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Abstract: One of the most critical causes of colony collapse disorder in beekeeping is caused by
the Varroa mite. This paper presents an embedded camera module supported by a deep learning
algorithm for the process of early detecting of Varroa infestations. This is achieved using a deep
learning algorithm that tries to identify bees inside the brood frames carrying the mite in real-time.
The end-node device camera module is placed inside the brood box. It is equipped with offline
detection in remote areas of limited network coverage or online imagery data transmission and mite
detection over the cloud. The proposed deep learning algorithm uses a deep learning network for
bee object detection and an image processing step to identify the mite on the previously detected
objects. Finally, the authors present their proof of concept experimentation of their approach that
can offer a total bee and varroa detection accuracy of close to 70%. The authors present in detail and
discuss their experimental results.

Keywords: beehive monitoring systems; Varroa mite detection; Internet of Things (IoT); Convolu-
tional Neural Networks (CNNs); image processing; performance evaluation; distributed systems

1. Introduction

Bees’ population declination worldwide is mainly caused due to the reckless use of
pesticides by humans [1], as well as the emergence of new resistant strains of bacteria and
mites. Varroa disease is one of the most resistant diseases with two main forms (Varroa
destructor and Varroa jacobsoni) [2], affecting the growth of the offspring, stressing the
bees, and reducing their chances of survival in winter. More specifically, Varroa mite is one
of the most devastating diseases for the beekeeping population. This parasite attaches to
the bee and feeds on its fat cells, causing wing deformations.

The environment inside and around the beehives is vital to the colony establishment’s
success and development. An essential factor in apiary hives that affects both colony
survival and honey yield is the ability to manage agricultural interventions and disease
treatments (especially Varroa mite [3]) and monitor the conditions inside the beehive [4–6].

Most beekeepers use synthetic pesticides to control the mite infestation; nevertheless,
the mite soon develops resistance to their active compounds, compromising their effective-
ness. The prevalence of the mite over the year is confronted by: (a) The reproduction of
resistant Apis mellifera breeds [7] and (b) the appliance of precise interventions upon the
detection of the mite that includes controlled high temperatures (above 38 ◦C) or increased
relative humidity stress events above 70% for normal brood box temperature environments
(32–37 ◦C) [8,9].

The Internet of Everything (IoE) industry is shifting fast towards the beekeeping sector,
aiming for the vast applicability of Internet technologies and IoT, capable of applying
new smart AI detection algorithms [10–12]. Existing applications in agriculture include
environmental monitoring and bee monitoring IoT systems [13–18]. This paper focuses on
technological solutions for detecting bees and then Varroa mites using cameras inside the
brood box.
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Significant improvements have been made toward monitoring beehive conditions us-
ing cameras over the last few years. Such systems try to replace systems that use IR sensors
at the beehive entrance or sound sensors [13,19–21] and translate sensory information to
conditions status. Therefore, image processing techniques and deep learning techniques
have been utilized to monitor bees, and their actions at the hive entrances, as mentioned
at [22,23]. Image processing methods are the easiest to implement. However, deep learn-
ing methods produce the most reliable condition outcome results, such as swarming or
external attacks. Nevertheless, if such probing methods are performed only at the beehive
entrance, they cannot reliably detect the occurring event early enough for the beekeepers
to ameliorate them successfully.

This paper investigates existing technological systems focusing on implementing
an IoT system for detecting Varroa mite in bees, which leads to major Colony Collapse
Disorders (CCD) around the globe. Since Varroa infestation events occur mainly in the
late spring (Apr-May) and first Autumn months, as indicated by the apiarists, this paper
presents a new camera sensor system for detecting Varroa inside the beehive. The proposed
system uses a camera that incorporates an image processing motion logic and utilizes a
Convolutional Neural Network CNN pre-trained model for detecting bees. The rest of this
paper is structured as follows: Section 2 presents related work in existing technological
products for Varroa mite identification and confrontation. Section 3 presents the authors’
proposed Varroa detection system and system capabilities. Section 4 presents the proposed
CNN algorithm used by the system. Section 5 presents the authors’ system experimentation
(offline and online), evaluation, and cross-comparison with existing literature systems.
Finally, Section 6 concludes the paper.

2. Related Work

This section presents the related work on detecting and treating Varroa. It is divided
into two subsections: The first subsection includes Periodic uniform interventions (treat-
ments) that mainly incorporate chemical substances, and the second subsection describes in
detail technological detection systems that try to offer precise mite detection for beekeeping
interventions to apply.

2.1. Related Work on Periodic Varroa Mite Treatments

Beekeepers have been evaluating the efficacy of an acaricide treatment by counting
dead mites that drop from brood frames and bees onto the hive bottom board. Methods
that they use are the “sugar shake” procedure, washing kits (alcohol wash), and organic
substances such as thymol [24,25].

