd.it (A.F.); daniela.cuza@studenti.unipd.it (D.C.)

2 Department of Computer Science and Engineering (DISI), Università di Bologna, Via dell’Università 50,
47521 Cesena, Italy; alessandra.lumini@unibo.it

3 Department of Information Engineering (DII), Università di Brescia, Via Branze 38, 25123 Brescia, Italy;
andrea.loreggia@unibs.it

* Correspondence: loris.nanni@unipd.it

Abstract: Recognizing objects in images requires complex skills that involve knowledge about the
context and the ability to identify the borders of the objects. In computer vision, this task is called
semantic segmentation and it pertains to the classification of each pixel in an image. The task is of
main importance in many real-life scenarios: in autonomous vehicles, it allows the identification
of objects surrounding the vehicle; in medical diagnosis, it improves the ability of early detecting
of dangerous pathologies and thus mitigates the risk of serious consequences. In this work, we
propose a new ensemble method able to solve the semantic segmentation task. The model is based on
convolutional neural networks (CNNs) and transformers. An ensemble uses many different models
whose predictions are aggregated to form the output of the ensemble system. The performance
and quality of the ensemble prediction are strongly connected with some factors; one of the most
important is the diversity among individual models. In our approach, this is enforced by adopting
different loss functions and testing different data augmentations. We developed the proposed method
by combining DeepLabV3+, HarDNet-MSEG, and Pyramid Vision Transformers. The developed
solution was then assessed through an extensive empirical evaluation in five different scenarios:
polyp detection, skin detection, leukocytes recognition, environmental microorganism detection, and
butterfly recognition. The model provides state-of-the-art results.

Keywords: machine learning; transfer learning; deep learning; ensembles; segmentation; transformers

1. Introduction

Being able to recognize objects in images has been, for a long time, a prerogative of
human beings. It has taken over 14 years to reach the level of an untrained human in the
challenge of Imagenet. Things become more complex when the task requires not only to
recognize the object in an image but also to identify its boundaries. This task is called
semantic segmentation, and in machine learning this entails the classification of each pixel
in an image. Due to the improvements of performance related to the adoption of machine
learning models, this task is applied to many real-life scenarios [1,2]: in clinical practice, it
can be used to identify polyps; similarly, in skin and blood analysis the identification of
objects may help to visually bind the presence of different types of diseases. In addition,
it can be used in autonomous vehicles, to identify objects surrounding the vehicle, in
environmental microorganisms’ classification, and many others.

The standard approach is to train a system composed of two modules: an encoder,
and a decoder. The first module learns a low-dimensional representation of the input that
describes semantics in the image. The second module learns to build the original input
based on this low-dimensional feature vector. This has been the approach adopted by
U-Net [3], one of the first systems developed for semantic segmentation. Autoencoders [4]
were also employed to resolve the task due to their ability to learn semantics’ low-level
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representations of an image through the encoder module and the ability of reconstructing
the original input from this reduced representation. Autoencoders’ performance and results
are the reasons why many researchers and practitioners from the computer vision area
have adopted them.

The performance of autoencoders, as well as the ones of other classifier technologies,
are strongly affected by architecture configuration, and other configurations often referred
to as hyper-parameters tuning. That consists in finding the best values of some attributes
of the model. This is a context-specific task that requires domain knowledge as well as
expertise with the adopted machine learning techniques, resulting in big efforts and time
consumption. The well-known no-free lunch theorem for machine learning highlights that a
single model that works well on all the datasets cannot exist. Based on this evidence, another
approach consists of adopting sets of classifiers, often shallow or weak, whose predictions
are aggregated to form the output of the system. These frameworks are called ensemble
methods. In an ensemble, individual classifiers are trained on the same dataset, in such a
way, each model should generalize differently in the training space. Ensembles provide
state-of-the-art results in many domains, but it is important to ensure some properties. One
of them is to enforce some kind of diversity in the set of classifiers.

In this work, we propose a novel ensemble method for semantic segmentation. Our
model is based on convolutional neural networks (CNNs) and transformers. Diversity
among individual classifiers is enforced by adopting different loss functions and testing
different data augmentations.

The model has been developed by combining DeepLabV3+ [5], HarDNet-MSEG [6],
and Pyramid Vision Transformers [7]. The developed solution is then assessed through an
extensive empirical evaluation that compares our proposal with state-of-the-art solutions
highlighting promising results often better than best approaches.

The evaluation has been carried out on five different real-world scenarios, namely
polyp segmentation, skin segmentation, butterfly recognition, environmental microorgan-
isms’ classification, and leukocyte detection.

Due to improvements of the discipline, machine learning techniques are used and ap-
plied in many different areas, for instance in medical diagnosis or in biology. Convolutional
neural networks (CNNs) and other classic predictors are adopted for assisting researchers
and practitioners in better identifying objects in images. This is the case for an instance of
skin segmentation or butterfly identification. A drawback of this technology is based on
the fact that a huge amount of data is needed to train these systems, but labeled data are
a scarce resource in many domains. This is one of the reasons why big efforts are spent
building and publishing datasets in specific areas; an example is Kvasir-SEG [8], a recent
dataset that contains polyp images annotated at the pixel level by a group of experts.

A novel architecture came from the scope of natural language processing (NLP), where
researchers study how to comprehend the semantic of texts with the purpose of automating
tasks such as summarization or translation. This new model called the transformer is
designed with a self-attention mechanism that enables the system to focus on a specific
part of the input. Transformers have also been applied to computer vision tasks, gaining
performances comparable or even better than CNNs. Once again, the main drawback of
these models resides in the high demand of data useful to train a stable and performing
system. TransFuse [9] and UACANet [10] are two recent approaches in the medical domain
that combine different techniques: the first is a combination of CNN kernels and transform-
ers; while the second blends U-Net and a parallel axial attention autoencoder. No matter
the architecture, the aim is to capture information at both local and global levels.

