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Abstract: In this study, a new method for the optimal design of multimode shunt-damping circuits
is presented. A modification of the “current-flowing” shunt circuit is employed to control multiple
vibration modes of a piezoelectric laminate beam. In addition to the resistor damping components, the
method considers the capacitances and the shunting branch inductors as new design variables. The
H∞ norm of the damped system is minimized using the particle swarm optimization (PSO) method
in the suggested optimization strategy. Two additional numerical models are addressed in order to
compare the proposed method with other methods from the literature and to thoroughly examine
the effect of the design variables on damping performance. To simulate the dynamic behavior of
the piezoelectric composite beam, a finite-element model is created which provides more accurate
modeling of thick beam structures. Results show that the suggested method may improve damping
efficiency when compared to other models, since it generates a highest peak amplitude reduction of
39.61 dB for the second mode and 55.92 dB for the third mode. Finally, another benefit provided by
the suggested optimal design is the reduction of the required shunt inductance values.

Keywords: multimode; shunt circuits; piezoelectric; vibrations control; particle swarm optimization
algorithm; current flowing

1. Introduction

For many years, there has been growing scientific interest in the use of piezoelectric
materials for active or passive vibration control. Passive vibration control of structures
can be achieved by using shunted piezoelectric elements connected to passive electric
circuits. The fundamental idea behind piezoelectric shunt damping is the transformation of
mechanical energy into electrical energy by piezoelectric material, which is then dissipated
by heating through a resistor circuit. To efficiently suppress the vibration of one or more
vibration modes, several shunt circuit layouts have been developed (see, e.g., [1,2]).

Forward was the first to introduce the concept of piezoelectric shunt damping in his
work [3], experimentally demonstrating the feasibility of employing external electrical
circuits to damp mechanical vibrations in optical systems. However, the pioneering work
of Hagood and Von Flotow [4] provided the theoretical foundation of the resistive shunt
(R shunt) and resonant shunt (RL shunt) techniques. In the latter technique, the shunting
circuit is tuned to the resonance frequency of the mode to be damped in a fashion similar
to the technique used to tune a mechanical vibration absorber.

Since then, several studies have been performed on the passive vibration control of a
single structural mode [5–7]. However, in practical applications, single-mode damping is
insufficient for flexible mechanical structures containing an infinite number of structural
modes (or resonant frequencies).
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A method for multimode shunt damping is to use as many piezoelectric transducers
as the number of vibration modes to be damped. Recently, a new technique for multi-
mode vibration control using multiple transducers was described in [8]. It is a design of
an electrical network which is connected to a structure through an array of piezoelectric
transducers. The characteristics of this network are specified in terms of modal properties.
Additionally, a new approach for multi-resonant, flexural, vibration-control produced by
broadband stochastic excitations was provided in [9]. The study used multiple elemen-
tary shunts connected to piezoelectric patches bound to thin plate structures. A design
optimization procedure was proposed, which focuses on finding shunt networks, which
can be built using small-size RLC components and, thus, embedded directly on the piezo-
electric patch transducer. However, in many circumstances, this may not be a viable
solution because, for damping many modes, a large number of transducers is required.
This has urged researchers to develop multimode shunt-damping circuits that require only
one piezoelectric transducer.

First, Hollkamp [10] provided a multimode shunt-damping circuit using a single
piezoelectric element by extended single-mode shunt damping. A shunt circuit consists of
parallel RLC shunt branches, with the very first branch being an RL circuit. The proposed
multimode dampener requires as many parallel branches as modes to be damped. No
closed-form tuning solution was proposed for this technique, and the author proposed
a numerical optimization to determine optimal component values. This multimode shunt
circuit was applied to a cantilevered beam and was demonstrated experimentally as
a two-mode dampener.

Wu [11] proposed another piezoelectric shunt circuit for multimode damping which
employs a blocking circuit in series with a parallel resistor–inductor shunt circuit for each
mode to be damped. Closed-form tuning solutions were provided for the inductive and
capacitive components of the proposed circuit. Optimal resistance values for this circuit
were provided in [12] by a systematic H2 optimization approach. However, the complexity
and order of current-blocking circuits limit their application to a maximum of three modes
even in their simplest version.

An alternative method for multimode piezoelectric shunt damping using a single
piezoelectric element was provided by Behrens and coauthors [13–15]. The idea was to in-
troduced current-flowing LC shunts into each parallel branch of the multimode shunt circuit
in order to adequately isolate branches from one another at each resonance frequency of the
host structure. The “current-flowing” shunt method is simpler to implement and requires
fewer electrical components. The method was validated experimentally on piezoelectric
beam and plate structures.

Another piezoelectric multimode shunt-damping structure was introduced in [16]. The
series–parallel impedance structure was proposed as a method for reducing inductive com-
ponent values. Compared to most earlier circuit designs, the proposed shunt circuit uses
less components and contains smaller inductors. The series–parallel impedance structure
produces less damping than previous multimode shunt approaches [13,17], particularly at
higher frequencies.

