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Abstract: Hemiplegia is a condition caused by brain injury and affects a significant percentage of
the population. The effect of patients suffering from this condition is a varying degree of weakness,
spasticity, and motor impairment to the left or right side of the body. This paper proposes an
automatic feature selection and construction method based on grammatical evolution (GE) for radial
basis function (RBF) networks that can classify the hemiplegia type between patients and healthy
individuals. The proposed algorithm is tested in a dataset containing entries from the accelerometer
sensors of the RehaGait mobile gait analysis system, which are placed in various patients’ body
parts. The collected data were split into 2-second windows and underwent a manual pre-processing
and feature extraction stage. Then, the extracted data are presented as input to the proposed GE-
based method to create new, more efficient features, which are then introduced as input to an RBF
network. The paper’s experimental part involved testing the proposed method with four classification
methods: RBF network, multi-layer perceptron (MLP) trained with the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) training algorithm, support vector machine (SVM), and a GE-based parallel tool for
data classification (GenClass). The test results revealed that the proposed solution had the highest
classification accuracy (90.07%) compared to the other four methods.

Keywords: accelerometer; feature construction; grammatical evolution; radial basis function network

1. Introduction

Hemiplegia is caused by brain damage or spinal cord injury resulting in motor control
loss in half of a person’s body. The affected body area has issues, including movement
inability of one arm and leg in the right or left body part area. Other recorded problems
include movement in spastic patterns and stereotyped synergies. Additionally, there is
selective activity loss in the muscles responsible for trunk control, specifically in the flexion,
rotation, and lateral flexion muscles. Hemiplegia patients also suffer from difficulties
in trunk movement regardless of the muscle action type, and the abdomen’s muscles
demonstrate very high activity and tone loss [1,2]. The patient’s problems are not restricted
only to the affected areas, they are extended to a certain degree in all brain functions since
the human brain is a massive network of interconnected neurons. The person suffering from
hemiplegia will face motor impairment in both body sides, affecting balance, coordination,
sensory perception, and spatial orientation. The behavior, cognition, and memory will be
affected, causing a significant challenge in the rehabilitation procedure [3,4].

The current article proposes an automated system for diagnosing the hemiplegia type
(right or left body part is paralyzed) between healthy and non-healthy individuals. The
motivation behind creating such a system is to provide an inexpensive supplementary
tool that does not require expensive three-dimensional (3D) cameras for hemiplegia type
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diagnosis. The proposed solution is based on the RehaGait mobile gait analysis system
from HASOMED. The RehaGait mobile gait analysis system utilizes seven sensors placed
in four different body parts of the individual for documenting spatio-temporal-specific
data during walking. The sensors are provided by the RehaGait system, where one sensor
is placed on the patient’s hip and one sensor on each foot, shank, and thigh [5,6].

The selected gait analysis system includes an integrated video capture capability
for observing the patient’s condition. It can find the damaged areas and evaluates the
gait pattern. It is suitable for mobile use, identifies asymmetries in the lower limbs, has
movement freedom, and can visualize the results using a graphical representation [7,8].
Each sensor can capture signals from three different sources (accelerometer, magnetometer,
and gyroscope), although the proposed system utilizes only the data taken from the
accelerometer [6]. The captured data were divided into 2-second windows and underwent
a pre-processing and feature extraction process. Then, they were introduced as input to
the feature construction method for radial basis function (RBF) networks (FC4RBF) based
on grammatical evolution (GE) by Gavrilis et al. [9]. The training procedure utilized a
dataset composed of thirty individuals. The dataset is divided into ten healthy patients,
eight patients with left hemiplegia, and twelve patients with right hemiplegia.

The paper contains seven sections starting with Section 1, which presents the problem’s
description and motivation. Section 2 documents the related work regarding existing works
on hemiplegia. It also describes the algorithms used to compare the proposed method in the
paper’s experimental part. Section 3 describes the architecture of the selected approach for
the classification task. Section 4 depicts the proposed system’s analysis. Section 5 compares
the method with four machine learning algorithms, while Sections 6 and 7 include the
“Discussion” and “Conclusions”.