Another way of Varroa treatment is by using generated smoke-vaporizer kits produced
by acid mixtures (usually Oxalic acid and glycerin). This smoke can be an effective and
comparatively cheap method [26]. The use of antigenic acid is also mentioned by [27] as a
means of limiting Varroa infestations if sprayed inside the brood box.

Various chemical substances and materials are used to determine if a colony is infested
with Varroa mites, collecting and killing the mites. These normally are the following:
Ether (or Alcohol) roll, Powdered-sugar shake, chemical sticky-boards (Mite Census),
Drone/Brood Sampling, and Sticky-Board with acaricides [27,28].

However, because of the number of negative points in the usage of the chemical
methods, the search for more efficient alternative methods kept going with the inclusion of
the developing technology.

2.2. Related Work on Varroa Mite Detection Technologies

A technological method reported by [29] uses the E-nose technology. Its use is to
detect Varroa, when the infestation influences the chemical composition of the air inside a
hive. The deciding factor for the effectiveness of this technique is the time of detection.

Sound monitoring systems using MEL or FFT spectrograms are also powerful tools
for Varroa mite indications. The use of frequency-amplitude over time representations
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combined with SVMs and neural network classifiers can distinguish between different hive
states, specifically external attacks, colony stress, swarming, and queen loss [19]. Detection
of colony collapse can be exploited as an indicator of the existence of the Varroa mite.

The authors at [13,30,31] also present their implementations of low power Wireless
Sensor Network (WSN) technology, assisted by cloud computing, to monitor the existence
of bees stress behavior, that also includes the existence of the Varroa mite. The key objective
of this research is to use WSN technology to notice a beehive colony and collect key
information about the activity/environment within a beehive and the health of the bees.
Nevertheless, as mentioned by [13], Varroa mite detection using sensors (temperature,
humidity, noise level, and gas sensors), may include many false detection cases, since other
phenomena such as swarming, queen loss, or even hunger may lead to CCDs as the ones
caused by the mite.

Based on its eco-friendly and sustainable nature, accurate results, and futuristic design,
Var-Gor [32] is a promising device for the early detection of Varroa mite as well as its early
struggle. Specifically, when a contaminated bee with varroa mite enters an uncontaminated
hive, the Var-Gor system detects the mite by image capturing, template matching, color
classification, and segmentation filters. Moreover, this sends a warning by notification to
the beekeeper’s phone.

For real-time bee monitoring using cameras, including deep learning approaches, the
authors at [33] developed an experimental system. Their proposition is built on a single-
board computer Raspberry Pi (RPi) platform and aims to analyze video streams with bees
and detect varroosis. They also applied two distinct detection processes with two CNN
models, one for the bees and the other for the Varroa. Nevertheless, the camera is located
outside the hive, making it hard for mite early detection. In case of infection, the pictures of
the infected bees are transferred to the data center in the Cloud for further analysis, storing,
upgrading their CNN models, and sending a notification to the relevant beekeeper. The use
of two distinct CNN models makes this approach hard to apply detection to a standalone
RPi device inside the device, as the authors of this paper propose with their offline system
approach. Furthermore, the use of image processing techniques such as edge detection
Hough transformations, region labeling, and color masking can accurately identify the
mite on the detected bees, provided by a CNN trained network that accurately detects bees,
similar to the one the authors of this paper propose.

The authors at [34] present a camera-based approach of CNN-trained networks using
the classification of infected and non-infected bees manually and then utilizing a laser to
exterminate the infected ones. This approach, as presented, has the drawback of using
single bee images labeled and classified. This can perform well on detecting single bees
on the beehive door openings or white background but fail significantly on detecting bees
inside the frames (where the mites reside) due to the vast concentrations of bees on each
frame. The solution to this problem proposed by this paper is to use frame images where
manual bee annotation and image localization are performed before CNN training. Since
regions in the image do not contain any information, image segmentation and manual
identification of the ROIs can offer significantly better results.

The authors at [35] aim to provide a solution to identify Varroa mite from low quality
and a limited number of images. The proposed model combines an image enhancement
method CLAHE, data augmentation method DCGAN, and an optimized classification
method CNN to classify infected or healthy bees from standard bee images. The results
convey that the CLAHE method improves sharpness and positively affects the CNN
performance. Furthermore, the DCGAN augmentation method provided more promising
results than the conventional ones in the infection identification scenario. In conclusion,
this vision-based approach appears to be more suitable and efficient for identifying Varroa
mites on bees.

Finally, the authors at [36] experimented on whether the state-of-the-art object detec-
tors using ill bees and varroa mites annotated datasets. Then, they experimented with
CNN algorithms such as YOLOv5 [37] and SSD [38], to perform the varroa mite and ill
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bee detection. The authors CNN testing using F1-score results have shown a score of 87%
for Yolo ill bees detection and above 70% for SSD varroa mite detection. The authors tried
to use the Deep SVDD anomaly detector. However, the SVDD anomaly detector was not
able to model the problem. The authors also mention that Jetson Nano can be used as
part of an implemented detection end-node device. The authors’ proposition of using
YOLOv5 provides significant results. Nevertheless, no detection performance results are
given out. Furthermore, the use of the F1 score metric that represents the model’s precision
and sensitivity is not an expected value of the model’s accuracy. The mAP score indicates a
good accuracy model but not a credible accuracy metric.