A modified current-blocking circuit [16] was applied in [18] to control several vibration
modes of a composite piezoelectric beam structure. In order to analyze the electromechani-
cal behavior of the structure with piezoelectric materials, a 3D finite-element model was
introduced by using p-version FEM. The optimal shunt electrical components for the piezo-
electric shunt-damping system were determined using the particle swarm optimization
(PSO) technique, taking into account the inherent mechanical damping. The structural
damping performance of the optimal shunt-damping system was demonstrated numeri-
cally and experimentally. Recently, Raze et al. [19] presented tuning rules for piezoelectric
shunts, aiming to mitigate multiple structural resonances. Starting from a specification pro-
cedure of the shunt characteristics proposed in [20], the electrical parameters were derived
for shunt topologies proposed in the literature that use a single piezoelectric transducer.
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Effective vibration mitigation of multiple structural modes was demonstrated numerically
and experimentally on a piezoelectric beam.

Table 1 presents a classification of the various methods for passive piezoelectric
shunt damping discussed above. From this table, it can be observed that only one study
concerning multimode vibration control used the PSO algorithm for optimization, and
most of them used methods other than the current-flowing circuit.

Table 1. Summary of the various passive damping methods investigated.

References Single-Mode
Control

Multi-
Mode Control

Single
Piezo
Patch

Multiple
Piezo

Patches
PSO

Other
Optimization

Approach

Current-
Flowing
Method

Other
Shunt Method

Forward (1979) [3] 3 3

Hagood et al. (1991) [4] 3 3

Park (2003) [5] 3 3

Pietrzko et al. (2011) [6] 3 3

Tairidis et al. (2019) [7] 3 3 3

Raze et al. (2022) [8] 3 3 3 3

Bo et al. (2022) [9] 3 3 3

Hollkamp (1994) [10] 3 3 3 3

Wu (1998) [11] 3 3

Behrens et al. (2000) [12] 3 3 3

Behrens et al. (2002) [13–15] 3 3 3 3

Fleming et al. (2003) [16,17] 3 3 3 3

Jeon (2009) [18] 3 3 3 3

Raze et al. (2022) [19] 3 3 3

Raze et al. (2020) [20] 3 3 3

Toftekær et al. (2020) [21] 3 3 3 3

Wu (1996) [22] 3 3 3 3

All of the resistant shunt circuits introduced thus far consist of passive components,
i.e., resistors, inductors and capacitors in various configuration layouts. Extending the
mechanisms of single-mode shunt damping, each branch in multimode shunt circuits is
tuned to a specific frequency. In most multimode shunt-damping methods that use a single
piezoelectric transducer, the capacitors’ values are chosen arbitrarily, and the inductive
components are obtained using the resonance frequency formula (closed-form tuning solu-
tions). The remaining resistor damping components are either determined experimentally
by a trial-and-error method [10,22] or by an optimization approach [4,12,17,18].

The arbitrary selection of capacitance values can have a negative impact on a shunt-
damping system. The suitable choice of the capacitance values is crucial since large
capacitance values worsen electromechanical coupling, while small capacitances create a
requirement for larger inductance values in the shunt circuit. In addition, due to the elec-
trical interaction of the different shunt branches of the multimode shunt-damping circuit,
closed-form solutions for resonant shunt branches are subject to significant approximations,
resulting in sub-optimal designs. Thus, further fine tuning for electric shunt parameters
needs to be performed via an optimization procedure.

On the other hand, the predictive model considered for the design of the compound
system (base structure with piezoelectric elements connected to shunt circuits) may be
extremely important. More efficient description of the dynamics of these systems and
more accurate calculation of their resonant frequencies are very crucial for shunt-damping
performance. Initial studies on passive vibration control through shunted piezoelectric
transducers considered a simplified structural model with one degree of freedom [4,10,11].
In addition, Behrens and his coauthor [13,15] considered analytical methods to model
the dynamic of simple structural elements (beams, plates) with piezoelectric shunted
transducers. These models were based on classical beam/plate theory and the modal
analysis technique. Finite-element modeling, on the other hand, is regarded as the most ef-
ficient modeling technique for more complicated structures, particularly those of industrial
interest, and has been used in a few research investigations [7,23,24].

Motivated by these observations, this work presents a new approach for the design
a multimode shunt-damping circuit using a single piezoelectric element. A modification
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of the “current-flowing” shunt circuit [15] for controlling multiple vibration modes of a
piezoelectric laminate beam is used. To overcome the negative impact on the performance of
the shunt-damping system due to the arbitrary selection of the capacitance values, as well as
the closed-form solutions of resonant shunt branches, this paper considers the capacitances
and the shunting branch inductors as new design variables along with the resistor damping
components. The proposed optimization approach uses particle swarm optimization (PSO)
algorithm to minimize the H∞ norm of the damped system. To investigate in detail the
effect of these variables on the damping performance, as well as for comparison with the
other methods proposed previously in the literature [15,17,18], two additional numerical
examples with fewer design variables are addressed. To simulate the dynamic behavior of
the piezoelectric composite beam, a finite-element model is developed, which accounts for
the electromechanical coupling and the presence of the shunt circuit. The formulation is
based on Timoshenko beam theory and super-convergent finite elements.