2. Literature Review

Existing methods are focused on different aspects, including stroke and hemiplegic
patients’ gait. The authors in Patil et al. [10] proposed a machine learning method based
on deep learning and convolutional neural networks (CNNs) to identify hemiplegic gait.
The study Yardimci [11] used a fuzzy logic system that utilized a Tsukamoto-type inference
method for the classification task between healthy and hemiplegic patients. The authors in
Manca et al. [12] used hierarchical cluster analysis for classifying the gait patterns of pa-
tients having equinus foot deformity. The work in Mulroy et al. [13] used non-hierarchical
cluster analysis, which utilizes the temporal/spatial and kinematic parameters of walk-
ing to categorize the gait patterns of stroke patients. The authors in Straudi et al. [14]
utilized cluster analysis for identifying gait patterns from Spatio-temporal parameters,
walking endurance, and sagittal plane kinematic profiles. This study aimed to categorize
the walking performance of hemiplegic patients. The study Luo et al. [15] used the gait data
from 20 hemiplegic and 40 healthy individuals taken from low-cost depth cameras. Then,
they used the random forest (RF) classification algorithm to analyze the importance of
different gait features. The authors in Zhu et al. [16] utilized the second version of Microsoft
Kinetic for Windows to record the walking trajectory data from patients with hemiplegia.
The data were used for gait identification feature extraction and introduced as input to a
Bayesian classification algorithm for automatic recognition of hemiplegic gait. Finally, the RF
algorithm was selected to identify each feature’s significance. Pauk and Minta-Bielecka [17]
conducted a gait analysis by comparing clustering and bi-clustering algorithms in 41 pa-
tients with hemiplegia. Moreover, they proposed a new bi-clustering algorithm named
KMB. Wang et al. [18] recorded body surface electrical signals from 16 stroke patients
having various degrees of rehabilitation and eight healthy individuals. These signals were
filtered and underwent a wavelet transform procedure for extracting features. Then, they
were introduced into linear regression (LR), ridge regression (RR), extreme gradient boost-
ing (XGBoost), and support vector machine (SVM) models for condition evaluation and
classification (healthy, mild, or severe hemiplegia). The work in Wong et al. [19] made a
foot contact pattern analysis in 60 hemiplegic stroke patients and 30 healthy subjects. The
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research’s objective was two-fold. First, they wanted to explore the feasibility of using a
foot contact pattern for neurologic recovery prediction. Second, they wanted to investigate
the ambulation training effect in patients with hemiplegic stroke. The authors in Wang
et al. [20] applied deep neural networks (DNNs) for stroke gait detection and abnormal gait
pattern classification. The work in Jung et al. [21] created a functional electrical stimulation
(FES) control system for enhancing gait rehabilitation in patients suffering from hemiplegia
after a stroke. They used DNNs to control the muscles’ electrical stimulation on the paretic
side. The DNNs were trained using muscle activity data from healthy subjects during gait.

A significant percentage of studies used data taken from children suffering from
hemiplegia, diplegia, or cerebral palsy. The authors in Di Nardo et al. [22] quantified the
asymmetric behavior of children with mild hemiplegia during self-selected walking using
features taken from surface-electromyography (EMG) and foot-floor contacts. They used
statistical gait analysis in 16 hemiplegic and 100 healthy children. The study Aguilera
and Subero [23] studied kinematic, kinetic, and EMG data from 278 children with spastic
hemiplegia in order to find useful gait patterns. The authors in Abaid et al. [24] created
a gait phase detection approach that is based on a hidden Markov model. It utilizes
single-axis foot-mounted wearable gyroscopes to record the input data. The authors in
Wang and Wang [25] conducted a gait analysis using 200 healthy and 20 children with
spastic hemiplegic cerebral palsy. The authors in Zhang and Ma [26] compared the artificial
neural network, discriminant analysis, naive Bayes, decision tree, k-nearest neighbors,
SVM, and random forest (RF) machine learning algorithms in a gait classification system.
The system contained gait data from 200 cerebral palsy children with spastic diplegia. This
comparison revealed that the artificial neural network managed to achieve the highest
precision accuracy. The work in Ferrari et al. [27] utilized a multi-layer perceptron (MLP)
and a recursive neural network (RNN) to classify 174 diplegic children into the four walking
pattern forms defined in the work of Ferrari et al. [28]. Kamruzzaman and Begg [29] applied
SVM for the detection and classification of children having spastic diplegic gait in a dataset
containing entries from 68 healthy and 88 non-healthy children. The system used stride
length and cadence temporal-spatial gait parameters as an input feature vector to the
SVM classifier. The authors in Orozco et al. [30] conducted an assessment analysis of gait
abnormalities in 30 children with spastic cerebral palsy. The work in Strohrmann et al. [31]
created a shoe-based wearable sensor system that utilizes active shape models to analyze
the center of pressure trajectories for gait deviation assessment. The experimental part
of their study involved the data collection from 15 children with cerebral palsy using
supervised and semi-supervised settings.