The following section presents the authors’ proposed Varroa Detection system imple-
menting their proposed smart detection algorithm, which focuses on the early detection of
the mite to apply a precise treatment.

3. Proposed Varroa Detection System Implementation

The authors propose a new incident response system for the automatic detection of
Varroa mite. The system includes the following parts: (1) The end-node device, (2) the
cloud service for the online detection process, (3) the concentrator device serving the online
detection process, and the mobile phone application used for the offline detection process.
The end-node detection device parts and capabilities are presented in detail in the following
subsections.

3.1. Beehive Camera End-Node

The beehive camera monitoring module is attached to a plastic beehive frame, and
it is placed inside the beehive brood box, as shown in Figure 1. The module includes the
following components:

• The camera module component. There are two camera module components included
in the end-node detection module. The first is a 5 MP camera with a fisheye lens of
160◦ sighting and manually adjusted focus. This camera is connected to the end node
microprocessor using a 15 pin FFC cable. The first camera is located in the middle of
the plastic frame (see Figure 1, Camera 1). There is also a second camera attached to
the end-node device. This is a 5 MP USB camera located on top of the plastic frame. It
is placed on top of a plastic frame covered entirely with a smooth plastic surface to
avoid being built or waxed by bees. It is equipped with a small led and a hinged arm
that allows the camera to take images above and on top of the frames. Both cameras
are connected to a quad-core ARM microprocessor and can be used concurrently to
capture bee images inside the brood box.

• The Microprocessor Control Unit (MCU). The MCU is a quad-core embedded 64
bit-ARM microprocessor device operating at 1 GHz, including a 512 MB LDDR2
RAM clocked at 450 MHz. The MCU is responsible for storing camera snapshots
to its embedded SD-card and if appropriately configured, uploading them to the
cloud, using the Varroa detection service Application Interface (API) is created for that
purpose (see Figure 1, ARM end-node CPU).

• The data transmission modules. There are MCU embedded Wi-Fi and Bluetooth 4.2
with Bluetooth Low Energy (BLE) capable transponders attached to the MCU. The
transponders are used in turn by the two modes of end-node device operations: Online
and offline.

• The autonomous device power component. It includes a 20 W/12 V PV panel con-
nected directly to a 12 V-60 Ah lead-acid SLA/AGM battery (see Figure 1). The battery
is placed under the PV panel on top of the beehive and feeds the ARM MCU unit
using a 12 V voltage regulator with 2 × USB outputs, used to power the end-node
device through its micro-USB power port. The battery used is a deep depletion one,
since the system might get fully discharged due to its short battery capacity, especially
at night or on prolonged cloudy days.
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• The real-time clock module. An Inter-Integrated Circuit (I2C) DS1307 Real Time
Clock (RTC) module is placed at the General Purpose Input Output (GPIO) pin of the
MCU for the process of keeping track of time if the end-node device is operating in
offline mode. Suppose online appropriate Network Time Protocol (NTP) service is
automatically used to calibrate time offsets and reset the RTC DateTime.

• The Wi-Fi concentrator. It is used only in the online mode of operation, and it is a
Wi-Fi access point device that includes an LTE/3G cellular transceiver. The end-node
MCU connects to the concentrator for the process of imagery data uploads to the cloud
if the device operates in online mode. For the offline mode, the MCU BLE interface is
used, transmitting to a distance up to 4–10 m the detection output of the beehive. The
following subsection describes the end-node device’s two modes of operation.

Figure 1. Proposed Varroa mite detection system end-node device and device components.

3.2. End-Node Device Functionality and Modes of Operation

There are two modes of operation that the end-node device can be used: Offline and
online. The operation modes can be selected using a selection switch placed at the bottom
of the MCU casing. The switch is connected to an MCU GPIO pin digital input, and by
setting it to LOW or HIGH, it switches between the two modes of operation accordingly.
The two end-node modes operate as follows:

