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Abstract: Grammatical inference of context-free grammars using positive and negative language
examples is among the most challenging task in modern artificial and natural language technology.
Recently, several implementations combining various techniques, usually including the Backus–Naur
form, have been proposed. In this paper, we explore a new implementation of grammatical inference
using evolution methods focused on the Greibach normal form and exploiting its properties, and also
propose new solutions both in the evolutionary processes and in the corresponding fitness estimation.
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1. Introduction

The theory of formal languages and grammars focuses on the description and the
properties of sequences of symbols. Practical applications of this theory include the design
of computer programming languages, compilers, computer processing of artificial and
natural language texts, speech recognition and speech synthesis, computational biology
problems dealing with biological sequences, processing, information extraction, annotation
of web pages etc.

A Context-Free Grammar (CFG) is a 4-tuple G = (N,T,P,S), whereas N is a set of non-
terminal symbols or variables, T is a set of terminal symbols, P is the set of production
rules and S is the starting symbol. The rules in P have the form A → a , a ∈ (N ∪ T)* and
A ∈ (N ∪ S), whereas * is the Kleene star.

A string of terminal symbols can be generated by a CFG when starting from the
symbol S and replacing continuously one variable of the string with the right part of a
production rule included in P. The process is terminated when all variables in the string
are eliminated. The finite or infinite set of all possible sentences generated by the CFG
defines the corresponding language L(CFG) of the grammar. Typically, the description
length of the CFG is significantly lower than the L(CFG), therefore CFGs are preferred in
computer applications to encode and process artificial and natural languages due their
compact description.

The inverse problem is known as the grammatical inference problem and is defined
by a process to derive a CFG, given a finite sample of the language L(CFG) and a set of
sentences not belonging to the L(CFG). Grammatical Evolution (GE) [1] is a hybrid com-
putation technique which is used to solve the grammatical inference problem, combining
genetic optimization methods [2] and CFG, mainly in the Backus–Naur Form (BNF).

Grammatical Evolution has been used in a variety of optimization problems with many
variants and hybrid implementations with other well-known algorithms. Such variants
with the use of heuristics and stochastic methods [3–5], with some rather interesting
results, are common in this field. Moreover, GE has been used successfully with Neural
Networks (NN) [6] or other Machine Learning (ML) methods such as SVMs [7]. Due to
the strictness of the BNF representation of CFG, it is common for Grammatical Evolution
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(GE) algorithms to generate new chromosomes—through the operations of crossover and
mutation—that are either not in the BNF form or even worse are not CFGs. In that case,
these chromosomes should be dismissed and some other heuristic techniques must be used.
It is clear that grammatical inference methods are a necessity in many applications where
CFGs can be extracted from artificial or real string datasets. There have been many methods
proposed for the inference problem both analytic [8,9], evolutionary [10,11] or using ant
colony optimization tools [12]. In many cases, the complexity of the proposed method is
polynomial and/or complex structures such as meta-grammars are introduced [13], which
often increase the complexity of the proposed method.

Recently, the estimation of CFGs from positive and negative samples is derived as a
Boolean satisfiability problem (SAT) [14]. The set of training strings is encoded and limits
on the sizes of rule sets in Chomsky Normal Form (CNF) are used by a SAT solver to define
the CFG. The experimental results suggest that the complexity of inferring CFG is related
to its theoretical limitations. In [15,16], the tabular representation algorithm (TBL) and as
an improved version is applied for CNF inference, using a dynamic programming method
to store the exponential number of all possible grammatical structures in table similar to
CYK of polynomial size. A genetic algorithm is used to solve the NP-hard partitioning
problem of the non-terminals set.

A CFG definition method based on automatic distillation of structured patterns is
presented in [17], relying on statistical pattern extraction and structured generalization.
The proposed method is evaluated on artificial grammar data, on natural-language corpora
such as ATIS and CHILDES, in languages as diverse as English and Chinese and in protein
sequence data.