As previously noticed, semantic segmentation becomes of main importance in many
contexts. Autonomous vehicles, for instance, use semantic segmentation to identify objects
in the environment surrounding the vehicle in order to make safe decisions [11]. In clinical
practice, it helps in reducing the exposure to serious risks by detecting pathologies in
their early stages, such as polyps detection that may prevent the evolution of colorectal
cancers [2]. Similarly, in skin detection, deep learning methods are employed in various
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areas, spanning from face detection to hand gesture recognition [12]. In this context, deep
approaches have faced some difficulties, such as the clutter in the background that hinders
the reliable detection of hand gestures in real-world environments.

CNNs have shown their appeal also to this context; two examples are the works
from Roy et al. [13] and Arsalan et al. [14]. In the former work, the authors suggest using
a CNN based on skin detection techniques to enhance the hand detector output. The
latter instead introduces a residual skip connections (OR-Skip-Net) CNN that decreases
the computational effort of the network and at the same time tackles demanding skin
segmentation tasks; the goal is achieved by moving data to the last layer of the network
directly from the initial layer. CNNs are also employed for automatically translating sign
language [15].

A comparative analysis is reported in [12] through an extensive empirical evaluation
of several leading technologies on a set of skin detection benchmarks.

Recently, deep learning was also used for the automatic recognition and classification
of leukocytes [16]. This practice helps medical practitioners to diagnose various blood-
related diseases. This can be done in many different ways: practitioners can analyze the
percentages of leukocytes with a histogram-based technique or with iterative algorithms
(such as GrabCut [17]) that segment white blood cells.

Contribution: this paper proposes a new ensemble method based on DeepLabV3+,
HarDNet-MSEG, and Pyramid Vision Transformers’ backbones. The proposal is intended
to deal with semantic segmentation. In this work, diversity among individual classifiers
in the ensemble is enforced by adopting different loss functions and testing different data
augmentation approaches. We tested the proposed method on five different scenarios and
compared the results with existing frameworks. The empirical evaluation highlights our
results that are close to or even better than the state-of-the-art level.

2. Materials and Methods

In this section, we will provide all the techniques and approaches used to generate our
ensemble. In particular, we will report the mathematical formalization of the loss functions
adopted to design the networks.

2.1. Deep Learning for Semantic Image Segmentation

In the literature, different deep learning models are proposed to address semantic
segmentation problems.

Semantic segmentation intends to identify objects in an image, with relative bound-
aries. The main purpose is therefore to assign a class at the pixel level; a task achieved
thanks to FCNs (fully convolutional networks). FCNs have very high performance, and
unlike CNNs they use a fully convolutional last layer instead of a fully connected one [18].

In order to obtain deconvolutional networks, such as U-Net, FCNs and autoencoders
are combined together.

U-Net represents the first attempt to use autoencoders in an image segmentation
task. Through the autoencoder, it is possible to downsample the input and simultaneously
increment the number of features used to describe the input space. We can find another
symbolic example in SegNet [19]: here, the max pool indices of the relative encoder level
feed the decoders, while VGG is used for encoding. This allows it to reduce memory usage
by having also a more promising segmentation.

DeepLab [20] consists of a series of autoencoder models introduced by Google, and
has shown excellent results also in semantic segmentation applications [21]. These are some
of the main features introduced to guarantee good performance:

1. A dilated convolution reduces the effects of pooling and stride, thereby greatly in-
creasing the resolution.

2. Through an Atrous Spatial Pyramid Pooling, information is obtained at various scales.
3. A union of CNNs and probabilistic graphic models make it possible to detect the

boundaries of objects.
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We find in DeelLabV3, two most important innovations: a 1 × 1 convolution in Atrous
Spatial Pyramid Pooling and a batch normalization; a set of modules placed in parallel
and in cascade for convolutional dilation. DeepLabV3+ [5], an expansion of the family
developed by Google, is adopted in this work. This expansion includes, among the most
important features, a decoder with depth-wise convolutions and point-wise convolutions.
The depth-wise works in the same location but with various channels, while the point-
wise uses the same channel in various locations. In order to obtain different designs for a
framework, we can consider other characteristics of the structure of a model, in fact the
architecture model itself that is used is only one choice.

In this paper, we will investigate ResNet101 [22], a very famous CNN that acquires a
residual function by referring to the block input (we recommend [23] for an exhaustive list of
CNN structures). We adopt the ResNet101 network, pre-trained on the VOC segmentation
dataset and then modulated through the parameters suggested, (https://github.com/
matlab-deep-learning/pretrained-deeplabv3plus, (accessed on 20 April 2022)). These
parameters have not been modified in order to prevent overfitting; thus, they are the same
in all the tested datasets:

• initial learning rate = 0.01;
• number of epoch = 10 (using the simple data augmentation approach) or 15 (the latter

more complex data augmentation approach due to the slower convergence using this
larger augmented training set);

• momentum = 0.9;
• L2Regularization = 0.005;
• Learning Rate Drop Period = 5;
• Learning Rate Drop Factor = 0.2;
• Shuffle training images every-epoch;
• Optimizer = SGD (stochastic gradient descent).

Firstly, we propose an ensemble of the DeepLabV3+ models obtained by applying
various loss and data augmentation methods, and then we combine the ensemble with
HarDNet-MSEG [6], and Pyramid Vision Transformers (PVT) [7]. The HarD-Net-MSEG
(harmonic densely connected network), a model influenced by densely connected networks,
allows the reduction of memory consumption in this way: it decreases most of the connec-
tion layers at the DenseNet level, in order to reduce the costs of concatenation. In addition,
the input/output channel ratio is equalized thanks to the increase in the channel width of
the layers (consequently to the increase in its connections).

The PVT is a pure convolution-free transformer network which aims to acquire a
high-resolution representation starting from a fine-grained input. The computational cost
of the model is decreased by a progressive pyramidal shrinkage, accompanied by the depth
of the model. A spatial-reduction attention (SRA) layer is introduced to an additional
reduction of the computational complexity of the system.

In this work, both HarD-Net-MSEG and PVT have been trained using the same options
in all the problems: batch size 15; number of epochs 100; initial learning rate 0.0001; decay
rate = 0.1; decay epoch = 50.