• Online mode: In this mode of operation, the process of Varroa detection is performed
over the cloud. For this purpose, appropriate cloud service and API using HTTP
requests have been implemented. The API is capable of image data transmission from
the uploaded by the end-node MCU using HTTP protocol PUT requests. Also, an
HTTP JSON POST request can be sent to the cloud API, including an API key and a
beehive id, and the API returns as part of a JSON object. The Varroa detection results
for this beehive, including the base64 encoded images Regions Of Interest (ROIs),
where Varroa mite has been detected.
The online mode of operation requires using the beehive concentrator, which is re-
sponsible for the node data transmissions over the internet over HTTP. It acts as an
intermediate gateway among the end nodes and the cloud application service. The
concentrator can upload images with an overall bandwidth capability that varies from
1–7/10–57 Mbps, depending on the gateway distance from the beehive [39]. If the
distance is 20–30 m, it is limited by the LTE technology used.
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• Offline mode: In places of limited Internet connectivity and cellular coverage, the
end-node offline mode can be used. The offline mode does not require the use of the
concentrator device.
In this mode, a micro-service that includes a version of the detection algorithm inside
the end-node device is used for the process of executing the Varroa detection algorithm
locally (as presented in Figure 2). Then, the final CSV output is transmitted using
the MCU BLE transponder to the farmers’ mobile phones. A BLE service and two
read characteristics can be used for the CSV output, and Varroa detected ROI image
acquisition accordingly. The beekeeper can check the status of each one of his beehives
by moving close to the beehive and pairing with each one accordingly, performing the
BLE read from his mobile phone. The drawbacks of the offline mode are that it offers
20–25% less end-node energy consumption and no communication provider costs.
Nevertheless, it has difficulties with BLE pairing, especially if many BLE devices are
close-by and there are difficulties on characteristic reads of imagery base64 encoded
data [40,41]. For this reason, only one Varroa mite ROI is available (the last one
detected) via that BLE characteristic.

Figure 2. Proposed algorithm process flowchart for the detection of Varroa mite.

The following section describes the Varroa mite detection algorithm used by the
end-node devices in offline or online operation modes.

4. Proposed Method for Varroa Mite Early Detection

Training a Convolutional Neural Network for an object initiates with the collection of
the sample of images that contain the objects to be detected. If no object localization applies
to the image, then the process involved is a classification process that assists in classifying
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the entire image contents. On the other hand, suppose the localization of multiple objects
in the image is enforced. In that case, the constructed process is a detection one, and it may
provide output bounding boxes or masked areas of the detected objects. The first is called
object segmentation, while the latter is called instance segmentation.

For CNN classifiers or detectors, different models can apply. In this paper, the Regional
CNN algorithm Faster R-CNN [42] is used on pre-trained models [43], for the collection of
fixed size bounding boxes and confidence scores in the presence of object instances. In these
pre-trained models, arbitrary classes can be set, attached, and trained as part of the model’s
classes. The most well-known algorithms are the Single Shot MultiBox Detector (SSD) [38]
and the Faster R-CNN [44]. These algorithms and these used models are the most common
because they have been created to balance efficiency and accuracy. The SSD algorithm
uses a Convolutional Neural Network (CNN) to input images only once and outputs a
feature map [38]. The feature map then goes through a convolutional kernel to predict the
bounding boxes and the possibility of classifying them. The Faster-RCNN algorithm uses a
small convolutional network called the Region Proposal Network (RPN) to create areas of
interest in which the network predicts the probability of being the background or object of
interest [44].

For the implementation of their bee-detection process, the authors have selected
MobileNet pre-trained CNN models since they are proven lightweight models with short
detection times and can be used in embedded systems as part of deep industrial learning
real-time or close to real-time applications [45]. Additionally, the authors selected a heavy
model such as ResNet-50, with five times more trainable parameters that can be loaded to an
embedded device to compare the accuracy results with the ones derived from lightweight
models.

In this section, the authors describe their process of detecting the Varroa mite inside
the beehive. Their proposition includes two steps: (a) use of SSD and Faster-RCNN Convo-
lutional Neural Networks (CNN) including pre-trained models [46,47] for the detection of
bees inside the brood box frames and (b) use of color masking and Hough transformation
for the detection of Varroa upon the previously detected bee objects.

The algorithmic process used to build the neural networks and carry out the detection
of bees is comprised of five steps. The first four are necessary for the CNN bees’ object
detection process, and the fifth step is required for the edge detection of the Varroa mite on
the previously detected contours. The detection process steps are shown in Figure 2. The
proposed algorithm CNN training steps and detection step used are as follows:

• Step 1—Initial data acquisition and data cleansing: The initial imagery dataset ac-
quired by the Beehive monitoring module is manually analyzed and filtered to elimi-
nate blur images or images of low resolution and light intensity. The photos in this
experimentation taken from the camera module are set of the minimum acquisition of
5 Mpx size of 800 × 600 px 300 dpi compressed at JPEG format using a compression
ratio Q = 70, of picture size 350–500 KB each. Similarly, the trained CNN network and
algorithms used are the most processing light for portable devices, using a minimum
trained image size input of 640 × 640 px (lightly distorted at the image height) and
Cubic interpolation.
The trained Convolutional Neural Network (CNN) is used to solve the problem of
swarming by counting bees’ concentration above the bee frames and inside the beehive
lid. The detection categories that the authors’ classifier has used are:

Class 0: No bees detected.
Class 1: very small number of bee detection (less than 10).
Class 2: Small number of bee detection (20–30).
Class 3: Medium number of bee detection (30–50).
Class 4: High number of bee detection (more than 50).