In this paper, a novel evolutionary method for grammatical inference [18] is described
and evaluated adopting a simple and efficient grammar description method, the Greibach
Normal Form (GNF) [19], which is used to describe the CFG in place of the BNF or any
equivalent formalism. Additionally, several evolutionary techniques regarded as improve-
ments by many researchers in the evolutionary programming field have been implemented.
The proposed method has several advantages compared to previous reported methods,
ensuring valid structure at each generated CFG after crossover and mutation, fast conver-
gence to a reliable grammar under all restraints of a CFG in the GNF. Furthermore, a depth
aware parser that enables more descriptive estimation of the fitness of each chromosome
is presented. Quantitative results related to both advantages and disadvantages of the
proposed method are presented in low complexity CFG inference problems and several
qualitative issues is given in the last part of this paper.

In the following two sections, the proposed algorithm components and its detailed
description are given.

2. Definition of the Key Components
2.1. Greibach Normal Form

The GNF is formally defined by the 4-tuple G = (N,T,P,S), where P is the production
rules are in the form A→ a a, with a ∈ (N ∪ S)* , a ∈ T and A ∈ (N ∪ S) and the rule S → λ,
λ is the empty string, may exist.

A simple example of a GNF: G = ({S, A}, {a, b}, P = {S → a|aA, A → b|aAS}, S).
The language of the GNF is the infinite set L(GNF) = {a, aa, aa, abaaaabba, ...}

GNF was also used to show that each CFG can be accepted by a push-down automation
as each CFG can be transformed to GNF [20].

2.2. Genetic Operations

In Genetic Programming, it is common for each chromosome, which is a candidate
solution, to be represented by a string of arbitrary length where the genetic operations of
selection, crossover and mutation will be applied when the new generation chromosomes
are estimated. In Genetic Evolution [21], this string consists of either decimal or binary digits
(chromosome) which is then mapped to the equivalent CFG (phenotype). All candidate
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grammars construct a current population and a fitness value proportional to the goodness of
the problem description can be estimated at every chromosome. The operators of selective
crossover and mutation are applied to the population for several generations until in the
pool of chromosomes of the last generation, an acceptable maximum of the goodness value
is reached or the maximum number of generations is achieved.

2.3. Over-Fitting and Generalization

In general artificial intelligence and machine learning implementations, one may come
across over-fitting and generalization problems; over-fitting occurring when models or
procedures that violate Occam’s razor principle or using too many adjustable variables
which may result in under-performance on unseen data. Poor generalization also occurs
when a model or a procedure validates not only what should be validated, the training
data, but also the majority of any random inputs or data.

In grammatical inference, overfitting appears in GNFs with a small number of general
production rule,s which validates almost any string of terminal symbols, while over-fitting
in GNF occurs when there are too many production rules with respect to a given dataset.
We tackle both problems in the proposed algorithm.

3. Proposed Algorithm of Grammatical Evolution for Greibach
Context-Free Grammars

In this section, the proposed GE method for grammatical inference of GNF using
positive and negative sequences of terminal symbols is given, as well as the actual im-
plementation. The advantages of our method with respect to convergence accuracy and
efficiency are also highlighted through the method’s analysis. Various evolutionary tech-
niques are inspired by previous implementations, while the GNF has never been used
before in GE for CFG inference from examples.

3.1. Data Requirements and Parameters Definition

The proposed GE inference algorithm for GFN estimation requires a number of data
strings and the definition of several parameters which affect the algorithm’s convergence
and efficiency.

1. Two training datasets. The positive set of terminal sequences Sp is used to be ef-
fectively parsed by the GFN solution, i.e., Sp ⊂ L(GNF) and the negative set Sn
of terminal sequences is used to avoid generalization of the candidate solutions,
i.e., Sn ∩ L(GNF) = ∅;

2. Evolutionary parameters:
The mutation rate is the probability rate of applying the mutation operator.
The elitism rate is the percentage of best chromosomes being migrated to a new popu-
lation.
The size of the population is the number of candidate solutions at every generation.
The convergence criterion in the form of a fitness value that is considered sufficient
for a good candidate solution.
The Parental portion is the percentage of the best chromosomes that will be assigned
with a probability to generate offsprings.