In summary, the main contributions of the present work lie in the following main
areas: the development of a finite-element model more efficiently describing the dynamics
of the piezoelectric composite beam structure; the creation of a state-space representation of
the shunt-damping system, which enables us to simulate the frequency response functions
and treat the damping method in the MATLAB environment; and, finally, the proposed
optimal design of a multimode “current-flowing” shunt-damping circuit that is capable of
delivering higher levels of performance in terms of adding damping to the system and, at
the same time, reducing the required values of the shunt inductances.

The rest of the paper is organized as follows. Section 2 presents the proposed method
for enhancing the multimode vibration damping of composite beam structures. More
precisely, in Section 2.1, a finite-element model for laminated composite piezoelectric beams
is developed, Section 2.2 briefly describes the “current-flowing” multimode shunt-damping
method and Section 2.3 provides the state-space representation of the shunt-damping
system when a “current-flowing” shunt circuit is connected to the top piezoelectric patch.
The section ends with the presentation of the proposed design optimization approach for
multimode vibration control. The method considers the capacitances and the shunting
branch inductors as new design variables along with the resistor damping components.
The proposed optimization approach uses a particle swarm optimization (PSO) algorithm
to minimize the H∞ norm of the damped system. To investigate in detail the effect of these
variables on the damping performance, as well as for comparison with the other methods
proposed previously in the literature [15,17,18], two additional numerical examples with
fewer design variables are addressed. Simulation results are shown in Section 3 to verify the
proposed design optimization approach. In addition, a comparison of the proposed PSO
method with the GA algorithm is provided in Section 3.6 to demonstrate the capability of
the proposed PSO method to improve the performance of shunt-damping circuits. Finally,
in Section 4, a review of the work and a summary of the principal conclusions of this study
are outlined.

2. Methodology

In this section, the methodology to enhance the multimode vibration damping of
composite beam structures is presented. Initially, a finite-element model is developed
to simulate the dynamic response of a laminated composite beam with surface-bounded
piezoelectric patches. The formulation is based on Timoshenko beam theory, which takes
into account the electromechanical coupling. Next, to simulate the electromechanical
behavior of the compound system when a “current-flowing” shunt circuit is connected at
the top piezoelectric patch, a state-space model is developed. Finally, the proposed design
optimization approach is presented to determine the optimal shunt circuit parameters for
enhancing the multimode vibration control of the composite piezoelectric structure.
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2.1. Finite-Element Model of the Laminated Composite Beam

Figure 1 shows the system under study which consists of a cantilever host beam made
of an elastic material with two piezoelectric patches bonded on its top and bottom surfaces
at distance xp from the fix end. It is assumed that the layers are bounded perfectly, and
the bond between them is negligible. The host beam has length L, thickness h and width b.
The xy-plane is the beam’s midplane, and the longitudinal and thickness axes are located
in the x- and z-direction, respectively. The poling direction of the piezoelectric patches is
assumed to be along the z-axis. Additionally, it is assumed that they are covered by fully
conductive electrodes of negligible thickness. The electrodes of the top patch are connected
to a passive shunt circuit. The bottom piezoelectric patch can be used as actuator. All the
layers, piezoelectric and elastic, are considered to be thin so that the plane stress state can
be applied.

Figure 1. A cantilever beam with a piezoelectric patch connected to a shunt-damping network.

2.1.1. Strains and Electrical Field

Using first-order shear deformation theory, the displacement field equations can be
expressed as:

u =


u1(x, y, z, t)
u2(x, y, z, t)
u3(x, y, z, t)

 =


u0(x, t)

0
w0(x, t)

+ z


ψx(x, t)

0
0

 (1)

where u1, u2 and u3 denote the components of the displacement vector, t is the time, u0 is
axial displacement, w0 is the transverse displacement of the beam’s midplane and ψx is the
rotation of the beam cross-section about the positive y-axis.

The strain–displacement relation, assuming a small deformation, may be written as:

ε =

{
εx

γxz

}
=

{
ε0

x
γ0

xz

}
+ z
{

κx
0

}
(2)

where
ε0

x =
∂u0

∂x
, κx =

∂ψx

∂x
, γ0

xz =
∂w0

∂x
+ ψx (3)

Under the assumptions made, the electrical potential may be thought of as being
constant throughout a layer and varying linearly with piezoelectric patch thickness. The
component of the electric field that is dominant for a thin piezoelectric patch is in the
thickness direction. As a result, only in the thickness direction can the electric field be
adequately represented by a non-zero component:

Ez = −
v
hp
≡ Bvv (4)

where v is the electric potential difference between the electrodes covering the piezoelectric
layer’s surface, and hp denotes the thickness of the piezoelectric layer.
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2.1.2. Constitutive Relations

The linear constitutive equations of a piezoelectric medium with respect to the plane
coordinates (x, y, z) are given as:

σ(p) = Q(p)
ε− e(p)TE(p) (5)

D(p) = e(p)ε + ξ
(p)TE(p) (6)

where σ, ε, D and E are the stress and strain vectors, electric displacement and electric field,
respectively. Additionally, Q, e and ξ denote the elasticity, piezoelectric and permittivity
constant matrices, respectively.