Many studies were focused on recognizing multiple neurodegenerative diseases. The
study Verlekar et al. [32] proposed a gait classification method for different diseases (diple-
gia, hemiplegia, neuropathy, and Parkinson’s disease) combined with normal gait patterns.
The system utilizes a pre-trained VGG-19 CNN for a generic image description. The authors
in Pandit et al. [33] conducted a gait analysis using four wireless modules equipped with
an accelerometer and gyroscope placed on the subject’s body. The received signals were
converted into image data and formed the input vector for transfer learning to the Inception
v3 CNN. The CNN can distinguish between normal, hemiplegic, diplegic, and Parkinsonian
gait. The study Nieto-Hidalgo and García-Chamizo [34] utilized a smartphone camera to
record the sagittal view of the patient’s gait. The recorded data were introduced as input
to a computer vision algorithm for extracting different gait parameters. These parameters
classified gait into five categories (normal, diplegic, hemiplegic, neuropathic, and Parkin-
sonian). The work in Goyal et al. [35] developed gait features from the human pose key
points to detect Parkinson’s disease, diplegia, hemiplegia, and Huntington’s chorea. The
authors in Nithyakani et al. [36] classified gait pathologies with the help of a CNN, which
receives as input silhouette images taken from cameras. The study Pogorelc and Gams [37]
developed a system for detecting abnormal gait patterns in older people which are related
to health issues. The subject’s gait is recorded using a system containing tags placed on
the patient’s body and sensors installed at their apartment. The model was tested using
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the naive Bayes, and RF classification algorithms implementations in Weka [38,39]. It can
recognize five gait types (normal, hemiplegic, Parkinson’s disease, back pain, and leg pain),
with the RF algorithm having better accuracy.

A number of systems are targeted for stroke patient rehabilitation. Zhang and
Zhang [40] developed a hybrid network model for guiding the control strategy design of
a robotic system for active rehabilitation training of stroke patients. The hybrid network
combines a CNN and a spatial–temporal-embedded long–short-term memory (SQLSTM)
model. The authors in Dose et al. [41] used a CNN on electroencephalogram (EEG) signals
for the development of a brain-computer interface (BCI) system aimed at stroke patient
rehabilitation. The study Buckley et al. [42] used a single wearable sensor on stroke pa-
tients’ trunks to measure gait asymmetry, which is a targeted cardinal symptom during
rehabilitation. They compared many acceleration-derived asymmetry variables utilizing
an instrumented walkway (GaitRite). Their research concluded that step regularity was
the most valid and reliable asymmetry outcome. The work in Kaku et al. [43] developed a
method combining kinematic data from stroke patients wearing inertial measurement units
with CNNs. The proposed system identifies functional primitives, which in turn form reha-
bilitation activities. Panwar et al. [44] created a framework based on deep learning that can
classify three upper limb arm movements (extension, flexion, and forearm rotation). These
movements can become a rehabilitation progress measure for stroke patients. The authors
in Kashi et al. [45] developed a model that helps stroke patients during their rehabilitation.
The model utilizes the RF algorithms and gives feedback to stroke patients regarding the
undesirable movements they make during the execution of their rehabilitation exercises.
The study Lin et al. [46] proposed a machine learning method for predicting daily living
activities in stroke patients. All the above methods produce good results, but they cannot
distinguish between the two hemiplegia types (right or left).

The proposed system was compared with the four classification algorithms described
below. The study Broomhead and Lowe [47] created the radial basis function neural net-
work (RBFNN) types which are inspired by the locally tuned response found in biological
neurons. An RBFNN utilizes radial basis functions (RBFs) as neuron output functions,
and its training process involves a one, two, or three-step manner [48]. Broyden, Fletcher,
Goldfarb, and Shanno proposed a novel quasi-Newton method (BFGS) that utilizes a new
updating formula for the Hessian’s approximation [49]. Vapnik and Chervonenkis devel-
oped the support vector machine (SVM) method. Its main characteristic is the creation of an
optimal or a set of optimal hyperplanes in a high or infinite-dimensional space. The created hyper-
plane(s) can be used in various tasks, including classification and regression [50,51]. Finally, the
GenClass parallel tool can create classification programs in a C-like programming language
using GE. It is designed to run in multi-core environments, which can significantly reduce
its running time [52,53].

