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Abstract: Plant classification requires the eye of an expert in botanics when the subtle differences in
stem or petals differentiate between different species. Hence, an accurate automatic plant classification
might be of great assistance to a person who studies agriculture, travels, or explores rare species.
This paper focuses on a specific task of urban plants classification. The possible practical application
of this work is a tool which assists people, growing plants at home, to recognize new species and to
provide the relevant caring instructions. Because urban species are barely covered by the benchmark
datasets, these species cannot be accurately recognized by the state-of-the-art pre-trained classification
models. This paper introduces a new dataset, Urban Planter, for plant species classification with
1500 images categorized into 15 categories. The dataset contains 15 urban species, which can be grown
at home in any climate (mostly desert) and are barely covered by existing datasets. We performed an
extensive analysis of this dataset, aimed at answering the following research questions: (1) Does the
Urban Planter dataset provide enough information to train accurate deep learning models? (2) Can
pre-trained classification models be successfully applied on Urban Planter, and is the pre-training on
ImageNet beneficial in comparison to the pre-training on a much smaller but more relevant dataset?
(3) Does two-step transfer learning further improve the classification accuracy? We report the results
of experiments designed to answer these questions. In addition, we provide the link to the installation
code of the alpha version and the demo video of the web app for urban plants classification based on
the best evaluated model. To conclude, our contribution is three-fold: (1) We introduce a new dataset
of urban plant images; (2) We report the results of an extensive case study with several state-of-the-art
deep networks and different configurations for transfer learning; (3) We provide a web application
based on the best evaluated model. In addition, we believe that, by extending our dataset in the
future to eatable plants and assisting people to grow food at home, our research contributes to achieve
the United Nations’ 2030 Agenda for Sustainable Development.

Keywords: plant classification; deep-learning neural networks; transfer learning; plants dataset

1. Introduction

Often, plant classification requires the eye of an expert in botanics. Subtle differences
in leaves or petal forms might differentiate between different species. On the contrary, there
may be high intra-class variability, where species belonging to the same class exhibit very
different visual characteristics. Therefore, an accurate automatic plant classification might
be of great assistance to a non-expert person who studies agriculture, travels, or grows
plants at home.

Plants classification from their images is just an application of a more general task of
image classification. In order to train supervised models for this task, one needs a large
volume of high-quality training data. However, not many datasets with plant images
categorized by species are publicly available for research, and those which are publicly
available are far from covering all plant species over the world.
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This paper introduces a new dataset, Urban Planter, for plant species classification
with 1500 images categorized into 15 categories. The motivation behind the Urban Planter
dataset was to collect datasets of plant species growing in our district, which are barely
covered by existing datasets. This research may have a practical application in the form of
a tool that helps people who cultivate plants at home recognize new species and provide
appropriate care recommendations. Because urban species are hardly covered by bench-
mark datasets, state-of-the-art pre-trained classification methods cannot reliably recognize
them. Furthermore, we hope that, by expanding our dataset to include edible plants in
the future and supporting people in growing food at home, our research will contribute to
the UN’s 2030 Agenda for Sustainable Development. The dataset contains 15 house and
garden plant species that can be grown mostly in a desert climate and are barely covered
by existing datasets. The dataset was collected to develop a mobile application assisting
urban planters in identifying plants and discovering best growing methods. However,
this paper does not describe the application but focuses on the analysis of Urban Planter.
We report the results of experiments performed on the new dataset. The experiments
aimed at testing the quality of Urban Planter. We explored whether accurate classification
models can be trained on an Urban Planter. In addition, we explored transfer learning
with two other datasets: ImageNet (http://www.image-net.org/ (accessed on 24 April
2022)), which is a classical choice for pre-training, and Oxford102—a much smaller dataset
but more relevant to plants classification. We also experimented with two-steps transfer
learning, where models, pre-trained first on ImageNet and then on Oxford102, were trained
and applied on Urban Planter. The results show that, although Oxford102 is more related
to plants classification, the size and the rich diversity of ImageNet are advantageous for
accurate classification.

