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Abstract: Compressive sensing is a simultaneous data acquisition and compression technique, which
can significantly reduce data bandwidth, data storage volume, and power. We apply this technique
for transient photometric events. In this work, we analyze the effect of noise on the detection of
these events using compressive sensing (CS). We show numerical results on the impact of source
and measurement noise on the reconstruction of transient photometric curves, generated due to
gravitational microlensing events. In our work, we define source noise as background noise, or any
inherent noise present in the sampling region of interest. For our models, measurement noise is
defined as the noise present during data acquisition. These results can be generalized for any transient
photometric CS measurements with source noise and CS data acquisition measurement noise. Our
results show that the CS measurement matrix properties have an effect on CS reconstruction in the
presence of source noise and measurement noise. We provide potential solutions for improving
the performance by tuning some of the properties of the measurement matrices. For source noise
applications, we show that choosing a measurement matrix with low mutual coherence can lower
the amount of error caused due to CS reconstruction. Similarly, for measurement noise addition, we
show that by choosing a lower expected value of the binomial measurement matrix, we can lower the
amount of error due to CS reconstruction.
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1. Introduction

Compressive sensing (CS) is a mathematical theory for simultaneous data acquisition
and compression. For sparse images, or for images that can be transformed to a sparse
domain, CS measures a collective sum of m random projections, where m is less than the
total pixels in the image otherwise required for Nyquist-rate sampling [1–3]. We apply
this technique to gravitational microlensing events. Gravitational microlensing is an
astronomical phenomenon that occurs due to a precise alignment of an observed source
star and a lensing mass. The lensing system warps space-time due to its gravitational
field causing a deflection in the light reaching the observatory from the source star. This
deflection in light causes a change in magnification of the brightness of the source star,
which can be quantitatively measured. Using this technique, exoplanets can be detected [4].
In our study, we show the efficacy of using CS to obtain these photmetric light curves
depicting microlensed events and the effects of noise on the measured light curves. For our
CS modelling, we assume our image of interest, x, to be k-sparse and of dimension n× n.
We define a k-sparse signal as one with k coefficients whose values are significantly higher
than the rest of the coefficients [1]. We apply the CS measurement matrix, A, of dimension
m× n, onto the image x. The CS measurements acquired due to this projection are obtained
in the matrix, y, and are of dimension m× n, where m « n. Once y is obtained, we can solve
for a sparse x, given A, using various reconstruction algorithms [5,6].
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We solve for Equation (1) to determine x through the observation y.

y = Ax (1)

In this work, we use a greedy algorithm—orthogonal matching pursuit, provided by
the sklearn Python library.

2. CS Architecture

We use CS architecture based on our previous work, as described in [7,8]. A figurative
description is shown in Figure 1.

Figure 1. CS architecture. The blue block represents CS data acquisition, which can be performed
on-board a spaceflight instrument, while the orange blocks represent computations, which can be
performed on the ground.

A reference image can be viewed as a clean image. The observed image will have
a change in pixel flux of the microlensing source star over time, as well as any noise.
If the point spread function (PSF) of the observed and reference image are not identical,
differencing algorithms can be applied. Differencing algorithms obtain a convolution kernel
to match the PSF of the observed and reference image, and then perform subtraction on the
convolved reference image and the observed image. However, to eliminate an additional
layer of complexity, in order to accurately evaluate the effect of CS on reconstruction,
we assume that the PSF of the observed and reference image are the same. Due to this
assumption, we perform a subtraction to obtain the differenced measurements, ydi f f , as
shown in Equation (3).

For our simulation modeling purposes, we assume optimal differencing results, typi-
cally provided with both reference and observed images with the same detector response.
The result of differencing can then be used to only detect a change in magnitude corre-
sponding to a microlensing event. We can write the differenced image in that case as

xdi f f = xr − xo (2)

The differenced image consists of relevant information needed to reconstruct a transient
photometric curve. From the architecture in Figure 1, we obtain

ydi f f = yr − yo

= Axr − Axo

= A(xr − xo)

= A(xdi f f ) (3)

Differencing the images makes them sparse, with non-zero pixel coefficients for only
the star sources experiencing magnification. Adding noise leads to less sparse images,
which can hinder performance of CS reconstruction algorithms. Further details on the type
of noise used in our work are discussed in Section 3.