2.2. Loss Functions

Some loss functions tested for the design of the networks’ ensemble will be presented
in this section, including the loss functions suggested in [24] (Section 2.2.1) and the new
ones here tested/proposed (Sections 2.2.2–2.2.7).

Different loss functions influence the training phase and the performance of the model.
In semantic segmentation tasks, pixel-wise-cross-entropy is one of the most widespread
and adopted loss functions; this operates at the pixel level, verifying whether the predicted
label of a given pixel coincides with the ground-truth. One of the main problems with this
approach is the critical situation in which the dataset is unbalanced with respect to the
labels, but it can be solved through the use of counterweights. The dice loss function [25]

https://github.com/matlab-deep-learning/pretrained-deeplabv3plus
https://github.com/matlab-deep-learning/pretrained-deeplabv3plus
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aims to verify the overlap between the predicted segmented images and the ground-truth.
This approach, that we have also used in this work, is widespread in semantic segmentation.

An exhaustive overview of image segmentation and loss functions is available in a
recent survey [25].

2.2.1. Previously Tested Loss Functions

Our set of loss function includes the following widely adopted metric functions (the
interested reader can refer to [24] for a more detailed description):

• Generalized Dice Loss [26], LGD(Y, T) is a multiclass variant of the dice loss.
• Tversky Loss [27], LT(Y, T) is a weighed version of the Twersky index designed

to deal with unbalanced classes, i.e., the phenomenon whereby one class prevails
over another.

• Focal Tversky Loss [28], LFT(Y, T) it is a variant of the Twersky loss, where a modulat-
ing factor (γ = 4/3) is used to ensure that the model focuses on hard samples instead
of properly classified examples.

• Focal Generalized Dice Loss [29], LFGD(Y, T) is the focal version of the generalized
dice loss.

• Log-Cosh Dice Loss LlcGD(Y, T) is a combination of the dice loss and the log-cosh
function, applied with the purpose of smoothing the curve of loss.

• Log-Cosh Focal Tversky Loss LlcFT(Y, T) is based on the same idea of smoothing,
here applied to the focal Tversky loss.

• SSIM Loss [30], LS(Y, T), is obtained from the structural similarity (SSIM) index [31],
usually adopted to evaluate the quality of an image.

• MS-SIM Loss LMS(Y, T) is a variant of LS(Y, T) defined using the multiscale structural
similarity (MS-SSIM) index.

• Some combined losses:

# Comb1 (Y, T) = LFGD(Y, T) + LFT(Y, T)
# Comb2(Y, T) = LlcGD(Y, T) + LFGD(Y, T) + LlcFT(Y, T)
# Comb3 (Y, T) = LS(Y, T) + LGD(Y, T)
# Comb4 (Y, T) = LMS(Y, T) + LFGD(Y, T)

2.2.2. Cross-Entropy

The cross-entropy (CE) loss function provides us a measure of the difference between
two probability distributions. The goal is to minimize this difference and, in doing so, it
has no bias between small or large regions.

This could be an issue when dealing with imbalanced datasets. Hence, the weighted
cross-entropy loss was introduced and it resulted in well-balanced classifiers for imbalanced
scenarios [32].

The formula for weighted binary cross-entropy is presented in (1). In this equation, T
refers to the ground truth label image, while Tik is the true value for the pixel i and it can
be equal to either 0 or 1. It is equal to 0 if the pixel i belongs to the class k, 0 otherwise.

P is the prediction for the output image and Pik is the probability of the i-th pixel to
belong to the k-th class obtained by using the sigmoid activation function. For P, we used
the softmax activation function which returns probabilities.

wik is the weight given to the i-th pixel of the image for the class k. These weights were
calculated by using an average pooling over the mask with a kernel 31 × 31 and a stride of
1 in order to consider also nonmaximal activations.

LWBCE = −∑K
k=1∑N

i=1wik × Tik × log(Pik) (1)

where K is the number of classes and N the number of pixels.
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2.2.3. Weighted Intersection over Union

Another well-known loss function is intersection over union (IoU) loss, which was
introduced for the first time in [33]. The original formula was:

IoU =
|P ∩ T|
|P ∪ T| (2)

As mentioned earlier, T is the truth label image and P is the prediction for the
output image.

Unfortunately, the set symbols for Intersection and Union are not differentiable because
P and T have to be either 0 s or 1 s. This is not true for P, so the formula was then
approximated with the following:

IoU′ =
|P× T|

|P + T − P× T| (3)

where P× T is the element-wise multiplication of T and P. For what concerns the denomi-
nator, we subtract the “intersection” between P and T because we do not want to consider
the intersection twice.

Once the set operators have been converted to arithmetic ones, the formula is differen-
tiable, and it is possible to evaluate the gradient.

However, IoUis an evaluation metric used for evaluating the goodness of the predic-
tion. Hence, a value of 1 is equivalent to a perfect prediction. For this reason, the loss
function will be:

LIoU = 1− IoU′ (4)

Unfortunately, this function has to face the same problem of CE in inferring the
label of the boundary of each object; therefore, as suggested in [34], we use the weighted
intersection over union () wIoU, instead of the standard IoU.

The formula of the weighted intersection over union loss is:

LwIoU = 1− |w ∗ P ∗ T|
|w ∗ (P + T)− w ∗ P ∗ T| = 1− ∑N

i=1 wik ∗∑K
k=1 Tik ∗Yik + 1

∑N
i=1 ∑K

k=1 wik(Tik + Yik − Tik ∗Yik) + 1
(5)

where N is the number of pixels and K is the number of classes. The weights wik are
calculated as aforementioned. Tik and Yik are, respectively, the ground truth value and the
prediction value for the pixel i belonging to the class k. We added 1 to both the numerator
and the denominator in order to prevent the undefined division 0

0 .

2.2.4. Structure Loss

Based on the intuition in [6], weighted intersection over union and weighted binary
crossed-entropy are considered together.

L′STR = LwIoU + Lwbce (6)

Instead of applying an avgpool over the mask, we do so over the predictions. We have
done this to improve the diversity in the deep learning network.