2. Related Work

During the last two decades, various computer vision techniques were employed for
plant species classification. Earlier methods used manually defined features, mostly based
on the combination of shape, color and texture descriptors, and statistical information [1–8].
Local features descriptors, e.g., HOG [9] and SIFT-based, have also been applied for flower
analysis [10–12]. Manually defined and local feature descriptors are fed to the traditional
machine learning models, e.g., k-NN [10] and SVM [9]. Machhour et al. [13] introduced a
method for plant classification by analyzing leaf images. The method extracts invariants
from the shifted Legendre–Fourier moments feed them to a fully connected artificial neural
network. The comprehensive survey on the studies of computer vision approaches for
plant species identification can be found in [14].

With the advances of hardware, especially with the incorporated use of GPUs, deep
neural networks (DNNs) have achieved new standards in many research frontiers. The main
advantage of the DNNs is that they do not require manual feature extraction, and the fea-
tures are learnt within a DNN framework. However, DNNs require a large amount of
training data, which is not always available. Pearline and Kumar [15] compared between a
deep learning model (VGG19) and conventional machine learning methods, and showed
that DNN yielded a higher accuracy for all (four) datasets of plant images. For small or
moderate size datasets, transfer learning can help to overcome dataset size limitation [16].
In the case of plant classification, ImageNet is a common choice for a transfer learning sce-
nario [17–20]. Xia and Xu [17] based their flower classifier on an Inception-v3 model, trained
on ImageNet. Wu et al. [19] explored the effect of transfer learning for flower classification
using four deep-learning models, VGG16, VGG19, Inception-v3, and ResNet. They showed
that pre-training the models avoids over-fitting and improves the recognition accuracy.
Hiary et al. [18] presented a two-step deep-learning classifier, where first a flower is seg-
mented from the background and then is classified. This framework is based on the VGG16
model with pre-trained weights. Ref. [21] introduced a deep learning system for diverse
plants classification in agriculture applications. The experiment, performed on the Plant
Seedlings Dataset, aimed to determine which of three pre-trained models—Inception-v3,

http://www.image-net.org/
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VGG16, and Xception—reaches the best accuracy. Results determined that Xception is the
best performing model.

With the extensive use of mobile devices, lightweight DNNs are desirable. The MobileNet
model was specially designed for usage in mobile applications. MobileNet significantly re-
duces the number of parameters compared to other conventional deep-learning models, such
as VGG16 or Inception-v3. Gavai et al. [20] experimented with MobileNet models for flower
classification on the Oxford102 dataset. They showed that MobileNets give comparable perfor-
mance accuracy while being much smaller and requiring 2.5 times less computation. In [22],
a feature extraction using different DNNs—ResNet50-v2, Inception ResNet-v2, MobileNet-
v2, and VGG16—was explored in large-scale plant classification methods. A comparative
evaluation on the PlantCLEF2003 dataset showed the superiority of the SVM classifier with
MobileNet-v2 as a feature extractor. In [23], a comparative evaluation of four deep convolu-
tional feature extraction models—MobileNet-v2, VGG16, ResNet-v2, and Inception-ResNet-
v2—tested with the SVM classifier, showed the superiority of MobileNet-v2 on the Vietnamese
plant image dataset. MobileNet combination with Logistic Regression was also the best
performing system for leaf classification in [24], based on comparative evaluation on two
botanical datasets—Flavia (32 classes) and Leafsnap (184 classes).

In most works on plant classification [17–20], the experiments were performed on the
Oxford102 dataset [9,10], as one of the largest available datasets of plant images classified
into 102 categories. Some works also explored other available datasets, such as the Plant
Seedlings Dataset [21], containing images of approximately 960 unique plants belonging
to 12 species at several growth stages, and the PlantCLEF2003 dataset [22], consisting of
51,273 images from 609 plant species. The authors of [23] described the Vietnamese plant
image dataset, collected from an online encyclopedia of Vietnamese organisms and the
Encyclopedia of Life, and containing a total of 28,046 environmental images of 109 plant
species in Vietnam.

However, none of these datasets fully covers desert urban plants that our research
focuses on. We see an important mission in our task—an accurate classifier for plants
that can be grown at home in desert conditions can be of much help to small business,
farmers, and individual planters that deal with growing decorate, medicinal, or eatable
plants. Therefore, we decided to collect our own dataset for training supervised classifiers.