As mentioned above, the piezoelectric patch is polarized in the transverse direction z,
and the electric field is applied in the same direction. Such a configuration is characterized
by a “31” coupling between the transverse electric field and the membrane stresses/strains,
i.e., the material is poled in the ‘3′ direction, and the mechanical stress acts in the ‘1′

direction. Furthermore, for the 1D beam, the width in the y-direction is stress free. Taking
into account all these considerations along with the plane stress assumption, the constitutive
relations for the piezoelectric layer can be expressed as [25]:

σ(p) =

{
σx
τxz

}(p)

=

[
Q̃(p)

11 0
0 kscQ̃(p)

55

]{
εx

γxz

}
−
{

ẽ(p)
31
0

}
E(p)

z (7)

D(p)
z = ẽ(p)

31 εx + ξ̃
(p)
33 E(p)

z (8)

where σx and τxz denote the normal and shear stress, respectively, εx and γxz indicate
the normal and shear strain, respectively, D(p)

z is the transverse electric displacement,
Q̃(p)

11 and Q̃(p)
55 are the reduced stiffness coefficients, ẽ(p)

31 is the piezoelectric constant and

ξ̃
(p)
33 is the electric permittivity constant. Finally, ksc is the shear correction coefficient, which

is introduced so that results obtained by the first-order shear deformation theory are equal
to the exact solution in certain representative benchmark problems [26] and, in this work,
is taken to be equal to 5

6 . The constitutive equations for the elastic beam can be obtained by
making their piezoelectric constants vanish as:

σ(b) =

{
σx
τxz

}(b)

=

[
Q̃(b)

11 0
0 kscQ̃(b)

55

]{
εx

γxz

}
(9)

As is obvious, the superscript p and b represent piezoelectric and host beam layers,
respectively.

2.1.3. Variational Formulation

The extended Hamilton’s principle shown in Equation (10) is utilized to obtain the
coupled electromechanical equations of motion for the piezocomposite beam:

t2∫
t1

(δ(T −Um −UE) + δW)dt = 0 (10)

where t1 and t2 denote arbitrary time moments. Additionally, T stands for the kinetic
energy, Um for the mechanical potential energy and UE for the electrical potential energy,
and W stands for the virtual work carried out by the external forces, which are given by
the following relations:

T =
1
2

∫
Ωb

ρ(b)
.
uT .

u dΩ +
1
2

∫
Ωp1

ρ(p1)
.
uT .

u dΩ +
1
2

∫
Ωp2

ρ(p2)
.
uT .

u dΩ (11)
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Um =
1
2

∫
Ωb

εTσ(b)dΩ +
1
2

∫
Ωp1

εTσ(p1)dΩ +
1
2

∫
Ωp2

εTσ(p2)dΩ (12)

UE =
1
2

∫
Ωp1

E(1)
z D(p1)

z dΩ +
1
2

∫
Ωp2

E(2)
z D(p2)

z dΩ (13)

δWe = δuTfL + ∑
i

δviqi (14)

In the above equations, a dot denotes a partial derivative with respect to time t, Ω
denotes the volume, ρ denotes the mass density and the subscripts b, p1 and p2 stand for
the host beam structure and the lower (1) and the upper (2) piezoelectric layer, respectively.
Finally, fL denotes concentrated forces and qi concentrated electric charges.

The composite beam is divided into a finite number of elements Ωe according to the
finite-element method (FEM); therefore, each element’s own energy terms must be calcu-
lated before they can be assembled to represent the entire structure. Using the displacement
Equation (1) and performing some mathematical manipulations, the first variation of the
kinetic energy of an element with a surface-bonded piezoelectric layer can be written as:

δTe =
Le∫
0

∫
Ab

[ρ(b){δ .
u0 + zδ

.
ψx)(

.
u0 + z

.
ψx) + δ

.
w0

.
w0]dAdx

+
2
∑

i=1

Le∫
0

∫
Api

[ρ(pi)(δ
.
u0 + zδ

.
ψx)(

.
u0 + z

.
ψx) + δ

.
w0

.
w0]dAdx

=
Le∫
0
[δ

.
u0 I1

.
u0 + δ

.
u0 I2

.
ψx + δ

.
ψx I2

.
u0 + δ

.
ψx I3

.
ψx + δ

.
w0 I1

.
w0]dx

=
Le∫
0


δ

.
u0

δ
.