Then, we want to give more importance to the binary crossed-entropy loss, so we use
a weight of 2 for that one, and this leads to the following formulation:

LSTR = LwIoU + 2Lwbce (7)
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2.2.5. BoundExpStructure

We combine structure loss, boundary loss and exponential logarithmic loss. This is
done to have better performances on the small structures of a highly imbalanced dataset
and, at the same time, have better identification of the boundaries of the image.

LBoundExpS = LBound + LExp + LStr (8)

2.2.6. Boundary Enhancement Loss

The boundary enhancement loss is a loss proposed in [35] which explicitly focuses on
the boundary areas during training.

This loss has very good performances as it does not require neither any pre- or post-
processing of the image nor a particular net in order to work.

The Laplacian filter L(·) is the milestone of this loss as it generates strong responses
around the boundaries and zero everywhere else. When applying the Laplacian filter to a
mask S, we obtain:

L(x, y) =
∂2S
∂x2 +

∂2S
∂y2 (9)

The positive aspect about using the Laplacian filter, is that it can be achieved quite
easily by a series of convolution operations. So, the idea is to evaluate the difference
between the filtered output of ground-truth labels and the filtered output of the predictions.

The boundary enhancement loss, as proposed in [35], is:

LBE = ||L(T)−L(Y)||2 =

∣∣∣∣∣∣∣∣∂2(T −Y)
∂x2 +

∂2(T −Y)
∂y2

∣∣∣∣∣∣∣∣
2

(10)

where || ||2 is the l2 norm. This can be easily achieved as already described in the original
paper [35].

Based on the idea of the same paper, we will be using dice loss and boundary enhance-
ment loss together, weighted appropriately, and the structure loss:

LDiceBES = λ1LDice + λ2LBE + LStr (11)

The best results are achieved by using λ1 = 1 and λ2 = 0.01.

2.2.7. Contour-Aware Loss

Contour-aware loss was proposed for the first time in [36]. It consists in a weighted
binary cross-entropy loss where the weights are obtained with the aim of giving more
importance to the borders of the image.

In the loss is employed a morphological gradient edge detector. Basically, the difference
between the dilated and the eroded label map is evaluated. Then, for smoothing purposes,
the Gaussian blur is applied. This spatial weight map can be formulated as:

MC = Gauss(K·(dilate(T)− erode(T))) + 1 (12)

here dilate(T) and erode(T) are dilation and erosion operations with a 5 × 5 kernel. K is a
hyperparameter for assigning the high value to contour pixels, which is set to 5 empirically.
1 is the matrix with 1 in every position.

We can compute the contour-aware loss as:

LC = −∑N
i=1MC

i × (Ti × log(Yi) + (1− Ti)× log(1−Yi)) (13)

Finally, we compute the new loss we are going to use:

LCS = LC + LStr (14)
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2.3. Data Augmentation

The training phase of a classifier and the resulting performance of the system are
strongly influenced by the size of the dataset. This is true also for an ensemble method.
Thus, to increase the amount of data that can be used to train the system, several techniques
may be applied to the original dataset. In the next paragraphs, we shall describe the
different techniques adopted with the purpose of data augmentation. We employ these
techniques on the training set, both on the input samples and their mask. We leave the test
set unchanged.

Two different data augmentation approaches are tested:

• DA1, base data augmentation consisting in horizontal and vertical flip, 90◦ rotation.
• DA2, the following operations are performed:

1. The image is displaced to the right or the left.
2. The image is displaced up or down.
3. The image is rotated by an angle randomly selected from the range [0◦ 180◦].
4. Horizontal or vertical shear by using the Matlab function randomAffine2d().
5. Horizontal or vertical flip.
6. Change in the brightness levels by adding the same value (random value between

25 and 50) to each RGB channel.
7. Change in the brightness levels by adding different values (random value be-

tween 25 and 50) to each RGB channel.
8. Add speckle noise, it adds multiplicative noise to the image I, adding a value n × I,

where n is uniformly distributed random noise with mean 0 and variance 0.05.
9. Application of the technique “Contrast and Motion Blur”, described below.
10. Application of the technique “Shadows”, described below.
11. Application of the technique “Color Mapping”, described below.

Some artificial images (DA2 approach) contain only background pixels; therefore, to
discard them we simply delete all the images where there are less than 10 pixels that belong
to the foreground class.

2.3.1. Shadows

New image samples can be created by creating shadows in the original set of im-
ages. Shadows may be created randomly to the left or to the right of the original image.
We use the following criteria to decide the intensity of the shadow (direction = 1: right;
direction = 0: left):

y =


min

{
0.2 + 0.8

√
x

0.5 , 1
}

direction = 1

min
{

0.2 + 0.8
√

1−x
0.5 , 1

}
direction = 0

(15)

2.3.2. Contrast and Motion Blur

Another technique for data augmentation that allows one to derive new samples from
an original dataset is based on the combination of contrast and motion blur. The first one
increases or decreases the original contrast, and the second one simulates the movement of
the camera taking the image. We developed two different contrast functions, and each time
we choose one of them at random.

The first function is defined as follows:

y =

(
x− 1

2

)√
1− k

4√
1− k(x− 1

2 )
2
+ 0.5, k ≤ 4 (16)

The parameter k controls the contrast. Specifically: T\hte contrast increases when
k < 0; it is decreased when 0 < k ≤ 4; the image is unchanged when k = 0.
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The value of the parameter is drawn at random in the following range:

• U (2.8, 3.8)→ Hard decrease in contrast;
• U (1.5, 2.5) → Soft decrease in contrast;
• U (−2,−1)→ Soft increase in contrast;
• U (−5,−3)→ Hard increase in contrast.

The second function is defined as follows:

y =


1
2
( x

0.5
)
α 0 ≤ x < 1

2

1− 1
2

(
1−x
0.5

)
α 1

2 ≤ x ≤ 1
(17)

The parameter α controls the contrast. In particular, the contrast is increased when
α > 1; it is decreased when 0 < α < 1; if α = 1, then the image is left unchanged.