The aim of this paper is threefold. First, we introduce a new dataset, Urban Planter,
of desert plants, which are unique in their own way. Second, we analyze the quality of this
dataset for the plant classification task. Third, we extend further the study of ImageNet
and Oxford102 pre-training for plant classification task by exploring a larger number of
deep-learning models.

3. Urban Planter Dataset

The dataset was especially collected and annotated by our research team. We pho-
tographed the plants in the countryside and public gardens, while trying to choose the
underrepresented species not covered by the existing dataset.

The Urban Planter dataset covers 15 species of houseplants images, 100 images per
each. Some species have a unique visual appearance, for example, Begonia Maculata;
others have a very similar appearance, for example, House Leek and Paddle Plant (see
Figure 1). There are large viewpoint, scale, and illumination variations. The large intra-class
variability and sometimes small inter-class variability make this dataset very challenging
for the plant classification task. The plant categories are deliberately chosen to have some
ambiguity on each aspect. For example, some classes cannot be distinguished on color
alone (e.g., moon cactus, nerve plant, poinsettia), others cannot be distinguished on shape
alone (e.g., coleus), as illustrated in Figure 2. The majority of the images were photographed
by our team. In addition, the plant images were retrieved from multiple sources, including
numerous websites (USDA Plants Dataset, Missouri Botanical Garden Database, Better
Homes & Gardens, the Urban Nursery, the National Gardening Association Database,
House Plants Expert, RHS, and ASPCA), social networks, and self-made photographs of



Signals 2022, 3 527

house plants. Table 1 contains a summary of 15 species covered by the Urban Planter dataset.
For experiment, the dataset was traditionally split into 70% training, 10% validation, and
20% test sets. According to [25], all three sets are necessary for fitting a classifier to a
new domain. Namely, training set is used for learning, that is, to fit the parameters of the
classifier; validation set is used for fine-tuning, that is, to tune the parameters of a classifier
(for example, the number of hidden units in a neural network), while a test set is used to
evaluate the performance of a fully-specified classifier.

Table 1. The Urban Planter Dataset summary.

ID Class Scientific Name Higher Classification Habitat

0 Begonia Maculata Begonia maculata Begonia Brazil

1 Coleus Coleus Ocimeae Southeast Asia and Malaysia

2 Elephant’s Ear Colocasia Aroideae Pacific Islands

3 House Leek Sempervivum Stonecrops Sahara Desert and Caucasus

4 Jade Plant Crassula ovata Pigmyweeds South Africa

5 Lucky Bamboo Dracaena sanderiana Dracaena Southeast Asia

6 Moon Cactus Gymnocalycium mihanovichii Gymnocalycium tropical and subtropical America

7 Nerve Plant Fittonia albivenis Fittonia South America

8 Paddle Plant Kalanchoe luciae Kalanchoideae South Africa

9 Parlor Palm Chamaedorea elegans Chamaedorea Southern Mexico and Guatemala

10 Poinsettia Euphorbia pulcherrima Euphorbia subg. Poinsettia Central America

11 Sansevieria Ballyi Sansevieria Ballyi Asparagaceae Africa, Madagascar and southern Asia

12 String Of Banana Senecio rowleyanus Ragworts South Africa

13 Venus Fly Trap Dionaea muscipula Dionaea Carolinas

14 Zebra Cactus Haworthia attenuata Haworthiopsis South Africa

Venus Fly Trap Parlor Palm Nerve Plant Paddle Plant House Leek

String Of Banana Zebra Cactus Sansevieria Ballyi Begonia Maculata Coleus

Jade Plant Elephant’s Ear Moon Cactus Lucky Bamboo Poinsettia

Figure 1. Examples of the fifteen species from the Urban Planter dataset. Note the similarity between
Paddle Plant and House Leek (top row, right), and between Coleus and Poinsettia (the middle and
last images in the last column).
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(a) Moon Cactus

(b) Nerve Plant

(c) Poinsettia

(d) Coleus

Figure 2. Classes that cannot be distinguished on color alone (moon cactus, nerve plant, poinsettia)
or shape alone (coleus).

4. Case Study
4.1. Methods

All recent most successful models for image classification are CNN-based. It has been
shown that shallow layers extract simple (low-level) features of an image, and deeper
layers can extract more complex (high-level) features. Thus, to make CNN more accurate,
researchers mainly increase their depth by adding more layers. Table 2 summarizes all
the networks applied in our study—including their architecture, size, and number of
parameters—in the chronological order of their introduction. The size of the networks
addresses the models pre-trained on ImageNet. Below, we briefly explain about each model.