w0

δ
.
ψx


T I1 0 I2

0 I1 0
I2 0 I3


.
u0.
w0.
ψx

dx ≡
Le∫
0

(
δ

.
u
)T
I

.
udx

(15)

where Le is the length of the element and A(α), α = b, p1 and p2 is the cross-sectional area
of the beam and the lower and upper piezoelectric layer, respectively. In addition, the
elements of the inertia matrix I are given by:

Ii = I(b)i +
2

∑
k=1

I(pk)
i , i = 1, 2, 3

{
I(a)
1 I(a)

2 I(a)
3

}
= b

∫
z

ρ(α)
{

1 z z2
}

dz, , a = b, p1, p2 (16)

Notice that integration with respect to z in Equation (16) is performed either on the
region occupied by the elastic beam or on the region occupied by the piezoelectric elements.

Similarly, using Equations (2)–(9), the first variation of the mechanical and electrical
potential energy for a piezoelectric element can be written as:
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δUe
m =

Le∫
0

∫
Ab

[
(δεx)σ

(b)
x + (δγxz)τ

(b)
xz

]
dAdx +

2
∑

i=1

Le∫
0

∫
Api

[
(δεx)σ

(pi)
x + (δγxz)τ

(pi)
xz

]
dAdx

=
Le∫
0

[
δε0

x A11ε0
x + δε0

xB11κx + δκxB11ε0
x + δκxD11κx + δγ0

xz A55γ0
xz
]
dx

−
Le∫
0

[
δε0

x A(p)
31 + δκxB(p)

31 ε0
x

]
Ezdx =

=
Le∫
0


δε0

x
δκx
δγ0

xz


T A11 B11 0

B11 D11 0
0 0 A55


ε0

x
κx
γ0

xz

dx−
Le∫
0


δε0

x
δκx
δγ0

xz


T A(p1)

31 A(p2)
31

B(p1)
31 B(p2)

31
0 0

{ E(1)
z

E(2)
z

}
dx

=
Le∫
0
(δε)TDεdx−

Le∫
0
(δε)TE (p)Edx

(17)

δUe
E =

Le∫
0

b∫
0

− hb
2∫

− hb
2 −hp1

(
δE(1)

z

)
D(p1)

z dzdydx +
Le∫
0

b∫
0

hb
2 +hp2∫

hb
2

(
δE(2)

z

)
D(p2)

z dzdydx

=
2
∑

ι=1
δE(i)

z

Le∫
0

[
A(pi)

31 ε0
x + B(pi)

31 κx + A(pi)
33 E(i)

z

]
dx

=
Le∫
0

{
δE(1)

z

δE(2)
z

}T[
A(p1)

31 B(p1)
31 0

A(p2)
31 B(p2)

31 0

]
ε0

x
κx
γ0

xz

dx +
Le∫
0

{
δE(1)

z

δE(2)
z

}T[
A(p1)

33 0
0 A(p2)

33

]{
E(1)

z

E(2)
z

}
dx

=
Le∫
0

δETE (p)Tεdx +
Le∫
0

δETG(p)Edx

(18)

In the above equations, the cross-sectional coefficients of the composite are given by:

A11 = A(b)
11 +

2

∑
i=1

A(pi)
11 , B11 = B(b)

11 +
2

∑
i=1

B(pi)
11 , D11 = D(b)

11 +
2

∑
i=1

D(pi)
11 , A55 = A(b)

55 (19)

with [
A(a)

11 B(a)
11 D(a)

11

]
= b

∫
z

Q(α)
11

[
1 z z2

]
dz, a = b, p1, p2 A55 = kscb

∫
z

Q55dz (20)

[
A(pi)

31 B(pi)
31

]
= b

∫
z

ẽ(pi)
31
[
1 z

]
dzdy, i = 1, 2 (21)

2.1.4. Displacement and Electric Field Discretization

The finite-element formulation is based on the super-convergent FE approach devel-
oped by Foutsitzi et al. [27]. The super-convergent element produces an exact elemental
stiffness matrix by using higher-order interpolating polynomials that are obtained by solv-
ing the static part of the governing equations of motion. However, the calculated consistent
mass matrix is only roughly accurate. This element predicts natural frequency with a better
degree of precision and smaller discretization than any other traditional finite elements
since the stiffness matrix is precise for static analysis.
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The beam element with length Le has two nodes with three mechanical degrees of
freedom (DoFs) per node: the axial and transverse displacement u0 and w0 and the rotation
ψx. Thus, the vector of mechanical DoFs is defined by:

de =
{

u1
0, w1

0, ψ1
x, u2

0, w2
0, ψ2

x

}T
(22)

The axial displacement u0 and the rotation ψx are interpolated by quadratic polyno-
mials, while the transverse displacement w0 is interpolated by cubic polynomials and is
expressed in terms of the finite-element shape functions. Then, the generalized displace-
ment vector is expressed as follows:

u = {u0, w0, ψx}T = N(x)de(t) =
{

Nu, Nw, Nψ

}Tde (23)

where Nu, Nw and Nψ are the super-convergence shape functions which are given in [27].
Using Equation (23), the generalized stain field can be written in the following form:

ε =


ε0

x
κx
γ0

xz

 =


∂Nu
∂x

∂Nψ

∂x
∂Nw
∂x + Nψ

de = Bde (24)

Finally, to represent the electric potential difference at the top of the lower and upper
piezoelectric patches, two extra electric DoFs per element are inserted, namely, ve

1 and ve
1.