The parameter is chosen randomly from four possible ranges:

• U (0.25, 0.5)→ Hard decrease in contrast;
• U (0.6, 0.9) → Soft decrease in contrast;
• U (1.2, 1.7)→ Soft increase in contrast;
• U (1.8, 2.3)→ Hard increase in contrast;

The blurring effect that mimics the movement of the camera is applied right after the
contrast adjustment. We use the MATLAB function fspecial(’motion’, len, theta).

2.3.3. Color Mapping

Changing the color map of the image produces a new image. In particular, it is possible
to map the color of an image to that of another image. We generated a pair of images by
coupling any image in the original training set with another randomly selected image in the
same set. We adopt the stain normalization toolbox (the toolbox is authored by Nicholas
Trahearn and Adnan Khan and available online at https://warwick.ac.uk/fac/cross_fac/
tia/software/sntoolbox/, (accessed on 20 April 2022)), which provides this functionality in
three different versions:

• RGB Histogram Specification;
• Reinhard;
• Macenko.

3. Results

We run an extensive empirical evaluation with the aim of evaluating the performance
of our ensemble. We comprehend a comparison with several state-of-the-art models for
a more exhaustive evaluation of our system. The empirical evaluation is carried out on
five real-world scenarios: polyp segmentation, skin segmentation, leukocyte identification,
butterfly, and microorganism identification.

3.1. Datasets and Testing Protocols

Some examples for images and masks, from each of the five datasets, are displayed in
Figure 1. It is clear that they are very different segmentation problems.

3.1.1. Polyp Segmentation (POLYP)

Polyp segmentation from colonoscopy is a challenging task requiring a two-class
classification between the low contrast colon background and polyp foreground pixels.

We present experimental results according to a very popular benchmark [6] available
on GitHub (https://github.com/james128333/HarDNet-MSEG, (accessed on 20 April
2022)), and including five datasets for polyp segmentation (i.e., Kvasir [37], ColonDB [38],
CVC-T [39] and ETIS [40], ClinicalDB [41]): the training set is made by 1450 images (from
the most large dataset, i.e., 900 images from Kvasir and 550 images from ClinicalDB); the
other are for the test sets (100 images from Kvasir, 380 from ColonDB, 60 from CVC-T,

https://warwick.ac.uk/fac/cross_fac/tia/software/sntoolbox/
https://warwick.ac.uk/fac/cross_fac/tia/software/sntoolbox/
https://github.com/james128333/HarDNet-MSEG
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196 from ETIS, and 62 from ClinicalDB), as is usually done in the literature. In these datasets,
we use resized training images of size 352 × 352.
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3.1.2. Skin Segmentation (SKIN)

The segmentation task in skin detection is recognizing the image portions that rep-
resent “skin” and “no skin”: as a result, it is a binary classification problem. We use the
framework proposed in [12] in this paper, which includes a small training set of 2000 images
from the ECU dataset [42] and ten testing datasets very different to each other, see Table 1.
According to the original testing protocol [12], dice (i.e., F1-score) is calculated at the pixel
level and not at the image level and average for the whole dataset. In these datasets, we
use resized training images of size 352 × 352.

Table 1. Test skin datasets. ECU is split: 2000 images for training and 2000 for tests.

Short Name Name #Samples Ref.

Prat Pratheepan 78 [43]
MCG MCG-skin 1000 [44]
UC UChile DB-skin 103 [45]

CMQ Compaq 4675 [46]
SFA SFA 1118 [47]
HGR Hand gesture recognition 1558 [48]
Sch Schmugge dataset 845 [49]

VMD Human activity recognition 285 [50]
ECU ECU face and skin detection 2000 [42]
VT VT-AAST 66 [51]

3.1.3. Leukocyte Segmentation (LEUKO)

Leukocyte recognition is the task of segmenting the white blood cells from the back-
ground, with the aim of diagnosing many diseases such as leukemia, and infections. In
our experiment, we use the freely available (http://users.cecs.anu.edu.au/~hrezatofighi/
Data/Leukocyte%20Data.htm, (accessed on 20 April 2022)) LISC database [16], a collection
of 250 hematological images extracted from the peripheral blood of eight healthy people.
Images have been acquired at high resolution (720 × 576 pixels) and manually labelled
to segment 10 different type of leukocytes. In this work, we do not perform classification;
therefore, we consider only the segmentation performance. The testing protocol, as sug-
gested by the authors of the dataset, is a 10-fold cross validation: dice results are calculated
at the image level and averaged for each fold and then on the 10 folds. In this dataset, we
use resized images of size 513 × 513.

http://users.cecs.anu.edu.au/~hrezatofighi/Data/Leukocyte%20Data.htm
http://users.cecs.anu.edu.au/~hrezatofighi/Data/Leukocyte%20Data.htm
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3.1.4. Butterfly Identification (BFLY)

As already completed in the literature, for butterfly identification we adopt the pub-
lic dataset (http://www.josiahwang.com/dataset/leedsbutterfly/, (accessed on 20 April
2022)) [52]. For a fair comparison with the previous results, we have used the same testing
protocol proposed by the authors of the dataset; that is, a four-fold cross validation, where
each fold includes 208 test images and 624 training images. In this dataset, we use resized
images of size 513 × 513.

3.1.5. Microorganism Identification (EMICRO)

EMicro [53] is a public dataset (https://figshare.com/articles/dataset/EMDS-6/1712
5025/1, (accessed on 20 April 2022)) of Environmental Microorganism Image Dataset Sixth
Version (EMDS-6). It is composed of 840 images: following the original paper, we split the
dataset and the 37.5% of the images belong to the test set.

In this dataset, we use resized images of size 513 × 513.

3.2. Metrics

The system has been evaluated using two standard metrics: dice score and intersection
over union (IoU). In the following formula, TP, TN, FP, and FN correspond to the true
positives, true negatives, false positives, and false negatives, respectively. A is the predicted
mask (TP + FP) and B is the ground truth map (TP + FN).