Table 2. Summary of networks used in our study.

Network Used Models Architecture Size Params

VGGNet VGGNet16 13 convolution and 3 fully connected 113 MB 138 M
VGGNet19 16 convolution and 3 fully connected 153 MB 144 M

Inception Inception-v3 48 layers 169 MB 24 M
Inception-ResNet-v2 164 layers 419 MB 56 M

Xception Xception 36 convolution layers 160 MB 24 M

DenseNet DenseNet201 5 convolution (201 total) layers 144 MB 20 M

MobileNet MobileNet-v2 3 convolution (20 in total) layers 19 MB 13 M

One of the first successful inventions that demonstrated that the representation depth
is beneficial for the classification accuracy is VGGNet [26], introduced in 2014 for large-
scale image classification. VGGNet is composed of a sequence of convolutional and pooling
layers, followed by three dense layers. In this work, we use VGG16 and VGG19. The main
difference between them is a number of convolutional layers.
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The Inception [27] deep convolutional architecture was introduced in 2015 (Inception-v1).
Later, the Inception architecture was refined, first by the introduction of batch normaliza-
tion [28] in Inception-v2, subsequently by additional factorization ideas [29] in Inception-
v3. Next year, this architecture was refined again, in [30], and several architectures for
Inception-ResNet, including Inception-ResNet-v2, were proposed. In our case study, we
use two Inception-based models: Inception-v3 and Inception-ResNet-v2. The difference
between them is that Inception-v3 is a deep CNN not utilizing residual connections, while
Inception-ResNet-v2 is Inception style networks that utilize residual connections instead of
filter concatenation.

The Xception [31] model was proposed in 2017. It is an extension of the Inception architec-
ture which replaces the standard Inception modules with depthwise Separable Convolutions.

The Xception architecture has the same number of parameters as Inception-v3, but its
performance is better due to more efficient use of these parameters.

While CNNs go deeper and the path from the network input layer to its output layer
becomes longer, the chance of information to reach the other side gets lower. DenseNet [32],
introduced in 2017, solves this problem by ensuring maximum information flow with con-
nections from each layer to every other layer in a feed-forward fashion. DenseNet has
several compelling advantages: it alleviates the vanishing-gradient problem, strength-
ens feature propagation, exploits the potential of the network through feature reuses,
and substantially reduces the number of parameters.

MobileNets [33], also introduced in 2017, are based on a streamlined architecture that
uses depthwise separable convolutions to build light-weight deep neural networks. The
inventors of MobileNets empirically showed that smaller and faster MobileNets can be
built, using width and resolution multipliers by trading off a reasonable amount of accuracy
to reduce size and latency.

We used open-source implementations of all mentioned models using Keras and
TensorFlow, which are provided as part of the Keras Applications module https://keras.
io/api/applications/ (accessed on 24 April 2022). All the networks we used come with
predefined parameters and weights (pre-trained), only the number of epochs during fine-
tuning was set to a number with which a convergence of the loss function was reached.

4.2. Datasets for Transfer Learning

We used two external datasets for transfer learning:

• ImageNet. ImageNet was used for transfer learning in many tasks and domains in
computer vision. All DNNs that we applied are available with weights pre-trained on
ImageNet. The dataset contains about 1.2 M images classified into 1 K categories;

• Oxford102. In contrast to ImageNet, this dataset is much closer to the plants domain.
It contains about 8000 images of flowers assigned into 102 species.

The motivation behind using these datasets was threefold: (1) to see whether transfer
learning is efficient for the plants classification in our dataset, (2) to compare the gain of
pre-training on a large general dataset with the gain of pre-training on a more specific and
relevant but much smaller dataset, and (3) to check whether both datasets can be used for
optimizing pre-trained models.

4.3. Experiment Scenarios

We performed the following experiments:

1. Training the models from scratch, i.e., with random initialization, on the Urban Planter
dataset (denoted by 0-TL);

2. One-step transfer learning using Oxford102 (denoted by 1-TL-Ox), where models,
pre-trained on Oxford102, are trained and applied on Urban Planter.