3. The FSC4RBF Algorithm

A genetic algorithm (GA) is a computational process inspired by Charles Darwin’s
theory of evolution. It solves a computation problem using an artificial evolution process
that imitates biological procedures such as natural selection and survival of the fittest. A
GA starts with the initial population, a collection of possible solutions to the problem. Each
individual forming a possible solution is termed a chromosome and follows a specific
encoding scheme. In early GA implementations, the bit-string encoding was adopted,
where each individual was encoded as a bit-string stored in a vector or array. Alterna-
tive encoding schemes involve creating chromosomes having integer and real values. A
GA uses the selection, crossover, and mutation procedures at each algorithm’s iteration
(generation). The selection process involves evaluating each individual and selecting the
most promising ones for reproduction according to a fitness criterion. The crossover step
reproduces the population by combining two existing chromosomes (parents) to produce
a better solution (offspring). The initial crossover implementations with the bit-string
encoding scheme utilized the one-point crossover. It involved creating offspring by using
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the mutual exchange of information between two parent chromosomes. The mutation
operator added diversity to the population by randomly selecting a position inside the
chromosome (gene) and replacing it with another value from the same encoding scheme.
The selection, crossover, and mutation procedures are repeated at each generation until the
stopping criteria are satisfied [54,55].

The GE is a GA-based method utilizing an evolutionary process typically used to
create computer programs. The term computer program denotes any instruction sequence
that can perform a specific task ranging from a single expression to many statements. It
is biologically inspired by the protein generation process and can generate a computer
program in an arbitrary language with the help of a binary string with variable length.
The structure of a GE contains a context-free grammar (CFG), a fitness function, and an
evolutionary algorithm. The CFG describes the syntax of the created programs utilizing a
rule set containing a start symbol, a collection of terminal symbols, non-terminal symbols,
and production rules which are insensitive to the sentence’s context. It uses a mapping
process by utilizing the binary strings to select the production rules defined in a CFG using
Backus–Naur form (BNF) metasyntax notation. The fitness function is used to evaluate the
created programs’ quality. Finally, the evolutionary algorithm (usually a GA) is selected
to explore the search space of all the programs definable from the CFG for finding the
program that best satisfies the fitness function. [56,57].

BNF is a meta-language used to specify the symbol sequences that define a syntactically
valid program in a specific language and is characterized by the following five rules.

• The differentiation of non-terminal symbols from terminal letters is conducted using
special brackets containing them.

• The definition alternatives are bundled together.
• Left is distinguished from right by adopting the “::=” symbol.
• The alternatives are distinguished with the “|” symbol.
• Full names describing the defined strings’ meaning are utilized as non-terminal sym-

bols [58,59].

In a CFG, the production rules have the form V → w where V denotes a non-terminal
symbol, and w denotes a sequence comprised of terminal and non-terminal symbols. The
mathematical definition of a CFG can be seen in Equation (1) where G defines the CNF, VT ,
is a collection of terminal symbols, VN , is a collection of non-terminal symbols, P are the
production rules, and S denotes the start symbol [9].

G = (VT , VN , P, S) (1)

In GE, a gene is an integer value defining a production rule from the P set. The
chromosome creation follows an iterative procedure beginning from the start symbol,
where the non-terminal symbols are replaced with the production rule’s right part. The
procedure follows the rule defined in Equation (2) where B denotes the next gene, and RN
are the production rules for the specific non-terminal symbol. The procedure continues
until the end of the chromosome’s length is reached. If an invalid expression is created,
then the process is repeated from the chromosome’s beginning, or the chromosome receives
a low fitness value, and the mapping process terminates [9].

rule = B mod RN (2)

The FSC4RBF method is based on GE and uses an evolutionary method for the
creation of new features with the purpose of lowering the generalization error in RBFNNs.
Algorithm 1 describes the structure of the FSC4RBF approach [9].
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Algorithm 1 The FSC4RBF Method

1: create Population = [g1, g2, . . . , gNg ], Ng ∈ N
Create the initial population.

2: loop
Start the evolution process.