For 2D images, we apply CS in the following manner:
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1. Generate a spatial sky image of size n × n using uniform random distribution, in the
range of 50 and 5000 pixel value. The radius of these star sources are generated using
an airy point spread function with an aperture radius between 1 and 5 pixel units,
which is randomly chosen.

2. Magnification for the source star experiencing a single-lens microlensing event is
determined by the microlensing equations [4]. The center pixel value, P[x0, x1], at any
time, t, is given by

Amp[x0, x1] = M(t)× P[x0, x1] (4)

where Amp is the amplification value, P is the pixel value from step 1, and M(t) is the
magnification value at time t.

3. If adding source noise or background noise, generate a noise image of the same size,
n× n. Add this image to the image generated in step 1.

4. Generate a CS-based projection matrix of size m × n, where m = q%× n. In our
simulations, we use q = 25.

5. Create CS-based measurements by

yo = Axo + nt (5)

where xo is the observed spatial region, yo is the CS measurements acquired from
applying CS on xo, and nt is the total measurement noise added.

6. Create CS-based measurements from a reference image, xr, and the same measurement
matrix, A:

yr = Axr (6)

7. Obtain the difference, ydi f f = yo − yr.
8. Reconstruct xdi f f using CS reconstruction algorithms, given ydi f f and A. Reconstruction

algorithms such as orthogonal matching pursuit (OMP) or optimization algorithms
can be used. We use OMP in our work. For OMP alogirthms, we set the sparsity level
to be 10% of n. Hence, once 10% of n non-zero elements are obtained, the algorithm
successfully exits. This value was used based on prior knowledge about transient
sources in spatial sky images.

A sample reference image (xr), a sample observed image (xo), and a sample differenced
image (xdi f f ) are shown in Figures 2–4, respectively.

Figure 2. Sample reference image.
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Figure 3. Sample observed image.

Figure 4. Sample differenced image.

Once we have a differenced image, we can select the group of pixels that represent
a source star experiencing a microlensing event, and plot the magnification over time, to
obtain a photometric light curve. In our result analysis, we perform error calculations using
this photometric curve over time.

3. Noise in Compressive Sensing Measurements

In this section, we discuss two types of noise: source noise and measurement noise.

3.1. Source Noise

This noise is associated with the sampling star field itself. The star sources can be
contaminated with flux from surrounding stars. In addition, other sky background noise
can leak into the source star flux measurement. For our analysis, we will assume the source
noise is of Gaussian distribution. We can characterize it by

y = A(x + nb) (7)



Signals 2022, 3 798

where nb is Gaussian noise. In this case, noise gets folded into the measurement matrix,
A [9]. Incorporating this for differenced images, as stated in Equation (3), we obtain

ydi f f = A(xo + nb)− A(xr)

= A(xdi f f + nb)

= A(xdi f f ) + A(nb) (8)

where xdi f f = xo − xr.

3.2. Measurement Noise

Measurement noise is associated with the data acquisition process at the detector front
end. For measurement noise, we model photocurrent shot noise using Poisson distribution.
This modeling can be generalized to any type of noise, which requires applying Poisson
noise to the data measurements.

3.2.1. Shot Noise

Shot noise is associated with the implicit arrival of electrons at the detector. This noise
is applied to the detector measurements [10,11]. For equation purposes, we write this as
additive noise to Ax. However, for practical purposes, shot noise is applied to Ax, as it is
dependent on the signal and thus cannot be added independently to the measurements.
We use Poisson distribution to depict shot noise.

y = Ax + ns (9)

3.2.2. Thermal Noise

This noise is produced by the random motion of electrons in the detector [10,12].
We can model this by stationary Gaussian random noise.

y = Ax + nt (10)

3.3. Total Noise in Detectors

Since random, uncorrelated noise adds quadratically, total detector noise, nst is
given by

nst =
√

n2
s + n2

t (11)

where ns is shot noise, and nt is thermal noise. Incorporating all the noise sources, CS can
be modeled as

y = A(x + nb) + nst. (12)

Total noise is

N = Anb + nst. (13)

In our simulations, we model shot noise.