3. GNF parameters:
The Size of the set N (non-terminal symbols), denoted by nN .
The Terminal symbols set T which is inferred by the positive and negative examples
and its size is denoted by nT .
The maximum length of the production rule (RLmax) and a maximum number of the
production rules (NoRmax) in a GNF grammar to be used in the pool initialization step.
The sub-parse parameter a (<1) that facilitates better estimation of a chromosome’s
fitness
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3.2. The Proposed Genetic Evolution Inference Method

Step 1 Initialization:
The three sets of the CNF: N,T,S are defined, whereas P will be estimated in the

following steps. N is automatically estimated from the datasets, and T, S are calculated
according to nN . In our implementation, all the sets are enumerated to accelerate the
computer based processes. According to this approach, the starting symbol S ≡ 0, and the
set T (with nT symbols) will be the one-to-one map of each unique character or terminal
symbol to an integer value. We use the number nN of non-terminal symbols to generate the
set N = {nT + 1, ..., nT + nN }. On Table 1 the enumerated symbols map is shown.

Table 1. Enumerated Symbols map

Set From To

S 0 0

T 1 nT

N nT + 1 nT + nN .

In the enumeration map, no integer number is skipped. In order to not interfere with
the generality of our algorithm, we choose maximum chromosome length as
RLmax * NoRmax.

The maximum length of each production rule RLmax and the maximum number of
production rules NoRmax is used to generate random new chromosomes in the initial
population up to the initial population size of the GNF in the first generation. If a random
chromosome does not include the starting symbol S in the head of any production rule,
this chromosome is discarded and the random generation process is re-activated for this
chromosome. Each chromosome is stored in the population pool.

An example of the enumeration process with a phenotype to chromosome conver-
sion follows.

Let the production rules set P = {S →d A, A → e B C, B → e, C → f}, N = {A,B,C},
T = {d,e,f} and S = {S}.

1. Every terminal and non-terminal is stored to the chromosome. In our example this
chromosome is:

S d A A e B C B e C f

2. The generated enumeration map becomes:

S d e f A B C

0 1 2 3 4 5 6

3. The phenotype is converted to an enumerated array as:

S d A A e B C B e C f

0 1 4 4 2 5 6 5 2 6 3

Step 2 Fitness calculation:
The inverse mapping of each chromosome to the corresponding grammar is estimated.

The fitness value is calculated by parsing both positive and negative string databases with
each chromosome GNF in the chromosome pool. After parsing the positive and negative
examples, the well-known true positive (TP), false negative (FN), false positive (FP) and
true negative (TN) rates are estimated. TPs and TNs contribute +1 to the fitness value of
each chromosome GNF, while FPs contribute -1 and FNs contribute −1 + a ∗ D, where a
is the sub-parse parameter defined in the previous paragraph. D is the ratio of the string
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length successfully parsed. From the above, it is obvious that maximum fitness equals the
size of both datasets and minimum fitness equals minus the size of both datasets.

An example of the term D calculation follows. Let the production rules set P = {S →d
A, A → e B C, B → e, C → f}, N = {A,B,C}, T = {d,e,f} and S = {S} as in the previous example.
If the string deefd was in the positive dataset then the term D should be equal to 0.2 as deef
can be parsed by the above grammar but in the string deefd only the four out of the five
symbols can be reached. Hence, D should be 0.8. If the candidate string was deefde then D
should be 0.666 and so forth.

Step 3 Convergence check:
The maximum fitness value of the current population GNFs is compared with the

predefined convergence criterion. If the best chromosome fitness surpasses the convergence
criterion or the maximum number of generations is reached, we accept the GNF with
maximum value as a solution to the inference problem and the algorithm is terminated.