3: f = [ f1, f2, . . . , fNg ]
Calculate each chromosome’s fitness.

4: if (GenNo = GenMax) or (best(Population) > solutionacceptable) then
Check if the maximum number of generations is reached or if the chromosome
with the best fitness surpasses a predefined acceptable threshold.

5: solutionbest ← best(Population)
Select the best solution.

6: return solutionbest
End the evolution process and return the best solution.

7: end if
8: Populationselect ← select(Population( f ))

Create the new population from the fittest chromosomes.
9: Populationcrossover ← crossover(Populationselect)

Create the offspring.
10: Population← mutation(Populationcrossover)

Mutate the population.
11: end loop

The FSC4RBF method starts by creating the initial population (step 1), where each chro-
mosome is encoded as a vector containing integer values (the total number of chromosomes
in the initial population is denoted with the Ng symbol). The next step begins the evolution
process by training a series of RBFNNs in a supervised manner where each network’s
fitness is calculated (step 3). The selected fitness criterion for classification problems is
accuracy, while for regression problems it is the mean square error. In step 4, a condition
checks if the maximum number of generations is reached or if the chromosome with the
best fitness surpasses a predefined acceptable threshold. If the condition is satisfied, the
best solution is selected (step 5) and returned (step 6). Then, the algorithm terminates. If
the condition is not satisfied, the best chromosomes according to fitness are selected for
reproduction using tournament selection (step 8). The reproduction process in step 9 uti-
lizes the one-point crossover operator, which reproduces the population. The reproduction
process from this operator is achieved by the mutual exchange of information between two
parent chromosomes at a randomly chosen crossover point (Figure 1).

Figure 1. The one-point crossover operation. This figure presents the one-point reproduction
operation where the information is mutually exchanged in a randomly chosen crossover point
between two parent chromosomes.
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The offspring creation process follows Equation (3) where n is the number of offspring,
Rs is the number of parent chromosomes that will remain unchanged in the next generation,
and Ng is the number of chromosomes in the population.

n = (1− Rs)Ng (3)

Step 10 mutates the population. It utilizes the fixed mutation rate Rm and every gene is
assigned a random number r ∈ [0, 1]. If the assigned random number is lower or equal to a
predefined threshold PM, the gene’s value is randomly changed. Finally, step 11 continues
the evolutionary procedure [9].

4. System Architecture

The proposed system uses the RehaGait mobile gait analysis system [6]. This system
has seven sensors that are placed in various patient body parts. Each sensor is equipped
with an accelerometer, a magnetometer, and a gyroscope. Only the signals taken from
the accelerometer are utilized, and they are windowed into 2-second windows before
undergoing a pre-processing and feature extraction stage. The RehaGait mobile gait
analysis system is equipped with a wireless module that allows signal transmission to a
personal computer (PC) without a data cable. The pre-processing procedure involves the
adoption of a low-pass filter to smoothen the captured signals. The low-pass filter contains
a 6 Hz pass-band frequency, and each captured signal was sampled at 1000 Hz.

The feature extraction stage utilizes four time-domain and two frequency-domain
features. The time-domain features are the mean (µ), the standard deviation (S), the kurtosis
(k), and the peak-magnitude-to-RMS ratio (RMS). The mean can be seen in Equation (4),
where N is the number of scalar observations, and A defines a random variable vector.

µ =
1
N

N

∑
i=1

Ai (4)

The standard deviation is depicted in Equation (5) where N defines the number of
scalar observations, A determines a random variable vector, and µ is its mean.

S =

√√√√ 1
N − 1

N

∑
i=1

(Ai − µ)2 (5)

A distribution’s kurtosis is defined in Equation (6) where E(t) is the expected quantity
value t, µ defines the mean of x and σ denotes the standard deviation of x.

k =
E(x− µ)4

σ4 (6)

The peak-magnitude-to-RMS ratio is defined in Equation (7).

RMS =
‖A‖∞√

1
N ∑N

i=1 |Ai|2
(7)

The frequency-domain features are the acceleration energy and the acceleration signal
energy. The acceleration energy is shown in Equation (8) where Ai is the acceleration
signal’s ith spectral line and N defines the total number of lines.