3.4. SNR for CS Applications

In this section, we discuss the theoretical implications of noise on CS reconstruction.
For source noise, we generate Gaussian random noise. By varying the standard deviation
of the Gaussian kernel, we can obtain noise with different signal-to-noise ratios (SNR). We
define SNR as

SNR = 10log10
(Pxo)

(Pxon)
(14)

where Pxo is the power of the observed image, and Pxon is the power of the noisy observed
image.
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3.5. Expected Value and Variance for CS Applications

Since A and nb are independent random variables, the expected value of the noise is

E[N] = E[A]E[nb] + E[ns] + E[nt] (15)

Given that nb has a Gaussian distribution with mean 0, the expected value of
E[A]E[nb] = 0. If we assume thermal noise to be normally distributed as well, E[nt] = 0.
Hence, E[N] = E[ns] in those circumstances. For all independent noise sources, variance is
given by

Var[N] = Var[A]Var[nb] + Var[ns] + Var[nt] (16)

In our work, we propose to construct A so that it has a low variance. We compare the
results with a binomial distribution as well as Gaussian distribution.

In this section, we also describe mutual coherence of a matrix and its relation to CS
reconstruction. Hence, the variance of the noise as well as mutual coherence, µ, of A will
factor in the reconstruction accuracy using CS methods.

3.6. Mutual Coherence of a Matrix

From [1], we can incorporate the following equations for CS analysis. First, we define
µ(A) as given in [1]:

µ(A) = max
1≤i<j

| < ai, aj > |
||ai||2||aj||2

(17)

where A is the measurement matrix, and a represents a column of A.
Given A, the sparsity of the signal, or the number of non-zero elements, k, in a signal

is given by Equation (18) [1].

k <
1
2

(
1 +

1
µ(A)

)
(18)

Hence, we want µ(A) to be as low as possible, in order to increase the bound for k.
This will ensure a higher accuracy in CS reconstruction with a higher sparsity tolerance
in signals.

4. Numerical Results

To analyze the effect on single-lensed microlensing events in crowded star fields, we
generate dense stellar fields with airy spread point sources. For a 128× 128 pixel image,
we generate star sources equal to 75% of the total number of pixels. Each star is chosen
to have an airy disk radius between 1 and 5 in pixel units and amplitude ranging from
50 to 5000 units. The values are chosen randomly from a uniform random distribution.
For an image of size n × n, where n = 128, we use m = 0.25× n. Hence, instead of using
16,384 samples to obtain a 16,384 pixel image, we use 4096 samples. From Equation (1),
y is of size m× n. For transient events, as portrayed by our modeling using single-lens
gravitational microlensing, we want to reconstruct the time domain signal, representing the
pixels experiencing a transient event. For CS, sparsity is essential; hence, in our simulations,
we apply CS on differenced images, which are sparse. We difference the crowded star fields
with a reference image. For understanding the effect of noise, the crowded stellar images have
noise added. Thus, when differenced, noise as well as the microelensed star should be evident
in the residual. For ideal comparison, we simulate the detector point spread function (PSF) to
be the same for the observed and reference image. Noise is the only addition in the observed
image. Hence, in the differenced image, the characteristics of the noise are preserved. In our
simulations, we use orthogonal matching pursuit (OMP) to reconstruct CS measurements.
Convex optimization algorithms provide better accuracy in reconstruction [5] than greedy
algorithms. However, greedy algorithms are computationally less complex and can have
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faster run times. Due to the latter advantage, we use greedy algorithms to run 100 Monte
Carlo simulations for each set of parameters.

Percent error as described in Equation (19) is used as a metric to quantify the accuracy
in reconstruction of the image.

| f ′di f f − fdi f f |
fdi f f

× 100% (19)

where f ′di f f and fdi f f are the total fluxes within the 3-pixel radius of the source positions
of the reconstructed and original differenced images, respectively. The error at the source
star is of critical importance as the photometric light curve is generated based on the
magnification of the source star of interest.

4.1. Gravitational Microlensing Setup

For all our simulations, we use a gravitational microlensing curve generated by a
single lens. The amplification over time due to a single microlensing event is generated by
the equation given in [4].

A(t) =
µ2

0 +

(
t− t0

tE

)2
+ 2[

µ2
0 +

(
t− t0

tE

2)]1/2[
µ2

0 +

(
t− t0

tE

)2
+ 4)

]1/2 (20)

Here, t is the time sample, µ0 is the impact parameter, t0 is the peak magnification time,
and tE is the Einstein ring radius crossing time. In our simulations, we use µ0 = 0.1 and
µ0 = 0.01 to vary the amplitude of the photometric curve, in order to understand the effect
of noise with the different magnifications. We use t0 = 15 and tE = 30. Figure 5 shows
sample magnification curves with µ0 = 0.1 and µ0 = 0.01. The lower µ0 value provides a
higher magnification of the light curve.