Note that, for every additional piezoelectric layer, an additional electric DoF is needed per
element. Thus, the vector of electrical DoFs is defined by:

ve = {ve
1, ve

2}
T (25)

and the electric field distribution can be written as:

Ee =

{
E(1)

z

E(2)
z

}e

=

[
−1/hp1 0

0 −1/hp2

]{
ve

1
ve

2

}
=

[
B(p1)

v 0
0 B(p2)

v

]
= Bvve (26)

where B(p1)
v and B(p2)

v are the electrical field gradient operator of the lower and upper
piezoelectric layer, respectively.

2.1.5. Coupled Electromechanical System

Substituting Equations (23)–(26) into the energy expressions of Equations (14)–(18)
and the Hamilton’s principle of Equation (10) leads to:

t2∫
t1

{
(δde)T

[
Le∫
0

NTINdx
..
d

e
+

Le∫
0

BTDBdxde +
Le∫
0

BTE (p)Bvdxve − Fe
m

]

+(δve)T

[
−

Le∫
0

BT
vE (p)TBdxde +

Le∫
0

BT
vG(p)Bvdxve − qe

]}
dt = 0

(27)

Since δde and δve are independent and arbitrary, Equation (27) leads to:

Me
u

..
d

e
+ Ke

ude + Ke
uvve = Fe

m (28)

−Ke
uv

Tde + Ke
vvve = qe (29)

where Fe
m = NTfe

L and Me
u, Ke

u, Ke
uv and Ke

vv are the element mass matrix, element stiff-
ness matrix, electromechanical coupling stiffness matrices and piezoelectric permittivity,
respectively. The definition of these matrices follows directly from Equation (27). Using the
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definition of the shape functions Nu, Nw and Nψ and integrating, we can obtain the explicit
form of the above matrices.

The global electromechanical coupled equations can be obtained by assembling the
elemental Equations (28) and (29). It should be noted that, during the assembly process, a
special numbering scheme should be utilized to identify elements with a piezoelectric layer,
such as 1 for elements with a piezoelectric patch and 0 for the rest elements. Furthermore,
a single electrical degree of freedom, vi,, should be assigned to each piezoelectric layer
since they are completely covered by uniform electrodes in order to take into account the
equipotential state on the electrodes. By partitioning the electric potential into sensory (v1)
and active (v2) components, the global electromechanical system equations are given by:

Mu
..
d + Cd

.
d + Kud + Θ1v1 + Θ2v2 = Fm (30)

−ΘT
1 d + Cpv1 = Q1 (31)

−ΘT
2 d + Cpv2 = Q2 (32)

In the above equations, d denotes the global vector of mechanical degrees of free-
dom, Mu denotes the global mass matrix, Ku the stiffness matrix, Fm the mechanical
force terms, Θ = [Θ1, Θ2] denotes the global electromechanical coupling matrix and Cp
denotes the piezoelectric capacitance, identical for both patches. Finally, (v1, Q1) and
(v2, Q2) are the voltage/charge pairs associated with the top and the bottom piezoelectric
patch, respectively.

The finite-element model of Equations (30)–(32) can be used for a wide range of
applications relating to piezoelectric smart structures, such as active vibration control,
energy harvesting, etc. In the following section, it is suitably adapted to a case where the
top piezoelectric patch is ‘shunted’, that is, it stays connected to a passive electrical network
for passive vibration control applications.

In a case where both piezoelectric patches are shorted, the difference of the electric
potential between its electrodes vanishes (v1 = v2 = 0). Therefore, Equation (30) becomes:

Mu
..
d + Kud = Fm (33)

It is noted that the matrices Mu and Ku contain the contributions of the piezoelectric patch.
Since we are interested in vibration control, a powerful representation of the system

is the state-space representation, which allows the determination of both the frequency
and impulse responses of various shunt configurations and electrical components. Thus,
short-circuit Equation (33) is transformed into state-space form, as follows:

.
x = Ax + Bw
y = Cx + Dw

(34)

where

A =

[
0 I

−M−1
u Ku 0

]
, B =

[
0

M−1
u

]
, x =

{
d
.
d

}
, w = Fm (35)

The matrices C and D depend on the choice of the observed inputs.

2.2. Multiple-Mode Shunt-Damping Circuit

In this section, the “current-flowing” shunt circuit proposed by Behrens et al. [13–15]
is used to model the electromechanical system equations for simultaneously damping the
multiple vibration modes of the piezoelectric composite system.