For each class, a number of detected bees has been set as a class identifier (The class
identifier boundaries can be arbitrary and set accordingly at the detection service
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configuration file). Therefore, the selected initial dataset must consist of at least
1000 images per detection class, a total of 5000 images used for our training CNN case.

• Step 2—Images transformation and manual data annotation: All images that went
through the clearing process were manually annotated using the LabelImg [48] tool.
There are other tools used for the photo annotation process, such as Labelbox [49],
ImgAnnotation [50] and the Computer Vision Annotation Tool [51], which always
create an output in either the JSON or XML format.
The resolution and clarity of the original images are extremely important, as this
facilitates the detection of the Varroa mite. Regarding the clarity of the photo, the
method used is as follows. A bilateral filter smothers all images using a degree of
smoothing sigma = 0.5–0.8 and a small 7 × 7 kernel. Afterward, all photos must be
scaled to particular and fixed dimensions to be inserted into the training network.
Scaling is performed either using a cubic interpolation process or a super-resolution
EDSR process [52].
The preparation of the photos is initially based on the dimensions that each training
algorithm requires for its smooth operation. The OpenCV [53] library is used for the
image transformation process and is part of the second and fifth stages of detection.
The second stage is before the detection of bees using CNN, and the fifth is the stage
of detection of the Varroa mite (see Figure 2).

• Step 2—Training process: The training process is based on the use of PyTorch pre-
trained Convolutional Neural Network (CNN) models [54] and the use of all available
system resources. The essential computer subsystem for the training process is the
GPU to speed up the neural network training. CUDA tools and libraries are used for
this purpose according to PyTorch requirements.
CNN’s creation is based on pre-existing PyTorch [54] trained models used to train the
neural network to detect bees. The selected PyTorch models and their capabilities for
the detection process are presented in Table 1. After the annotation of the images of
Step 2 is completed, the images are divided into two sets. The first set is the training
set which contains 70–80% of the annotated photos, and the remaining 20–30% is the
test set. The second can be divided into 50% to create another set which will be the
validations sample. Then, you choose the model that will be used for the training. The
output of the training process is the CNN model used in Figure 2, which is the Step 2
detection process of bee objects.

Table 1. Pre-trained CNN models that were used by the proposed faster R-CNN algorithm training
process.

CNN Mode

CNN Models Capabilities

Input Images Size
(wxh) [px]

Accuracy for Detected
ROIs Confidence

Level Values = 100%

Accuracy for Detected
ROIs Confidence

Level Values ≥ 50%

MobileNet V2 640 × 640 71.878 90.286

MobileNet V3 640 × 640 74.042 91.340

ResNet-50 FPN 640 × 640 76.130 92.862

• Step 3—Detected bee contours: This step includes a selection process of bee-detected
objects based on the confidence threshold value set by the service. A good confidence
value threshold that can be used is above 0.5 (50%). Then, the Gaussian filtering
cubic interpolation is applied to the selected contours to scale them to sizes (wxh) of
40 × 50 px for step 4 to apply on each distinct ROI.

• Step 4—ROI masking, Varroa mite detection step: This step includes a color trans-
formation from RGB to HSV. Then, an appropriate HSV mask is applied to each bee
scaled image, transforming them into binary images, where the detected by the mask
areas are set to white and all other areas to black. Then, a Hough transformation is
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applied to detect circular areas with a lower-upper threshold of 10–90 px2. If at least
one circular area of this threshold is detected on a bee object, this bee is set as detected
with Varroosis. The original color image, including the detected bee object contours
with the masked Varroa mite areas annotated on each CNN detected image, is stored
in the appropriate output folder. The detection results are appended to the detection
service process CSV output file.

• Detection service process and data output: The detection process is performed by a
daemon application that is installed as a service on a cloud server or at the embedded
end-node device depending on the mode of operation (online, offline). This application
loads the inference graph of the CNN neural network into the system memory so that
the bees can be detected and then the Varroa mite can be detected. This procedure
is performed on each image received from the end node device using HTTP PUT
requests. The HTTP PUT method requires that the requested URI message be updated
or created, which is enclosed in the body of the PUT message. Thus, if there is a
resource in this URI, the message body is considered as a new modified version of
this resource. Once the PUT request is received, the service starts scanning the bees
and then the Varroa so you can output an updated CSV file containing the number of
Varroa mites detected in each photo taken by the end node device. Figure 2 shows in
detail the steps of the detection process implemented on the cloud server (online) or
in the embedded end-node device (offline).

The following section presents the authors’ experimental results using the proposed
CNNs combined with computational vision techniques. Figure 3 shows the detection
output from each one of the steps that are followed by the author’s proposed detection
process as illustrated in the flowchart in Figure 2. The images displayed/per detection step
have been taken during the Varroa mite detection process validation.

Figure 3. Proposed algorithm step-by-step detection output per flowchart detection process step.