Dice score (which is equivalent to F1score in binary classification tasks) is a weighted
average of precision and recall. Formally, it is defined as:

F1score = Dice =
|A ∩ B|
|A|+ |B| =

2·TP
2·TP + FP + FN

(18)

Intersection over union (IoU) defines the shared area between two masks, divided
by the area of the union between the two maps. Formally, it is defined as:

IoU =
|A ∩ B|
|A ∪ B| =

TP
TP + FP + FN

(19)

In the experiments, image size has been modified due to the input size of the models.
In these cases, we always change back to the original dimension the predicted masks.

3.3. Experiments
3.3.1. Baseline Ensembles

As the aim of this paper is to study approaches to increase the diversity of ensembles,
we report in Table 2 the performance of some baseline classifiers and ensembles based
on different network architectures (all combined with the data augmentation DA1, see
Section 2.3). The tests reported in Section 3.3.1 are all based only on the dice loss; moreover,
for the sake of space, for the polyp and skin datasets we report only the average performance
value among the set of datasets. Each ensemble is made up of N models (N = 1 denotes a
stand-alone model) which differ only for the randomization in the training process:

• RN18 is a stand-alone DeepLabV3+ segmentator with backbone Resnet18 (pretrained
in ImageNet);

• ERN18(N) is an ensemble of N RN18 networks (pretrained in ImageNet);
• RN50 is a stand-alone DeepLabV3+ segmentator with backbone Resnet50 (pretrained

in ImageNet);
• ERN50(N) is an ensemble of N RN50 networks;
• RN101 is a stand-alone DeepLabV3+ segmentator with backbone Resnet101 (pretrained

as detailed in the above Section 2.1);
• ERN101(N) is an ensemble of N RN101 networks.

http://www.josiahwang.com/dataset/leedsbutterfly/
https://figshare.com/articles/dataset/EMDS-6/17125025/1
https://figshare.com/articles/dataset/EMDS-6/17125025/1
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Table 2. Performance (dice) of the proposed ensembles in the five benchmark datasets; the last
column AVG reports the average performance. Best performance is marked in bold font.

POLYP SKIN LEUKO BFLY EMICRO AVG

RN18 0.806 0.865 0.897 0.960 0.908 0.887
RN50 0.802 0.871 0.895 0.968 0.909 0.889
RN101 0.808 0.871 0.915 0.976 0.918 0.898

ERN18(10) 0.821 0.866 0.913 0.963 0.913 0.895
ERN50(10) 0.807 0.872 0.897 0.969 0.918 0.893
ERN101(10) 0.834 0.878 0.925 0.978 0.919 0.907

The results in Table 2 show that, although the overall performance increases when
switching from the stand-alone version to an ensemble, the improvement is not as high
as one might expect, indicating that the individual approaches are quite stable. Maybe
this result is related to the architecture of the DeepLabV3+ network: its internal modules
apply atrous convolutions in cascade or in parallel to capture a multi-scale context by
adopting several atrous rates. This solution, which has been designed to solve the problem
of segmenting objects at multiple scales, also mimics an ensemble approach thanks to
the fusion of activations taken at different levels of the encoder, making the resulting
segmentation quite stable. The best method is to use ResNet101 as a backbone.

3.3.2. Ablation Studies

The first ablation study is related to the evaluation of different loss functions to increase
the diversity of the models and improve the performance of the ensemble. In Table 3, the
performance of RN101, with the different loss functions here proposed, is reported and
compared with the dice loss as the baseline and DA1 as the data augmentation method. For
the sake of space, for the polyp and skin datasets we report only the average performance
value among the test sets. Then, the stand-alone networks are fused, always using the sum
rule, in some ensembles:

• ELoss101(10) is an ensemble, combined by the sum rule, of 10 RN101, each coupled
with data augmentation DA1 and a given loss function. The final fusion is given by:
2 × LGD + 2 × LT + 2 × Comb1 + 2 × Comb2 + 2 × Comb3; where with 2 × LGD
we mean two RN101 trained using LGD loss function;

• ELossMix(10) is an ensemble similar to the previous one, but here data augmentation
is used to increase diversity: the networks coupled with the loss used in ELoss101(10)
(LGD, LT, Comb1, Comb2, Comb3) are trained one time using DA1 and another
time using DA2 (i.e., 5 networks each trained two times, so we have an ensemble of
10 networks);

• ELossMix2(10), it is similar to the previous ensemble, but using LDiceBES instead of LT
• ELossLarge(10) is an ensemble of 10 networks: the networks trained using (LGD, LT,

Comb1, Comb2, Comb3) use DA2 as the augmented training set, while the networks
trained considering the new loss functions tested in this work (LSTR, LBoundExpS,
LDiceBES, LMS, LCS) are coupled with DA1.

The results reported in Table 3 show that the proposed new loss functions gain per-
formance similar to dice and can be considered a useful starting point for the design of
an ensemble. In fact, the good performances of ELoss101 and ELossLarge with respect to
ERN101(10) prove that the including networks trained by different loss functions are useful
for the creation of an ensemble: this observation is even more evident considering that it is
validated on very different problems.

We should not overlook the value of altering the training set, in this case through the
use of different data augmentation: this strategy seems to be the winner when combined
with different loss functions (ELossMix). ELossMix2 seems to be more stable than ELossMix.
Finally, we can notice that ELossMix and ELossLarge obtain a similar performance.
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Table 3. Performance (dice) of some stand-alone methods and ensembles in the five benchmark
datasets when varying the loss function; the last column AVG reports the average performance. Best
performance is marked in bold font.