Step 4 Evolution:
In the crossover operator, two parents are used to derive a new candidate GNF,

selected from the pool with respect to their crossover probability, which is estimated from
the corresponding GNF fitness values following the typical procedure of GAs. A random
offset from [0, chromosome− length] is generated for each chromosome. For the first parent,
a sub-chromosome from [0, ..., o f f set1] is taken and for the second parent sub-chromosome
from [o f f set2, .., chromosome− length]. Then, the two sub-chromosomes are concatenated
in order to generate a new offspring. The offspring is discarded and the process is repeated
only in two cases; if the resulting offspring is not in the GNF or if the starting symbol
S is not found in the head of at least one production rule. An example follows. Let
two chromosomes selected to produce an offspring [1, 5, 4, 7, 9, 3, 4, 2, 8], [9, 1, 3, 2, 7, 5, 4]
and the randomly generated offsets 3,4. Then, from the first parent the [1, 5, 4] and from the
second parent the [7, 5, 4] is selected and the the resulting offspring’s chromosome is the
concatenation of the selected sub-strings [1, 5, 4, 7, 5, 4].

The process of crossover is repeated until the predefined size of the population pool is
reached. Before an offspring enters the next generation, the mutation operator is applied
with probability equal to mutation rate. In the proposed method, the resulting chromosome
from the mutation rate is always checked in order to ensure valid GNF structure.

As the population evolves, the resulting grammars may have many small rules or
a smaller number of lengthy rules. The only constraint applied across generations is the
maximum length of each chromosome, but the maximum number of rules or maximum
length of rules may be greater than originally defined. This relaxation of constraints helps
diversify the new populations and better adapt to complex problems.

Step 5 Loop:
Go to step 2.

3.3. CFG and GNF Parsing Algorithms

In order to estimate the GE fitness of each chromosome GNF, a parsing algorithm must
be implemented. Optimal parsing algorithms do exist for CFGs that solve the problem
of whether a string can be generated by a CFG. Most of the parsers solve the problem
of parsing in polynomial time O(n2) up to O(n4), n being the length of the candidate
string to be parsed. The computational complexity of the parsing algorithm depends on
the implementation of the parser and the form of the CFG. Notable parsers are the CYK
algorithm [22], Early algorithm [23] and GLR [24].

The CFG parsers can be divided in two main categories :

1. top-down parsers [25] which search the candidate string from left to right and usually
implement a structure like a search tree;

2. bottom-up parsers [26] which search the candidate string from right to left and are
usually implemented through dynamic programming techniques.

Top-down parsers fail when left-recursions occur [27] (A → AB) and bottom-up
parsers fail when right-recursions occur (A→ BA) in some production rules. For general
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CFGs, hybrid implementations of top-down and bottom-up parsers are used. Greibach
Normal Form offers two interesting properties which accelerate the parsing process. GNF is
a left-recursion free grammar which means that any top-down parser will halt at maximum
depth n. Left-recursion-free means that one non-terminal symbol cannot exist both in the
head of a production rule and also be the leftmost symbol in the body of a production rule.
Additionally, every production rule consists of a terminal symbol which means that, at
most, n production rules are used in a successful parsing path in the parsing tree. In our
implementation we used a top-down parser which also provides an easy way to measure
the sub-parsed string as a tree is generated.

Hybrid parsers for general CFGs are worst-case scenario O(n3) but bottom-up parsers
have lower order in respect to the candidate string compared to the general case. The parser
used in our implementation is O(n2 log n) which furthermore accelerates the whole process.

The proposed parsing method was carried out in two steps used recurrently. First,
the components of the method were analyzed and the pseudocode of the method will be
presented after this.

The special notation used for the pseudocode is the sets (S, N, T, P) of a 4-tuple GNF G
represented as (G.S, G.N, G.T, G.P) respectively and w is the candidate word to be parsed
and consists only of symbols in set T. The notation wm

n means the sub-string from index n to
index m (m > n and m < length of w). Additionally, the notations ruleNTerminals, ruleTerminal
and ruleHead represent the body of the rule, without the terminal symbol in the GNF, the ter-
minal symbol of a GNF production rule and the head of a production rule, respectively.
Each component of the algorithm returns a 2-tuple Parsed,Depth whereas Parsed is a
Boolean and Depth is an integer. The two steps are called ParseWord and Distribute.