5. Experimental Scenarios and Results

This section presents the experimental scenarios that were implemented using end-
node devices to detect bees using a selected CNN (Faster R-CNN), that uses the region
proposal network (PRN) to reduce the total image detection times at least 10× times [44],
and one of three pre-trained models: MobileNet V2 [55], MobileNet V3 [56], or ResNet-50
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FPN [57] (as illustrated in Table 1), and then detect the Varroa mite using computer vision
color masking and Hough transformation.

The tests to validate the detection were performed using 100 images from inside the
hive that did not contain Varroa and 100 photographs of individual bees from a different
set of photos containing Varroa. As a result, the Varroa mite could be detected.

For each test, five different measurements were taken: The time required to load the
trained network into the system memory, the total detection time, the average ROI detection
time, the mean Average Precision (mAP) obtained from testing the models for IoU = 0.5
and the maximum memory distribution per neural network. In addition, two different
measurements have been measured for Varroa detection: The average detection accuracy
and the Varroa mite detection time for each bee ROI (detected contour).

In addition, the Detection Accuracy (DA) and the Mean Detection Accuracy (MDA)
metrics have been used (see Equation (1)) to evaluate the proposed Varroa detection process.
DA and MDA metrics are calculated by manually measuring the bees in the test photos
and the Varroa mites in each photo with individual bees. The accuracy metrics have been
mentioned at [58].

DA =
DC
N

, MDA =
1
M

M

∑
i=1

DAi (1)

Er = 1 − DC
C

(2)

Object detection accuracy is also measured by mean Average Precision (mAP) from
Pytorch. That is the average of maximum precision at different detected contours over the
real annotated ones. Precision measures prediction accuracy by measuring true positives
from all true positive and false negative cases.

The tests were performed on three different systems, a Raspberry Pi Zero W version 2
and two cloud servers. The RPi has a quad-core processor clocked at 1 GHz with 364 MB
of RAM, 2 GB of swap memory, and a GNU/Linux 64-bit operating system. The cloud
server version 1 has an octa-core processor clocked at 2.6 GHz, 12 GB of RAM, 4 GB of
swap memory, and its operating system is Ubuntu Server 18.04. While the cloud server
version 2 has a 24-core processor clocked at 3.8 GHz, it has 64 GB of RAM, 60 GB of swap
memory, and a Ubuntu 20.04 operating system.

5.1. Scenario I: Detection System Performance Tests

The first experimental scenario includes the results obtained from the three systems
separately. During the tests, all trained models (MobileNet V2, MobileNet V3, ResNet)
of the Faster R-CNN algorithm were evaluated for their performance. The results of
the execution time and the memory usage during the detection of bees are presented in
Tables 2–4.

Based on the results obtained from the end node device, the Faster R-CNN ResNet-
50 model provides the best network load time in the system memory (30% less than
the MobileNet V2 model and 7% less than the MobileNet V3 model). Furthermore, a
comparison of load times shows that the Faster R-CNN ResNet-50 model provides a faster
loading model than MobileNet. However, the average time to detect bees per photo is
more extended than MobileNet models. The most efficient model is the MobileNet V3 (80%
faster than the Faster R-CNN ResNet-50 and 25% faster than the MobileNet V2).

Then, the execution time of the detection process for the cloud services and the end-
node device are compared to measure the value of the speedup σ. Using the average
detection time of each model can compute σ = T8

T24
as the average detection time using

CNN, which is conducted using parallel tasks utilizing all available cores of each system.
Therefore, for the MobileNet V2 and V3 models, similar speedups are observed; specifically,
the speedups of the models are σ = 3.5 and σ = 3.4, when moving from n = 8 to n = 24
cores, respectively. However, for the ResNet-50 FPN model, it provides a greater speedup
equal to σ = 6.4. This is also shown at Tables 3 and 4. By the time each subsystem detects
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bees in each photo, the ResNet-50 FPN model is 88% faster in cloud server version 2 than
version 1 (version 2 has three times more cores than version 1).

Table 2. Experimental Scenario I; end node device operating in offline mode (4 core-ARM CPU)
detection time and memory usage.

CNN
Models

Load
Time

(s)

Testing
Detection

Time
(s)

Detection
Average
Time per

Image
(s)

Total
Time

(s)

Memory
Usage
(MB)

MobileNet
V2 125.37 10,848.27 104.56 10,973.63 62.6

MobileNet
V3 94.4 8243.58 78.72 8837.98 66.4

ResNet-50
FPN 88.19 38,992.5 385.97 39,080.7 74.2

Table 3. Experimental Scenario I; cloud server version I (octa-core system) detection time and memory
usage.

CNN
Models

Load
Time

(s)

Testing
Detection

Time
(s)

Detection
Average
Time per

Image
(s)

Total
Time

(s)

Memory
Usage
(MB)

MobileNet
V2 3.786 265.374 2.33 269.16 81.5

MobileNet
V3 2.037 205.216 1.808 207.25 80.2

ResNet-50
FPN 1.514 681.78 6.555 683.29 81.4

Table 4. Experimental Scenario I; cloud server version II (24-core system) detection time and memory
usage.