LOSS POLYP SKIN LEUKO BFLY EMICRO AVG

RN101 LGD 0.808 0.871 0.915 0.976 0.918 0.898
RN101 LSTR 0.809 0.869 0.930 0.964 0.901 0.895
RN101 LBoundExpS 0.803 0.874 0.928 0.978 0.901 0.897
RN101 LDiceBES 0.819 0.869 0.922 0.969 0.904 0.897
RN101 Comb4 0.813 0.860 0.920 0.972 0.920 0.897
RN101 LCS 0.823 0.873 0.917 0.967 0.911 0.898

ERN101(10) LGD 0.834 0.878 0.925 0.978 0.919 0.907
ELoss101(10) Many loss 0.842 0.880 0.925 0.980 0.921 0.910
ELossMix(10) Many loss 0.851 0.883 0.936 0.983 0.924 0.915
ELossMix2(10) Many loss 0.851 0.883 0.943 0.984 0.925 0.917
ELossLarge(10) Many loss 0.848 0.883 0.944 0.984 0.922 0.916

The second ablation study is related to the evaluation of different architectures. The
performance of the above cited methods coupled with different data augmentation strate-
gies are reported in Table 4. The names DA1 and DA2 refer to the strategies explained
in Section 2, while DA1/2 denotes that the given ensemble is obtained by the fusion of
networks based on DA1 and networks based on DA2. HardNet-MSEG is trained with two
different optimizers (SGD denoted as H_S and Adam denoted as H_A), and the ensemble
FH is the fusion of HarDNet-MSEG trained with different optimizers. PVT is trained using
the AdamW optimizer (as suggested in the original paper where PVT has been proposed).
The loss functions for both HarDNet-MSEG and PVT are the same as the original papers.

Table 4. Performance (dice) of some stand-alone methods and ensembles in the five benchmark
datasets. Best performance is marked in bold font.

DA POLYP SKIN LEUKO BFLY EMICRO AVG

ELossMix(10) DA1/DA2 0.851 0.883 0.936 0.983 0.924 0.915
H_A DA1 0.840 0.867 0.923 0.977 0.914 0.904
H_A DA2 0.854 0.871 0.945 0.982 0.912 0.913
H_S DA1 0.816 0.872 0.889 0.969 0.894 0.880
H_S DA2 0.847 0.870 0.917 0.976 0.901 0.902
FH DA1 0.859 0.879 0.913 0.980 0.915 0.909

FH(2) DA1/2 0.862 0.885 0.934 0.982 0.916 0.916
PVT DA1 0.854 0.878 0.954 0.975 0.920 0.916
PVT DA2 0.855 0.879 0.954 0.984 0.919 0.918

PVT(2) DA1/2 0.855 0.883 0.957 0.984 0.922 0.920
FH(2) + 2 × PVT(2) DA1/2 0.875 0.892 0.955 0.985 0.924 0.926

ELossMix(10) + (10/4) × FH(2) + (10/2) × PVT(2) DA1/2 0.875 0.893 0.953 0.985 0.926 0.926
ELossMix2(10) + (10/4) × FH(2) + (10/2) × PVT(2) DA1/2 0.874 0.893 0.954 0.985 0.926 0.926

Some further ensembles are reported in Table 4:

• PVT(2), sum rule between PVT combined with DA1 and PVT combined with DA2;
• FH(2), sum rule among two H_S (one combined with DA1, the latter with DA2) and

two H_A (one combined with DA1, the latter with DA2);
• FH(2) + 2 × PVT(2), weighted sum rule between PVT(2) and FH(2), the weight of

PVT(2) is assigned so that its importance in the ensemble is the same as FH(2) (notice
that FH(2) consists of four networks while PVT(2) is built by only two networks);

• ELossMix(10) + (10/4) × FH(2) + (10/2) × PVT(2), weighted sum rule among Eloss-
Mix(10), FH(2), and PVT(2); as in the previous ensemble, the weights are assigned so
that each ensemble member has the same importance (notice that ElossMix(10) is the
fusion by sum rule of 10 DeepLabV3+).
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The results reported in Table 4 permit us to draw the following conclusions:

• PVT(2), FH(2), and ElossMix(10) obtain very similar performances, and only in Leuko
the performance of PVT(2) is better than FH(2) and ElossMix(10);

• PVT(2) permits obtaining a very slight performance improvement with respect to
stand-alone PVT, even the improvement of FH(2) with respect to the best stand-alone
HardNet (i.e., H_A combined with DA2);

• Combining different architectures permits obtaining the best performance, and the
best trade-off “complexity vs performance” is given by “FH(2) + 2 × PVT(2)”.

3.3.3. Comparison with the Literature

For comparison with other approaches in the literature, the results of our best ensem-
bles are reported in full in the different datasets of polyp segmentation (Table 5) and skin
detection (Table 6). The following tests clearly show that FH(2) + 2 × PVT(2) obtains a
state-of-the-art performance.

Table 5. Performance (dice and IoU) in the polyp segmentation problem. Best performance is marked
in bold font.

Method
Kvasir ClinicalDB ColonDB ETIS CVC-T Average

IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice

FH(2) + 2 × PVT(2) 0.874 0.920 0.894 0.937 0.751 0.826 0.717 0.787 0.842 0.904 0.816 0.875
Ensemble in [24] 0.871 0.917 0.886 0.931 0.697 0.769 0.663 0.740 0.829 0.901 0.790 0.852

HarDNet-MSEG [6] 0.857 0.912 0.882 0.932 0.66 0.731 0.613 0.677 0.821 0.887 0.767 0.828
PraNet (from [6]) 0.84 0.898 0.849 0.899 0.64 0.709 0.567 0.628 0.797 0.871 0.739 0.801

SFA(from [6]) 0.611 0.723 0.607 0.700 0.347 0.469 0.217 0.297 0.329 0.467 0.422 0.531
U-Net++ (from [6]) 0.743 0.821 0.729 0.794 0.41 0.483 0.344 0.401 0.624 0.707 0.570 0.641

U-Net (from [6]) 0.746 0.818 0.755 0.823 0.444 0.512 0.335 0.398 0.627 0.710 0.581 0.652
SETR [21] 0.854 0.911 0.885 0.934 0.69 0.773 0.646 0.726 0.814 0.889 0.778 0.847

TransUnet [54] 0.857 0.913 0.887 0.935 0.699 0.781 0.66 0.731 0.824 0.893 0.785 0.851
TransFuse [9] 0.870 0.920 0.897 0.942 0.706 0.781 0.663 0.737 0.826 0.894 0.792 0.855

UACANet [10] 0.859 0.912 0.88 0.926 0.678 0.751 0.678 0.751 0.849 0.910 0.789 0.850
SANet [55] 0.847 0.904 0.859 0.916 0.670 0.753 0.654 0.750 0.815 0.888 0.769 0.842
MSNet [56] 0.862 0.907 0.879 0.921 0.678 0.755 0.664 0.719 0.807 0.869 0.778 0.834

PVT [7] 0.864 0.917 0.889 0.937 0.727 0.808 0.706 0.787 0.833 0.900 0.804 0.869
SwinE-Net [57] 0.870 0.920 0.892 0.938 0.725 0.804 0.687 0.758 0.842 0.906 0.803 0.865

AMNet [58] 0.865 0.912 0.888 0.936 0.690 0.762 0.679 0.756 - - - -

Table 6. Performance (dice = F1-score) in the skin detection problem. Best performance is marked in
bold font.