{ Parsed,Depth } = ParseWord(StartSymbol,G,w)
Minimum Depth = length of w
for rule in G.P

if ruleTerminal == w[0] & ruleHead == StartSymbol
case 1 : { rule length = 2 & word length = 1 }

return { true,0 }
case 2 : { rule length = 3 & word length > 1 }

Minimum Depth- = 1
check ParseWord{ ruleNTerminals , G , wend

1 }
case 3 : { rule length > 3 & word length > 2 }

Minimum Depth -= 1
check Distribute{ ruleNTerminals , G , wend

1 }
end for
return { False, Minimum Depth }

end ParseWord

In the above function, with the instruction check, it is meant that if the recurrent call
of the function returns true, then the for loop is terminated and the 2-tuple of the called
function is returned by the ParseWord{ ... } function.

{ Parsed,Depth } = Distribute(array of Non-Terminals,G,w)
Minimum Depth = length of w
boolean B1, B2
integer D1, D2
for i in { 1,length of w -1 }

case 1 : size of array of Non-Terminals = 2
{ B1, D1 } = ParseWord( NonTerminals0, G, wi

0)
{ B2, D2 } = ParseWord( NonTerminals1, G, wend

i+1)
if D1 + D2 < Minimum Depth : Minimum Depth = D1 + D2
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if B1 & B2 return { True, Minimum Depth }
case 2 : size of array of Non-Terminals > 2

{ B1, D1 } = ParseWord( NonTerminals0, G, wi
0)

{ B2, D2 } = Distribute( NonTerminalsend
1 , G, wend

i+1)
if D1 + D2 < Minimum Depth : Minimum Depth = D1 + D2

if B1 & B2 return { True, Minimum Depth }
end for
return { False, Minimum Depth }

end Distribute

In this implementation, the two components are called recursively. The stack of
recurrent calls may be approximates of a DFS tree whereas the ParseWord function expands
the nodes to lower leafs and the Distribute function generates the branches (breadth) of the
parsing tree.

3.4. Advantages of the GNF Encoding

The GNF encoding offers a robust rule of thumb of whether the use of the crossover
operator may lead to a grammar which is not in the GNF: the chromosome of any grammar
in the GNF cannot have two consecutive terminal symbols. That means that we actually
have a priori knowledge of whether the genetic operators lead to a valid GNF. For the muta-
tion operator we only need to check whether the neighbouring symbols in the chromosome
are leading to two consecutive terminal symbols in the new chromosome. So the validity
of an offspring can be determined simply and robustly in fixed time. In cases in which an
invalid mutation occurs, we can retry a different mutation to a specific chromosome.

GNF representation also eliminates the probability of new chromosomes not being a
valid GNF with the crossover operator. An invalid offspring would be a chromosome with
two consecutive terminal symbols, something that can not occur in a GNF. This probability
for such cases is only 1/(R2) whereas R is the average length of a production rule counting
all symbols in the head and the body of a production rule. This probability is easily derived,
as for a grammar to be invalid the first subvector used in the crossover must end with
a terminal symbol (p1 = 1/(R) in the GNF) and the second subvector must start with a
terminal symbol (p2 = 1/(R) in the GNF). In these cases, our method chooses to reapply the
crossover operation in different locations of the original chromosomes. With this method,
the invalid offsprings probability is zero.

Finally, the use of GNF, facilitates a robust mapping of each grammar in a linear
structure with no auxiliary data needed except from the mapping of the terminal and non
terminal symbols.