Eng =
∑N

i=1 A2
i

N
(8)

The acceleration signal entropy completes the frequency-domain feature selection. It is
defined in Equation (9) where pi is the probability of Ai to occur in the amplitude spectrum.
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Ent = −
N

∑
i=1

pi log2 pi (9)

The combination of time-domain and frequency-domain features forms the input
vector to the FSC4RBF method, which creates optimized features that increase the clas-
sification accuracy of the RBF network. The RBF network classified the data taken from
a custom-made dataset into three classes (healthy, left, or right hemiplegia). The system
architecture can be seen in Figure 2.

Figure 2. The system architecture. The system utilizes seven sensors placed in various body parts of
the patient. The data from the accelerometer signals are received by a PC using a wireless connection
and undergo a pre-processing and feature extraction procedure. Then, they introduced it as input
to the FSC4RBF method, which creates optimized features that increase the classifier’s accuracy
(RBFNN). Finally, the classifier categorizes the input data into three classes (healthy, left, or right
hemiplegia).

Visualization of three input patterns after the pre-processing and manual feature
extraction stages are applied to the accelerometer’s signals dataset is depicted in Figure 3.
These input patterns correspond to three signal types (normal, left, and right hemiplegia).

Figure 3. A visualization of three input patterns. The current figure depicts three input patterns after
the pre-processing and feature extraction stages are applied to the accelerometer’s signals dataset
corresponding to three signal types (normal, left, and right hemiplegia).
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5. Experimental Results

The FSC4RBF method was tested with four classification approaches (RBFNN, BFGS,
SVM, and GenClass) in a custom-created dataset containing entries taken from ten healthy
and twenty hemiplegic patients (eight had left hemiplegia and twelve had right hemiple-
gia). The data from the seven accelerometers were sent to a PC which divided them into 2-s
windows. The signals were pre-processed with the help of a low-pass filter before undergo-
ing a feature extraction stage using four time-domain and two frequency-domain features.
The dataset contains the values after the pre-processing and the initial manual feature ex-
traction stage. All input feature entries are real-valued. The low-pass filter contains a 6 Hz
pass-band frequency, and each captured signal was sampled at 1000 Hz. The above features
formed the input vector to the FSC4RBF method and constituted the initial population of
the modified GE algorithm. The modified GE algorithm automatically evolved these initial
features into more advanced ones, which were used to train an RBFNN.

5.1. Parameter Details

The experiments were run 30 times in all neural network-based methods to avoid
any bias toward the random initialization of hidden nodes and thresholds, while the
number of hidden layer neurons (h) was fixed at 10 nodes. The dataset was divided
into training/test sets using 10-fold cross-validation. The two evolutionary approaches
(GenClass and FSC4RBF) were run for 200 generations (GensNo) with a population size (Ng)
of 500 individuals. Both methods utilized the one-point crossover operator and adopted a
fixed 5% mutation rate (Rm). The parameters used in all the experiments are depicted in
Table 1. Finally, the same pre-processing and initial manual feature extraction stage was
applied in all experiment runs to avoid any bias between the compared methods.

Table 1. ParameterSettings.

Parameter Name Symbol Values/Types

Experiments Repeats for Neural Network Methods expNo 30
Number of Hidden Layer Nodes h 10
Number of Folds k 10
Generations No GensNo 200
Population Size Ng 500
Crossover crossover one-point
Mutation Rate Rm 5%

5.2. Comparison Results

The selected statistic for comparing the FSC4RBF method with four classification
methods was the classification accuracy (acc) defined in Equation (10). The term k in the
accuracy formula defines the number of folds, err is the number of erroneously classified
test patterns, and p denotes the number of test patterns introduced to the system.

acc =
1
k

k

∑
i=1

(
1− err

p

)
. (10)

The outcome from the comparison of the five classification methods is summarized
in Table 2. The results show that the proposed FSC4RBF method achieved the highest
classification accuracy compared to the other four approaches.

Table 2. Results Comparison.

RBFNN BFGS SVM GenClass FSC4RBF

74.53% 83.71% 80.69% 87.98% 90.07%

The results are also visualized in the bar chart in Figure 4.
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Figure 4. Comparison results plot. This figure visualizes the classification accuracy between the
proposed FSC4RBF algorithm and four existing methods. It is shown that the proposed method
managed to achieve the highest accuracy (black bar) in the custom-created dataset.