3. One-step transfer learning using ImageNet (denoted by 1-TL-IN),where models, pre-
trained on ImageNet, are trained and applied on Urban Planter.

4. Two-steps transfer learning (denoted by 2-TL), where models, pre-trained first on
ImageNet and then on Oxford 102, were trained and applied on Urban Planter.

https://keras.io/api/applications/
https://keras.io/api/applications/
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The transfer learning was implemented as follows: we use models’ weights pretrained
on ImageNet/Oxford102. Then, we performed fine-tuning by replacing the last FC layer
with a softmax activation function. This training scheme follows the conventions of transfer
learning, where the pre-trained early layers of the network are frozen, and the newly added
layers are trained. Then, the early layers are unfrozen, and the model is further trained as
a whole. (Each model was trained for 50 epochs. We used the following hyper-parameters:
optimizer = tf.keras.optimizers.RMSprop (lr = 0.0001), loss = “sparse_categorical_crossentropy”,
metrics = [“Sparse Categorical Accuracy”]).

4.4. Data Preprocessing

In each experiment, the input images are resized to input dimensions of the respective
network (see Table 2). During the training, the batches are generated with real-time data
augmentation by tf.keras.preprocessing.image.ImageDataGenerator Keras method.
Except for this, no other adaptation or pre-processing was applied.

5. Results and Discussion

Table 3 contains accuracy scores for each experiment scenario. We can note that the
results of the experiment 0-TL are the lowest. This can be attributed to the size of the Urban
Planter dataset, i.e., more data are needed to accurately train DNNs with a very large
number of parameters. Both Oxford102 and ImageNet pre-training (experiments 1-TL-Ox
and 1-TL-IN) improve the results. We have three exceptions—both Inception models and
VGG16 perform worse in 1-TL-Ox than in 0-TL. However, all models, including these three,
perform significantly better when pre-trained in ImageNet (1-TL-IN).

Table 3. The accuracy rates on the Urban Planter dataset in different experiments.

0-TL 1-TL-Ox 1-TL-IN 2-TL

Xception 66.33% 69.67% 94.67% 95.00%
Inception-ResNet-v2 74.33% 72.00% 93.33% 93.67%
Inception-v3 71.67% 62.33% 91.67% 90.00%
DenseNet201 63.33% 66.33% 96.00% 94.67%
MobileNet-v2 6.67% 41.67% 86.33% 83.67%
VGG19 51.67% 59.00% 70.67% 75.00%
VGG16 62.00% 57.67% 80.67% 81.00%

In general, the results of transfer learning with the ImageNet are higher than those
of transfer learning with the Oxford102. This outcome can be explained by the size of
the datasets used for pre-training: ImageNet contains over 1.2 M million images, while
Oxford102 contains only about 8000 images. It bears evidence that a training size plays a
more crucial role for fitting networks’ parameters than a training domain.

The results of the experiment 2-TL—two-steps transfer learning—are very close to
the results of the experiment 1-TL-IN—transfer learning with ImageNet pre-training only.
As such, we can conclude that the following pre-training on Oxford102 has almost no
influence on the quality of the classification models pre-trained on ImageNet and their
ability to classify plants in Urban Planter. The possible explanation for this outcome is also
the superior size of the ImageNet and its rich class diversity. Many features and patterns
are shared between different categories, and it seems that Oxford102 hardly adds any new
information to it.

In addition, we can note a significant gap in the performance of the MobileNet in the
experiment 0-TL. After training for 100 epochs, its classification accuracy reached only
6.67%. However, the accuracy rates of the MobileNet in other experiments are compa-
rable to the other models, and even higher than the accuracy rates of both VGGs in the
experiments 1-TL-IN and 2-TL. The MobileNet architecture is much more shallow than the
architecture of advanced deep models. Therefore, to learn complex features needed for
fine-grained classification, it requires a larger amount of data.
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We can see that Xception, Inception-ResNet-v2, and DenseNet201 are the best-performing
systems in most scenarios. Their advanced architectures can explain their superiority.
Both the Xception and Inception-ResNet-v2 models are the extensions of the Inception
architecture. The Inception architecture is characterized by Inception modules—modules
that combine multiple layers with their output filter banks concatenated into a single output
vector, which forms the next layer’s input. In the DenseNet architecture, each layer receives
direct input from all preceding layers; consequently, it can learn very diverse features
and patterns.