The advantages of the GNF representation discussed offer a huge advantage in the
proposed GNF inference method, because different CFG formulations tend to increase
significantly the probability to introduce an invalid offspring through the crossover operator.
This means, that, in our case, a new pool of candidate solutions always contains valid
grammars adhering to the GNF structure and no parsing of chromosomes and discarding
is needed before the evaluation step. Typical cases where invalid offsprings are created
through genetic operations can be met in the bibliography in other forms of CFGs such
as the Backus–Naur form. For example, if the average length of a production rule in a
grammar is reported to be equal to 5, then the average probability, through the population,
of two chromosomes’ crossover leading to an invalid offspring is 4%. Using the GNF
constraints during crossover, these cases are discarded. Finally, the complexity of the
proposed method is equal to O(SGA) ×O(parse(data)) whereas an efficient top-down
parser such as the one presented can significantly drop the computational complexity.

3.5. Implementation Details

The complete GNF inference system using the GE method was implemented in ANSI
C++, which can be executed in all systems running the GNU C++ compiler.
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Multiple experiments were carried out to estimate the proposed algorithm behaviour
in different datasets and parameter values.

4. Experiments

The proposed method was evaluated in several experiments estimating both quanti-
tative and qualitative metrics. The code that was used to execute all experiments is pub-
licly available on https://github.com/stranger-codebits/Greibach-Grammar-Inference,
accessed on 1 March 2020. All experiments where conducted on a Linux machine with an
Intel i7-3770K processor (7000 BogoMIPS) with 16 GigaBytes of RAM.

The eight languages used by Wieczorek et al. [12] were considered alongside L9
language that showcases some key advantages of our method, and some special cases
were selected as benchmark. All languages are context-free except for the third and ninth
languages which are regular.

1. L1 : ambn, 1 ≤ m ≤ n
2. L2 : balanced parentheses
3. L3 : ambn, 1 ≤ m, 1 ≤ n
4. L4 : {w|w ∈ {a, b}, #a(w) = #b(w)}
5. L5 : {w|w ∈ {a, b}{a, b}+, w is a palindrome }
6. L6 : {w|w ∈ {a, b}, 2#a(w) = #b(w)}
7. L7 : the language of Lukasiewicz (S→ aSS, S→ b)
8. L8 : {aibjck|i = j or j = k, 1 ≤ i, j, k}
9. L9 : {w|w ∈ {0, 2, 4}+ or w ∈ {1, 3, 5}+}.

The first eight languages were used by Nakamura and Eyrad et al. [12,28,29], while
the inherently ambiguous context-free language L8 is the evaluation language showing that
the method proposed by Nakamura and Matsumoto [30] is not convergent as mentioned
by the authors.

The ninth language is a regular language in which each word has strings that contain
either only odd or only even numbers. These examples are evenly distributed. This
language was selected for a very specific reason. Due to having random negative examples,
any inference algorithm may fall to a local minima where only strings with even, or only
strings with odd numbers are parsed. This is the fastest path to reach a local minima. We
used this grammar to compare the effect of the sub-parse variable to the convergence of
the algorithm.

For the first seven languages, we listed all positive words with length(w) ≤ 7 and for
the eighth language we listed all positive words with length(w) ≤ 12. For L9, we generated
100 random positive examples (50 with odd numbers and 50 with even numbers) and
100 random negative examples.

4.1. Special Test Cases

We consider L9 as a special test case. This is because the dataset contains two very
distinct and strong local minima for the inference algorithm. The positive dataset can be
described from two distinct context-free languages, one containing only even digits and
one containing only odd numbers. This was developed and designed as an evolutionary
technique can easily converge in the local minimum but it may be unable to also cover the
rest of the dataset.

Finally, the last dataset considered was strings that represented the valid Collatz series.
The corresponding Collatz series, Col(i) for i ∈ [5, 25) [31], were used as positive data and
random number series were used as negative data. This dataset was created in order to
evaluate the method on long and complex strings with no clear structure and dependencies
as the previous nine languages.

4.2. Experiments Goals

For the first eight languages, all experiments where executed 10-fold with the defaults
algorithm parameters. These are population = 500, generations = 500, mutation rate

https://github.com/stranger-codebits/Greibach-Grammar-Inference
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= 0.03, non-terminals set size = 10, elitism rate = 0.03, max chromosome length = 100,
and D = 0.01. The goal of these experiments is to measure the generality of our method,
analyze cases where results where unexpected and, finally, compare the method with other
well-established techniques.