CNN
Models

Load
Time

(s)

Testing
Detection

Time
(s)

Detection
Average
Time per

Image
(s)

Total
Time

(s)

Memory
Usage
(MB)

MobileNet
V2 2.614 74.78 0.47 77.4 13.4

MobileNet
V3 1.92 59.32 0.37 61.24 13.1

ResNet-50
FPN 2.45 106.77 0.831 109.23 13.3

5.2. Scenario II: Detection Algorithm Accuracy Tests

Scenario II focuses on the precision results obtained from using the generated neural
networks on all three devices operating either in online or offline mode. The measurements
used are the Mean Detection Accuracy (MDA) from Equation (1), the mean Average
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Precision (mAP) calculated by Pytorch, and the Success Frequency (S.F.) from Equation (3),
based on MDA and from Equation (4), based on mAP, as proposed in [58]. The results from
the three systems are presented in Table 5.

Table 5. Mean Detection Accuracy (human bee counting verification) over models’ mAP.

CNN
Models

Mean Detection
Accuracy
(MDA)

CNN Model
mAP

End Node
Device

SF

Cloud Server
Version 1

SF

Cloud Server
Version 2

SF

Mobilenet
V2 0.887 0.481 0.003 0.17 0.28

Mobilenet
V3 0.677 0.496 0.003 0.14 0.29

ResNet-50
FPN 0.821 0.467 0.001 0.1 0.25

Using the metric S.F, the authors can evaluate which of the systems consumes the most
energy in the process of detecting bees. Looking at the values in Table 5 and comparing the
columns of S.F., it turns out that Cloud Server Version 2 consumes less power for crawling
than the other two systems, since the energy needed for crawling is 99% less than the
energy required by the End Node Device and 40–60% less than needed by Cloud Server
Version 1.

SF =
MDA

Tload + Tdetect
(3)

SFmAP =
mAP

Tload + Tdetect
(4)

The following scenario describes the results in detecting the Varroa mite, which is the
last step in the proposed Varroa detection procedure as illustrated in Figure 2 (detection
algorithm’s steps and output).

5.3. Scenario III: Evaluation of Varroa Mite Detection Step

In this scenario, 200 photos were used to detect the Varroa mite on bee contours
derived from the previous object detection step of the CNN models. This scenario aims to
test the accuracy and precision of the Varroa mite detection process on bee objects. One
hundred of the detected contours depicted bees with Varroa, while the rest depicted bees
without Varroa. Upon the application of the HSV masking and Hough transformation
detection step for Varroa mites on bee objects, the measurements in Table 6 were obtained.
Table 6 shows the accuracy and precision calculated using the following Equation (5) for
accuracy and precision accordingly.

Acc =
TP + TN

TP + FP + FN + TN
, Prec =

TP
TP + FP

,

Recall =
TP

TP + FN
, F1_Score =

2 ∗ Recall ∗ Prec
Recall + Prec

(5)

The variables used for the validation process are: TP (True Positive) describes the
number of photos in which the mite is present and detected successfully, FN (False Negative)
is the number of photos that had Varroa but were not detected, FP (False Positive) is the
number of images that did not have Varroa but was detected, and finally the variable
TN (True Negative) is the number of images that did not have the Varroa mite and was
not detected.
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Table 6. Accuracy and Precision of image processing step on CNN bee-detected contours using HSV
color masking and Hough transformation.

Class
Test

Predicted
Varroa

Predict
No Varroa

Accuracy
(%)

Precision
(%)

Actual
Varroa TP = 64 FN = 36 77 86

Actual
No Varroa FP = 10 TN = 90

In addition, using the measurements of Table 6 along with the measurements of
scenario II (Table 5), the total accuracy of the whole Varroa detection process can be inferred
through the formula: TotalAcc = Acc ∗ MDA. In this way, it can be determined which CNN,
together with the use of image processing, can give the best results for the detection of
Varroa. This is because the accuracy rates of Table 6 depend to a large extent on the number
of images that go through the process of detecting the Varroa mite. The MobileNet V2
model has the best total accuracy, which corresponds to 68% (8% more than the ResNet-50
FPN and 24% more than the MobileNet V3).

It should be commented at this point that the authors have not used the Recall and
F1-Score metrics. The recall metric refers to the sensitivity percentage of the varroa mite
detection algorithm. The degree of sensitivity depends directly on the size of the masked
color space to recognize the Varroa color hue. This space also depends on the brightness
and sharpness of the photos that go through this process. For this reason, the F1-Score
for the calculation of which recall in part has not been taken into account. Instead, only
precision and accuracy metrics have been used.

Using the same set of photos for all system modes of operation (online version 1,
online version 2, offline end-node device), there were no differences in the execution times
of the detection process, since, in all three cases, the average detection time is close to 4ms.
Moreover, there was no change in the size of the memory used by the three device cases
during the Varroa detection step, which is close to 0.7 MB.