Figure 5. Magnification curve for µ0 = 0.1 and µ0 = 0.01.

In practical applications where the samples are not exactly zero, we can distinguish
sparse signals as signals whose coeffecients decay at a high rate. In Figures 6 and 7, we show
the rate of decay of the coefficients for µ0 = 0.1 and µ0 = 0.01.
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Figure 6. Rate of decay of coefficients for µ0 = 0.1 and µ0 = 0.01.

Figure 7. Rate of decay of coefficients, zoomed in towards the higher magnification coefficients to
view the difference between µ0 = 0.1 and µ0 = 0.01.

Hence, it is evident that photometric curves with µ0 = 0.01 have a higher rate of decay
compared to photometric curves with µ0 = 0.1. Therefore, for CS, sparser signals should
have better reconstruction accuracy.

4.2. CS Analysis with Source Noise

This set of simulations vary the amount of source noise, nb, added to the observed
image for a single-lens microlensing event with µ0 = 0.1 and µ0 = 0.01. Simulations are
performed using the model described in Equation (7).

To characterize source noise or background noise, we use Gaussian noise, with mean 0
and varying standard deviation. By varying the standard deviation of the added Gaussian
noise, we obtain the different SNRs for the observed image and noisy observed image.
Figure 8 shows the CS reconstruction error with different amounts of added source noise to
the observed image. A binomial measurement matrix with 25% CS measurements is used
for this simulation.
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Figure 8. Summary of the % error for an image with added Gaussian source noise for a single-lensed
microlensing event with µ0 = 0.1 and µ0 = 0.01 for varying levels of Gaussian noise addition to the
spatial region of interest.

In Figure 8, we can note that the % error is the lowest when the magnification peaks at
t0, as shown in Figure 5. We also see the effect of the different levels of noise on the % error.
Figure 9 shows the comparison between µ0 = 0.1 and µ0 = 0.01. As the SNR decreases, the
% error difference between the two µ0 also increases. For high-magnification events, where
µ0 is lower, sparsity is higher. Thus, the % error is lower in those circumstances, as noted in
Figure 9. From Figures 8 and 9, it is evident that for low SNR images, CS reconstruction
works better when the impact factor µ0 = 0.01, as opposed to when µ0 = 0.1. A summariz-
ing result from this figure is that CS works well for high-magnification images, even with
addition of noise, following the need for sparsity in signals for accurate CS reconstruction.

Figure 9. Average % error for an image with added Gaussian source noise for a single-lensed
microlensing event with µ0 = 0.1 and µ0 = 0.01.
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From Equation (16), we get the total noise variance for added Gaussian source noise
with noise variance, σ2

n , as shown in Table 1. We obtain the average µ(A) over 100 Monte
Carlo simulations of A.

Table 1. Total noise variance and mutual coherence of A, µ(A), with the given properties of A.

Measurement Matrix, A Total Noise Variance Average µ(A)

Gaussian with σ2 = 0.25 0.25× σ2
n 0.616

Binomial with σ2 = 0.25 0.25× σ2
n 0.841

As SNR decreases for the higher-magnification event, with µ0 = 0.01, the % error
between starts to decrease at a lower rate as compared to µ0 = 0.1.

From Figures 10 and 11, we note that CS reconstruction is better with lower mutual
coherence measurement matrices. By adding source noise, we are making the images less
sparse; thus, the Gaussian measurement matrix, which has lower mutual coherence, works
better. In the case of source noise, variance of A does not affect CS reconstruction. Changing
the variance of A is equivalent to scaling the y measurements. The A matrix folds into x as
well as nb, thereby retaining the same SNR level, so, in turn, it should have no effect on CS
reconstruction.

Figure 10. Graph of % error for an image with added Gaussian source noise for a single-lensed
microlensing event with µ0 = 0.01. Binomial and Gaussian measurement matrices, with the given
variance, are used for comparison.