With L9 experiments, we evaluate the ability of the proposed method to converge on a
global minimum instead of the strong local minima described previously. That is the reason
that we also used smaller population (P = 50) and a smaller number of non-terminals
(NT = 5) and D = 0.5.

Furthermore, with L10 we evaluated the proposed method’s accuracy with respect to
long structured strings and the ability to infer complex relationships inside a set of positive
examples. For all experiments, the default parameters were used.

One final experiment we conducted was to test the algorithms’ capabilities with respect
to the max chromosome length. The experiments were conducted using a positive dataset
of 100 common English names and a negative dataset which consisted of the 114 most
common English words (both datasets are downloaded from http://archive.ics.uci.edu/
ml/index.php, accessed on 1 March 2020), population size 1000, mutation rate 3 %, elitism
3%, non-terminal symbols set size 30 and max chromosome length 30, 50 or 75, maximum
number of generations 200 and number of candidates per generation 1000. The maximum
fitness value for a chromosome is estimated to be 214 and the minimum is −214.

All experiments were conducted 10-fold with and without the sub-parse variable in
order to have more quantitative results.

5. Results

In Table 2, the results from running 10-fold experiments on the first eight languages
are presented. G, number of generations for convergence, NT, number of non-terminal
symbols in the best solution, R, number of rules, genlen, chromosome length, ACC, accu-
racy, TPR, true positive rate, TNR, true negative rate and meantime, experiments mean
time are denoted.

As is presented for the majority of the languages, the accuracy of the proposed in-
ference method is almost 1 (ACC). In the cases where the accuracy is less than optimal,
we observed that, by changing the max chromosome length to 150 (as opposed to 100
that is the default parameter), the algorithm converged. This means that, given a large
enough grammar, our method is capable of converging for any of the target languages.
Furthermore, we executed the same set of experiments without the term D (sub-parse
variable) and on average, the accuracy was 3% less and the number of generations needed
for convergence were 5% more.

The number of non-terminal symbols in the best chromosome of the final generation
is usually less than the default number. So, in many cases the method performs a reduction
of the terminal symbols set during evolution. The mean number of non-terminals is similar
in cases where we re-executed the experiments with 20 non-terminal symbols during
method’s initialization.

These results, with a notably small chromosomes in the algorithm, lead to comparable
results with Wieczorek [12] where, in this case, the success rate of the overall experiment
was measured. Furthermore, if we used greater population sizes and chromosome sizes
we can claim a 100% success rate but we aim for realistic grammars with a small number
of rules.

In the case of the special L9, we conducted experiments with the parameter values
described in the previous subsection. In the majority of the experiments, the use of the
sub-parse term led to faster convergence and with greater accuracy. In 10 experiments,
the average accuracy was >10% greater when using the sub-parse variable while the
algorithm converged in 16% less generations.

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
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Table 2. Experimental results from L1−8.

L G NT R gen_len

min mean max min mean max min mean max min mean max

L1 12 20.6 49 9 9.8 10 10 23.8 31 34 79.0 95
L2 500 500.0 500 6 8.3 10 20 27.3 32 75 88.8 100
L3 4 10.8 19 9 9.9 10 17 21.6 27 54 75.6 94
L4 500 500.0 500 7 8.4 10 17 27.0 41 48 74.0 99
L5 500 500.0 500 6 8.4 10 15 25.0 35 51 74.7 98
L6 500 500.0 500 8 8.9 10 23 28.9 34 79 90.9 100
L7 17 47.6 157 8 9.7 10 10 22.9 28 32 73.2 98
L8 44 214.1 500 8 8.6 10 25 30.9 38 74 87.2 100