5.4. System Cross Comparison with Existing Literature Solutions

Summarizing the existing camera-based technological solutions, as presented in the
bibliography, to detect Varroa mite, are presented in Table 7. Table 7 characterizes the
proposed system capabilities based on their camera facing setup (inside the brood box
facing bee frames or at the beehive door openings), maximum precision recorded, mean
detection time per photo, and whether they are capable of online and offline operations.
That is, the CNN is implemented in the cloud only and requires end-node devices capable
of transmuting images only, or it also supports an embedded CNN implementation, having
end-nodes that include the CNN algorithms, and no Internet connectivity is required.

From Table 7 it is obvious that most of the systems include a camera setup fac-
ing the beehive door openings. This is not the case for the early detection of Varroa
mite since it grows inside the brood-box frames, making most of the existing proposi-
tions incapable of early detection. In addition, only the author’s proposed end-node
devices and Chazette’s [34] may offer offline operation embedded at the end-node devices.
Mrozek’s [33] and Bilik’s [36] implementations are mostly cloud-based, with the Bilik’s
algorithm to also utilize also GPU cores for the detection process.
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Table 7. Cross comparison of camera-based detection systems for the detection of Varroosis

Proposed Solutions Camera Facing
Frames

Max Detection
Precision (%)

Mean Detection
Time (ms)

Offline
Operation

Mrozek et al. [33] No 36 270 No

Chazette et al. [34] No 72 2500 Yes

Bilik et al. [36] - 87 0.05 No

Authors’ system Yes 86 104,560 (Offline), 470 (Online) Yes

The authors’ end-node detection algorithm has similar precision results to the Yolov5
algorithm proposed in [36]. The authors also express serious doubts about the mean
detection time of Chazette’s CNN implementation, executed in an embedded system that
can achieve more than 72% precision. Accuracy measurements are not considered, since
most existing systems use the F1 score as an evaluation metric. For that reason, the authors
also assume that F1 score values represent mainly precision values of a constant recall value
for all system cases examined.

According to Table 7, the authors’ proposed online detection time is about 470 ms.
That is two times more than Mrozek’s solution [33]. Nevertheless, the maximum precision
achieved by Mrozek’s model is 36%, which is 2.3 times less than the precision achieved by
our model. Comparing the offline operation of our model and Chazette’s [34], the authors
also mention that Chazette’s implementation is not part of an embedded solution rather
than an experimental proof of concept run on a test-bed PC.

The authors have also preliminarily experimented with the EfficientNet model [59],
which is a lightweight model implementation similar to MobileNet V2 and V3 models
and has similar accuracy results to the MobileNet V2 model. Nevertheless, loading the
EfficientNet trained Neural Network into the system’s memory takes 92% more time
than the MobileNet V2 model. In addition, the total time required to detect bees using
EfficientNet is 20% longer than the time required by MobileNet V2. Taking into account
the above excessive model load time, the authors have chosen not to include EfficientNet
in this study. The authors set as future work a further reduction of their model offline
detection time (which also includes model load time).

6. Conclusions

This paper presents a novel Varroa mite detection system that uses cameras and deep
learning techniques embedded into the beehive for early detection. The authors present
both their system and their detection process. The proposed CNN detection algorithm
can be incorporated either in the cloud or at the end-node system devices, modifying the
system’s architecture and operation accordingly.

The authors have experimented with using their system’s detection process both online
(performing detection process as a cloud-service) and offline (end-node device includes the
detection algorithm and provides textual detection output over BLE). The experimental
results have demonstrated that the detection process over the cloud is at least 3–4 times
faster than if the algorithm is incorporated as a service at the end-node embedded device.
The online mode also offers the advantage of easily changing the CNN model with a newly
trained one. The disadvantage of the online mode includes communication providers’
imagery data uploading costs using NBIoT or LTE Cat-M1 transceivers. On the other hand,
in offline mode, the mean detection time per image of 104 s and the CNN model load
time of 125 s (MobileNet V2 model) at the embedded quad-core ARM MCU is relatively
40×–80× times more than the time required for online detection. This detection time
interval is significantly less energy efficient since the end-node device is battery operated
and requires minimum detections to be performed either once per hour or once per day.

The authors’ detection algorithm experimentation focused on using different pre-
trained models (MobileNet V2, MobileNet V3, ResNet-50), setting the MobileNet V2 model
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as the most accurate one in the Faster R-CNN algorithm used the authors’ trained network.
Finally, the authors experimented with their Varroa mite detection process and provided
the evaluation of their detection algorithm’s accuracy and precision in cases of actual Varroa
incidents to 77% and 86% accordingly.

The authors set for future work the extensive evaluation of their proposed system
towards Varroa mite outbursts and the extension of their algorithms accuracy, minimizing
offline detection time and further classification of the severity of the Varroa incidents detected.
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