The “current-flowing” shunt circuit is shown in Figure 2. Each circuit branch
Ci − L̂i − L̃i − Ri of the “current-flowing” shunt corresponds to the structural mode chosen
to be damped and consists of two sub-branches: a current-flowing branch Ci − L̂i and a se-
ries single-mode shunt-damping branch L̃i − Ri. The current-flowing sub-branch Ci − L̂i is
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tuned at the target resonance frequency ωi of the structural system and is an approximately
open circuit at all the other frequencies. This is achieved by selecting Ci and L̂i so that:

L̂i =
1

ω2
i Ci

(36)

Figure 2. Current-flowing shunt circuit for multimode damping.

When the current flows at frequency ωi, the shunt-damping sub-branch L̃i − Ri is
connected in series to the capacitor Cp of the piezoelectric patch and can be independently
tuned to that target frequency ωi. by imposing:

L̃i =
1

ω2
i Cp

(37)

It is obvious that the shunt circuit shown in Figure 2 can be replaced by an equivalent
or simplified shunt circuit with total inductance Li of each branch given by:

Li = L̂i + L̃i =
Cp + Ci

ω2
i CiCp

(38)

2.3. State-Space Model of the Structure with Current-Flowing Circuit

In this section, we derive the state-space representation of the compound system in
Figure 1 when a “current-flowing” shunt circuit is connected to the top piezoelectric patch.
The derivation is presented for the case of two modes of vibration control at the target
resonance frequencies, i.e., ω1 and ω2 (ω1 < ω2). The extension to multiple-mode control is
straightforward. The simplified current-flowing controller for the two-mode case is shown
in Figure 3.

Figure 3a shows the equivalent circuit design of the shunt attached to a piezoelectric
element where capacitor Cp, in series with a strain-dependent voltage source Vp, represents
the top piezoelectric element. Next, we use the symbol q to denote the electric charge
of the top piezoelectric patch (i.e., q = Q1 in Equation (31)). Moreover, Equation (32) is
automatically met and may be disregarded in the scenario when the bottom piezoelectric
patch serves as the actuator. The corresponding term in Equation (30) can, thus, be shifted
to the right-hand side as an equivalent electrical work:

Mu
..
d + Cd

.
d + Kud + Θ1v1 = Fm −Θ2v2 (39)
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Figure 3. (a) A single-shunt circuit for two-mode current-flowing control. (b) Simplified shunt circuit.

To derive the electrical circuit equations, Kirchhoff’s circuit laws are applied to the
simplified shunt circuit of Figure 3b:

.
q =

.
q1 +

.
q2 (40)

L1
..
q1 + R1

.
q1 +

1
C1

q1 = −Vsh (41)

L2
..
q2 + R2

.
q2 +

1
C2

q2 = −Vsh (42)

We know that the piezoelectric voltage and shunt voltages must be equal (v1 = Vsh)
and that the current from the piezoelectric element matches the current delivered to the
shunt circuit. Solving Equation (31) with respect to v1, substituting into Equation (39) and
using Equations (40)–(42), we obtain the final electromechanical equations of motion for
a beam and piezoelectric element connected to the shunt circuit of Figure 3b:

..
d = −M−1

u Kod−M−1
u ΘC−1

p q + M−1
u Fm −M−1

u Θ2v2 (43)

.
q =

.
q1 +

.
q2 (44)

..
q1 = − 1

L1Cp
ΘT

1 d− 1
L1Cp

q− 1
L1C1

q1 −
R1

L1

.
q1 (45)

..
q2 = − 1

L2Cp
ΘT

2 d− 1
L2Cp

q− 1
L2C2

q2 −
R2

L2

.
q2 (46)

where
Ko = Ku + Θ1C−1

p Θ1
T (47)

By defining the state vector as xsh =
{

d,
.
d, q, q1, q2,

.
q,

.
q1,

.
q2

}T
, Equations (43)–(46)

can be combined and written as:

.
xsh = Ashxsh + Bshwsh (48)
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The state matrices are given by:

Ash =



0N×N IN×N 0 0 0 0 0 0
−M−1

u Ko −M−1
u Cd −M−1

u Θ1C−1
p 0 0 0 0 0

01×N 01×N 0 0 0 0 1 1
01×N 01×N 0 0 0 0 1 0
01×N 01×N 0 0 0 0 0 1
01×N 01×N 0 0 0 0 1 1
− 1

L1Cp
ΘT

1 01×N − 1
L1Cp

− 1
L1C1

0 0 − R1
L1

0

− 1
L2Cp

ΘT
1 01×N − 1

L2Cp
0 − 1

L2C2
0 0 − R2

L2


(49)

and

Bsh =



0N×N 0N×1
M−1

u M−1
u Θ2

01×N 0
01×N 0
01×N 0
01×N 0
01×N 0


, wsh =

{
Fm
v2

}
(50)

where N denotes the total number of degrees of freedom. In this work, the output of
interest is usually tip displacement, so the matrices Csh and Dsh, corresponding to that
output, are written as:

Csh =
[
I0 01×N 0 0 0 0 0 0

]
, Dsh= 0 (51)

where I0 is the 1×N matrix with all its elements set to zero except the N− 1 element which
corresponds to the transverse displacement degree of freedom. The FE model, as well as
the state-space representation of the piezoelectric shunt-damping system, is implemented
in MATLAB.