L ACC TPR TNR mean_time

min mean max min mean max min mean max

L1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.150
L2 0.959 0.963 0.975 0.863 0.886 1.0 0.97 0.981 0.99 49.95
L3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.356
L4 0.954 0.974 0.990 0.821 0.907 1.0 0.975 0.997 1.0 57.85
L5 0.858 0.881 0.960 0.333 0.462 1.0 0.95 0.994 1.0 259.0
L6 0.915 0.936 0.957 0.444 0.611 0.833 0.96 0.994 1.0 39.89
L7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.115
L8 0.987 0.995 1.0 1.0 1.0 1.0 0.98 0.993 1.0 110.7

In Figure 1, a comparison of the convergence of two typical experiments, one with the
sub-parse variable and one without, is presented. It is clear that, when omitting the term D,
the solution converges to one of the local minima described in the previous paragraphs.
This is clearly not the case for the experiment using the sub-parse variable and we consider
this behavior as an improvement of the typical ways to calculate the fitness in standard
genetic algorithms for grammatical inference.

Figure 1. Effect of sub-parse variable on L9.

For the special language L10, we executed 10-fold experiments with and without
the sub-parse variable. The method was able to derive complex grammars that perfectly
described the dataset. Again, the average accuracy was higher with the use of the sub-parse
variable and the method converged faster.

Finally, in Figure 2, the maximum fitness value and the average fitness of the top 3%
individuals at each generation is plotted for the chromosomes of lengths 30, 50 and 75
for the final experiment discussed in the previous section. Green and red lines show the
corresponding best fitness and the average fitness of the best 3% candidates per generation
using a chromosome length equal to 30, blue and orange lines show the corresponding
fitness rates using a chromosome length equal to 50 and purple and brown lines show the
corresponding fitness rates using a chromosome length equal to 75.
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Figure 2. Best population fitness rate with chromosomes of length 30, 50, 75.

It is clear that the convergence of the algorithm depends on the chromosome size,
when target languages are complex and no clear pattern or structure is present.

6. Conclusions

In the vast majority of the conducted experiments it is clear that the proposed GNF
inference algorithm follows the exponential learning curve after the first few iterations.

The main reason for some experiments with low accuracy is the use of too small
chromosomes. In experiments with low accuracy, the same test was reevaluated with
greater chromosome length and the algorithm converged to 100% accuracy.

We also observed that the algorithm can perform a partial reduction of the non-
terminal symbols set after convergence. In Table 2 especially, we can see how many
symbols are on average the best solution developed by the method.

The use of the sub-parse variable heuristic significantly improved the convergence
speed and in many cases replaced the random search in the first generations of the genetic
algorithm with quantitative fitness estimation. This is evident from the comparisons from
each experiment conducted.

Furthermore, the genetic algorithm converged even without the use of the sub-parse
variable in many of the test cases presented. The premature calculation of Greibach
chromosomes and the discard of any invalid offsprings during the crossover operator
facilitates the algorithm to converge faster. Furthermore, due to the body of each GNF
rule containing an arbitrary number of non-terminal symbols, complex rules can be easily
created during crossover that can encode complex grammars.

7. Future Plans

Our future plans for this method include a more general overview of the algorithm for
in-the-loop control of the algorithms’ variables (auto-tuning), making the chromosomes
more robust using shuffled or permutated chromosomes reserving the phenotype, with
more complex use of the sub-parse term, maybe converting it to exponential.
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31. Ştefan, A.; Masalagiu, C. About the Collatz conjecture. Acta Inform. 1998, 35, 167–179.

http://dx.doi.org/10.1016/j.patcog.2005.01.004

	Introduction
	Definition of the Key Components
	Greibach Normal Form
	Genetic Operations
	Over-Fitting and Generalization

	Proposed Algorithm of Grammatical Evolution for Greibach Context-Free Grammars
	Data Requirements and Parameters Definition
	The Proposed Genetic Evolution Inference Method
	CFG and GNF Parsing Algorithms
	Advantages of the GNF Encoding
	Implementation Details

	Experiments
	Special Test Cases
	Experiments Goals

	Results
	Conclusions
	Future Plans
	References