Figure 11. Graph of % error for an image with added Gaussian source noise for a single-lensed
microlensing event with µ0 = 0.1. Binomial and Gaussian measurement matricies, with the given
variance, are used for comparison.
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4.3. CS with Added Measurement Noise

For our numerical analysis, we use addition of shot noise, as well as thermal noise.
Typically, shot noise is of Poisson distribution. Poisson noise is applied and cannot be
added, as it is signal dependent. Hence, for each element in y, Poisson noise is applied by
generating a Poisson distribution with λ = the value of that specific element in y. Here,
λ is the expected value of the Poisson distribution. We apply Poisson noise to different
simulated star fields, over 100 simulations, and obtain the average % error over all the
Monte Carlo simulations. We use A as a binomial random matrix. The expected value of
the product of the two independent probability distributions are given by

E[λ] = E[y] = E[A]E[x] (21)

= p
(

1
2
(xh − xl)

)
(22)

where λ is the expected value and variance of the Poisson distribution for each element in y,
and p is the expected value of the binomial distribution in A with the number of trials = 1.
Hence, E[λ] refers to the expected value of the variance of the Poisson distribution over all
samples of y.

In order to reduce the Poisson noise variance, p can be tuned. However, CS reconstruc-
tion depends on µ(A) as well. Table 2 shows the noise variance and mutual coherence of
A for the binomial distributions with p = 0.5 and p = 0.25. Both the distributions have
similar µ(A) values.

Table 2. Total noise variance and mutual coherence for A with the given properties of a binomial
distribution.

Measurement Matrix, A Expected Value of Total Noise Variance Average µ(A)

Binomial with p = 0.5 0.5E[x] 0.841
Binomial with p = 0.25 0.25E[x] 0.789

Shot noise is applied using Poisson distribution to yo. We apply Poisson noise with
λ = yoi, where i represents the ith element in yo. If the microlensing star pixel flux is lower
than the other pixel star fluxes in the images, then the addition of Poisson noise to yo can
significantly degrade the CS reconstruction of xo. Figures 12 and 13 show the effect of
tuning p on CS reconstruction.

Figure 12. Average % error for an image with applied Poisson noise to CS measurements for a
single-lensed microlensing event with µ0 = 0.1 using binomial measurement matrix with p = 0.5
and p = 0.25.
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Figure 13. Average % error for an image with applied Poisson noise to CS measurements for a
single-lensed microlensing event with µ0 = 0.01 using binomial measurement matrix with p = 0.5
and p = 0.25.

Figures 12 and 13 show that for high-magnification pixels in the time-series light curve
(as shown in Figure 5), the Poisson noise error is lowest at those time samples, as compared
to the low-magnification time samples. In addition, we show that by decreasing p of the
Binomial matrix, A, we can decrease the noise error by an average of 4.6% over all time
samples for µ0 = 0.1 and 4.27% for µ0 = 0.01.

5. Conclusions

In our previous studies on the application of compressive sensing to gravitational mi-
crolensing, we showed that CS is able to reconstruct the light curve without compromising
the scientific parameters of interest. However, our study did not incorporate the effect of
noise. In this study, we show the effect of source noise as well as measurement noise. For
source noise, we note that choosing a measurement matrix with low mutual coherence
can improve results, as expected by CS theory. Our analytical and numerical results show
that for a measurement matrix with lower mutual coherence, CS reconstruction works
better. We compared the Gaussian measurement matrix with 0 mean, and 0.25 units of
variance, with a binomial measurement matrix with 0.25 units of variance as well. The
binomial measurement matrix has a higher mutual coherence as compared to a Gaussian
measurement, as also shown through numerical simulations. Through our simulations,
we can conclude that matrices with lower mutual coherence provide better CS results
when source noise is present. For the measurement noise analysis, we applied Poisson
noise to depict shot noise. As Poisson noise is dependent on the signal itself, we note
that for high-magnification events, where the flux of the microlensing source star pixels
are comparatively higher, Poisson noise during CS measurements acquisition can lead
to a lower % error. In addition, we show through our analytical and numerical results
that by reducing the value of p, where p represents the expected value of the binomial
distribution of A, we can achieve lower noise variance, thereby decreasing the average %
error in CS reconstruction. Our results demonstrate effectiveness using the OMP algorithm.
Various other algorithms, such as convex optimization, can provide better sensitivity and
reconstruction accuracy with a trade-off of computational complexity.
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