DA PRAT MCG UC CMQ SFA HGR SCH VMD ECU VT AVG

ERN101(1) DA1 0.922 0.887 0.923 0.823 0.948 0.969 0.750 0.748 0.948 0.796 0.871
ERN101(10) DA1 0.924 0.887 0.920 0.845 0.952 0.971 0.778 0.754 0.950 0.794 0.878
ELoss101(10) DA1 0.926 0.892 0.923 0.844 0.956 0.971 0.777 0.751 0.953 0.807 0.880
ELossMix(10) DA1/DA2 0.924 0.893 0.929 0.850 0.956 0.970 0.789 0.739 0.952 0.829 0.883

H_S DA1 0.903 0.880 0.903 0.838 0.947 0.964 0.793 0.744 0.941 0.810 0.872
H_A DA1 0.913 0.880 0.900 0.809 0.951 0.967 0.792 0.717 0.945 0.799 0.867
PVT DA1 0.920 0.888 0.925 0.851 0.951 0.966 0.792 0.709 0.951 0.828 0.878

FH(2) + 2 × PVT(2) DA1/DA2 0.927 0.894 0.932 0.868 0.954 0.971 0.797 0.767 0.955 0.853 0.893
Ensemble in [24] DA1 0.926 0.888 0.916 0.842 0.955 0.971 0.799 0.764 0.952 0.820 0.883

In LEUKO, the authors of the dataset report an IoU of 0.842, and FH(2) + 2 × PVT(2)
obtains a higher IoU of 0.916.

In EMicro, the authors of the dataset report a dice score of 0.884, and FH(2) + 2 × PVT(2)
obtains a higher dice of 0.924.
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In the BFLY, many approaches have been tested (see [59]), and the two best methods
reported in the literature are:

(a) Ref. [59] that reports an IoU of 0.950;
(b) Ref. [60] that reports an IoU of 0.945.

Our suggested ensemble (i.e., FH(2) + 2 × PVT(2)) strongly outperforms previous
state-of-the-art methods obtaining an IoU of 0.970.

Clearly, the ensemble boosts the performance of the best stand-alone network (PVT
combined with DA2).

The main cons of this approach are that the best ensemble is composed by six networks,
and this means 6× RAM requirements and 6× inference time. Furthermore, the inference
time is very low also using an ensemble, and with the current GPU architectures it is not
a problem in many issues (obviously it could be a problem in some applications such as
autonomous drive, but not in the segmentation problems faced in this paper).

E.g., a single HarDNet-MSEG runs at 86.7 images/second on a GeForce RTX 2080 Ti
GPU.

We have performed a further experiment to select the optimal set of models to be
included in the final ensemble. We have extracted a validation set to select the best set of
networks: we have considered only the two problems including many test sets, i.e., polyp
and skin segmentation. In the polyp problem, the Kvasir test set has been chosen as a
validation set; in the skin application problem, the ECU test set has been used as validation
set. We have used a sequential forward floating selection (SFFS) [61] for retaining the
subset of networks that maximize the dice performance indicator in the validation set. The
performance of both ensembles were lower than we expected and in both datasets our best
approach (i.e., FH(2) + 2 × PVT(2)) gained a higher performance. In both cases, we have
faced an overfitting problem: the images in test sets are very different among each other;
therefore, a larger validation set, and more comprehensive different variations that can
occur to an image, are needed for a reliable network selection.

Finally, we perform some tests using the Q-statistic for further validation of our idea
to build ensembles. Yule’s Q-statistic [62] was conducted to demonstrate the relationship
of diversity among the networks that belong to the ensemble. After calculation, the range
of Q-statistic varies from −1 to 1. For statistically independent classifiers, the Q-statistic is
equal to zero.

In Table 7, we report the average Q-statistic among the network of the proposed
ensemble; clearly, ELossMix allows for a set of networks with greater diversity than Eloss101
and ERN101. Moreover, FH(2) + 2 × PVT(2) is built by a set of quite different segmentators.

Table 7. Average Q-statistic.

Ensembles Average Q-Statistic
ERN101(10) 0.975

ELOSS101(10) 0.952
ELOSSMIX(10) 0.921

FH(2) + 2 × PVT(2) 0.925

4. Conclusions

In computer vision, we call semantic segmentation the task that involves the classifica-
tion of each pixel in an image.

This is a very important task in several fields, e.g., in autonomous vehicles, it al-
lows the identification of objects surrounding the vehicle; in medical diagnosis, it im-
proves the ability of early detecting dangerous pathologies and thus mitigates the risk of
serious consequences.

Here, we obtain a state-of-the-art performance proposing different ensembles of seg-
mentation approaches. We have tested:

• Different loss functions;



Signals 2022, 3 356

• Different data augmentation approaches;
• Different network topologies, i.e., convolutional neural networks and transformer

(namely DeepLabV3+, HarDNet-MSEG, and Pyramid Vision Transformers).

Finally, the ensemble is combined by the sum rule.
Our proposed ensemble has been tested, providing state-of-the-art results, in five

benchmark datasets: polyp detection, skin detection, leukocytes recognition, environmental
microorganism detection, and butterfly recognition.

As future work, we aim, through techniques such as pruning, quantization, low-
ranking factorization, and distillation, to decrease the complexity of ensembles.

All resources are available online at https://github.com/LorisNanni, (accessed on
20 April 2022).
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