In comparison to the previous works, the following can be concluded:
(1) No direct comparisons between accuracy scores can be made because our results are

obtained on a new—Urban Planter—dataset. Previous results range from 25% to 99% [14]
on different datasets;

(2) The majority of studies proposed approaches for plant classification that are based
on the analysis of only one part of a plant’s structure. Leaf followed by flower was the
most widely studied part [14]. Scientists focused on leaves in plant classification because
leaves are available for examination throughout most of the year, they are easy to find and
to collect, and they can easily be imaged compared to other plant morphological structures,
such as flowers, barks, or fruits. Therefore, while collecting images for Urban Planter, it
was important to us to cover full images of the same plants through different seasons and
not to focus on leaves or other parts. Our approach to image classification obtains the entire
plant’s picture as an input;

(3) Most of the works applied traditional ML methods with feature engineering.
In contrast, our approach does not require feature engineering because it applies DNNs
which encode the input images automatically;

(4) To the best of our knowledge, our study is the first one that compares between
multiple DNNs and number of stages in transfer learning for plants classification. Mul-
tiple works applied DNNs for the plant classification in the last couple of years, both
as feature extractors [15,22] and as end-to-end classifiers [17–19,19–21,23,24], achieving
very good results. Some of them experimented with one deep architecture for plant
classification [17,18,20], some compared between multiple networks [19,21–23], and some
applied transfer learning [19,24], but neither experimented with both, including different
configurations and data sources for transfer learning.

6. Limitations of our Study

One of the limitations of our study is that the Urban Planter dataset is small. Currently,
we are extending the dataset to include more images of each plant class.

In addition, the introduced study does not take into consideration a hierarchical
structure of a species taxonomy. It is quite intuitive that distinguishing between categories
of species is a much easier task than between individual species in the same categories.
Therefore, we expect that fine-grained classification [34], which focuses on differentiating
between hard-to-distinguish object classes, will improve plant’s classification accuracy. We
plan to experiment with fine-grained classifiers in the future.

Another unaddressed problem in our study is that not every species always has
enough images in the training set. Currently, our dataset contains the same amount of
images per species. However, in the future, we plan to experiment with few-shot learning,
which aims at learning a classifier to recognize classes with limited training samples [35].
Given such classifiers, researchers will be less dependent on a coverage of the available
training datasets.

7. Conclusions and Future Work

This paper introduces a new dataset—Urban Planter—and reports the results of an
extensive empirical case study for urban plants classification with transfer learning with
multiple DNNs.
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The Urban Planter dataset represents species of houseplants, which can be grown
at home in any climate (mostly desert) and barely covered by existing datasets, thus
contributing to the diversity of the available plants’ datasets.

The study aims at evaluation of multiple DNNs, which are state-of-the-art classifiers
used in computer vision, and different configurations of transfer learning with the help of
two benchmark datasets. We show that the pre-trained on ImageNet models can classify
Urban Planter with high accuracy (94–96% for the best models), and that ImageNet pre-
training achieves much higher accuracy rates than pre-training on the smaller Oxford102
dataset. We also show that two-steps transfer learning (ImageNet pre-training followed
by Oxford102 pre-training) has almost no effect on the classification score. Thus, we can
conclude that pre-training on an extensive general dataset is enough for fitting parameters
of a fine-grained classifier. The results of experiments prove that a training size plays a
more important role for fitting networks’ parameters than a training domain in our case.

The study was conducted as a part of the undergraduate project with the aim to
develop a mobile application assisting urban planters. The Urban Planter dataset, the video
demo, and the code of the web app for urban plants classification are available on https:
//github.com/UrbanPlanter/urbanplanterapp (accessed on 24 April 2022) (The current
version must be installed on a local host. We are currently deploying the server to the
Heroku platform https://www.heroku.com/(accessed on 24 April 2022)).

To pursue a practical benefit from our study and contribute to the United Nations’
2030 Agenda for Sustainable Development, (https://sdgs.un.org/2030agenda (accessed
on 24 April 2022)), we plan to extend our dataset and study to contain more species,
including edible plants in the future. In addition, we intend to work on a new version of
our application, which will provide more helpful information to the end user in addition to
the plant’s category. This can be done by linking the categorization results with external
data sources.
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