6. Discussion

The proposed FSC4RBF system can be a helpful supporting tool for doctors or other
specialists to diagnose the hemiplegia type between healthy and non-healthy individuals
playing a significant role in their rehabilitation plan. The experimental results presented
in Section 5.2 validated that the optimized features created from the FSC4RBF algorithm
significantly increased the classification accuracy of RBFNN. The RBFNN using the initial
features had only a 74.53% classification accuracy, the lowest compared to FSC4RBF and
the other three classifiers. The results in Table 2 revealed that the BFGS, SVM, GenClass,
and FSC4RBF algorithms had an average of 9.18%, 6.16%, 13.45%, and 15.54% performance
increase in their test set results compared to the RBFNN without feature construction.

All methods were run one additional time to create their confusion matrices. In each
confusion matrix, the green boxes denote the samples (bold fonts) and their percentages
which are classified correctly. In contrast, the misclassified samples (bold fonts) and their
percentages are visualized with red boxes. The vertical white boxes show the percentages
of all the samples predicted to belong to each class classified correctly (green color) and
incorrectly (red color). The horizontal white boxes show the percentages of all the examples
belonging to each class and are classified correctly (green color) and incorrectly (red
color). Finally, the overall accuracy is visualized with a gray box. The confusion matrix
of the FC4RBF method is depicted in Figure 5. It is shown that FC4RBF had the highest
classification accuracy (92%) in the right hemiplegia class, while the lowest (76%) was in
the normal class.
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Figure 5. The FC44RBF confusion matrix. The current figure depicts the confusion matrix of the
proposed FC4RBF method.

Similarly, in the four confusion matrices of the compared methods in Figure 6, the
highest accuracies were achieved in the right hemiplegia class, while the lowest ones were
observed in the normal class. One exception was the SVM method, where the lowest
accuracy was observed in the left hemiplegia class.

Creating optimized features using a hybrid approach combining an RBFNN with a
GE algorithm resulted in the RBFNN’s classification accuracy increase. The main issue
of using this approach was the significant computational overhead introduced by the GE
method, which required many networks to be trained at each generation. The solution
to this problem can be adopting a parallel processing scheme using a multi-core central
processing unit at each algorithm’s iteration.

The experimental results from the proposed FSC4RBF system were compared with
existing approaches for hemiplegic gait detection. The hemiplegic gait detection method by
Lee et al. [8] utilized the random forest (RF) algorithm for the classification task between
hemiplegic and normal gait. The RF method managed to obtain 100% classification accuracy.
The authors in Patil et al. [10] tested one shallow and three deep architectures for detecting
hemiplegic gait. The deep architectures were based on visual geometry group (VGG)-
16 CNN. The best accuracy (99.68% on the validation set) was achieved from the third DNN.
Yardimci [11] got a 100% classification accuracy using a fuzzy logic-based method. Luo et al. [15]
used the same algorithm with different combinations of extracted features achieving a 90.65%
average accuracy between all gait feature combinations and a 95.45% best accuracy. The study
Wang et al. [20] used DNN architectures to detect stroke gaits and classify abnormal gait
patterns. The created models achieved a 99.35% classification accuracy in detecting stroke
gaits. The above methods managed to obtain impressive results, with some even reaching
a 100% classification accuracy compared to the 90.07% of the proposed FSC4RBF method.
The main reason for this difference is that they are not distinguishing between the left and
right hemiplegia types. Still, they are trying to solve a simpler binary classification problem
containing only hemiplegic and normal individuals.
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Figure 6. The compared methods confusion matrices. The current figure depicts the confusion
matrices for all compared methods (RBFNN, BFGS, SVM, GenClass).

7. Conclusions

This paper introduced a system for automatically classifying hemiplegia type (right or
left) between healthy and non-healthy subjects. The system utilized a feature construction
method for RBF neural networks (FSC4RBF). The FSC4RBF method created optimized com-
plex features from six simple custom-created ones (four time-domain and two frequency-
domain features). The proposed system achieved the highest classification accuracy and
revealed that using an evolutionary approach to create novel, optimized features from
existing ones can significantly increase the classification accuracy of the network.

The FC4RBF method confusion matrix in the previous section revealed an increased
number of misclassified healthy classes as right hemiplegic ones. One possible explanation
for this finding would be the class imbalance in the dataset (ten healthy, eight patients with
left hemiplegia, and twelve with right hemiplegia).
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Future research involves expanding the dataset to include more hemiplegic patients,
further increasing the classification accuracy. Another future work includes other disease
types such as diplegia and Parkinson’s disease.
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