2.4. Design Optimization

The major purpose of this work is to determine the optimal shunt circuit parameters
for improving attenuation level for the damping multiple vibration modes of the composite
piezoelectric system. To this end, a new design optimization approach is proposed that
includes capacitances of current-flowing branches and shunt branch inductor values as
new design variables in the optimization process. Next, the optimal design variables are
determined by minimizing the H∞ norm of the damped system using the particle swarm
optimization (PSO) technique.

2.4.1. Design Variables

It is well known that the insertion of an inductance L in piezoelectric shunt-damping
circuits has the effect of cancelling out the piezoelectric transducer impedance Cp that, in
turn, leads to the maximization of the energy dissipation through the resistance R [28]. This
is the role of the inductance L̃i of the shunt branch in the “current-flowing” multimode
dampener presented in Section 3. However, in cases where low-frequency modes are to be
shunt damped, large inductance values are required. This can be a significant constraint
because it necessitates the use of impractically large and heavy coil inductors.

Several authors [16,29] proposed the insertion of additional capacitance to lower
the values of the required inductances. As stated in [6], the control performance of an
RL− C parallel circuit can be studied by adding an additional capacitance on the shunt
circuit, and the values of the inductance and resistance can be reduced. However, the
control performance of the shunt circuit may also be reduced by this additional capacitance.
Particularly, the control performance of the RL − C parallel circuit is better when the
capacitance value is zero (RL circuit) and decreases when the capacitance value equals
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the piezoelectric capacitance Cp (C = Cp) and, furthermore, when the capacitance value is
two times the piezoelectric capacitance Cp (C = 2Cp).

Fleming et al. [16] suggested inserting an additional capacitance across the terminals
of the piezoelectric transducer to drastically reduce the required shunt inductance. For
multimode vibration control, a series–parallel impedance structure was proposed with
a recommended capacitance value ten to twenty times larger than the piezoelectric capaci-
tance. Although smaller inductances are required in this method, control effectiveness is
decreased since additional capacitance allows a decrease in electromechanical coupling.

Another method that highlights the role of the capacitance in resonant shunts is the use
of negative capacitance to cancel out the transducer capacitance impedance and enhance
the vibration attenuation [30–32].

Generally, the capacitance values Ci of shunt-damping circuits are selected arbitrarily,
while the inductances are tuned to a certain frequency to cancel out the transducer capaci-
tance. Particularly in the current-flowing controller introduced in [13–15], the capacitance
values Ci were chosen to be approximately 10% of the piezoelectric capacitance Cp, while
the capacitance values Ci of the multimode shunt-damping systems in [12,17] were set
to be approximately equal to the piezoelectric capacitance Cp. Additionally, in the work
of Jeon [18], the values of the capacitors were between 1.5 and 3 times the piezoelectric
capacitance Cp.

The arbitrary selection of capacitance values can have a negative impact on the shunt-
damping system. The suitable choice of capacitance values is crucial since large capacitance
values worsen electromechanical coupling, while small capacitances create a requirement
for larger inductance values in the shunt circuit. On the other hand, due to the electri-
cal interaction of the different shunt branches of the multimode shunt-damping circuit,
closed-form solutions of resonant shunt branches are subject to significant approximations,
resulting in sub-optimal designs. Thus, further fine tuning for electric shunt parameters
needs to be performed via an optimization procedure.

Taking into account these considerations, instead of arbitrarily choosing the capac-
itances of the current-flowing circuit and tuning the inductors of each shunting branch
into the inherent capacitance of the piezoelectric element, a new optimization approach is
proposed in this work that considers them as new design variables along with the resistance
values Ri.

Thus, the design variables of the optimization problem under study are the resistors
Ri, the capacitances Ci and the inductances L̃i of the shunt branch in the “current-flowing”
shunt circuit. The remaining inductances L̂i of the current-flowing branches are given by
Equation (36).

2.4.2. Objective Function

Consider the transfer function matrix Hsh(s) ∈ CN×N as representing the piezoelectric
composite shunt system (48). It is well known that the frequency response Hsh(jω) of
a system is a function that relates the output response to a sinusoidal input at a frequency
ω. In fact, the frequency response (FR) of a system at frequency ω is simply its transfer
function evaluated by substituting s = jω, i.e.,

Hsh(jω) = Csh
(

jωI−Ash
)−1

Bsh (52)

Recall that the elements Hsh
ij (ω) of the matrix Hsh(jω) provide the system frequency

response of the i DoF to a force at the j DoF for each forcing frequency ω.
Once the frequency range of interest and the DoF at which vibrations are to be damped

are defined, the FRF can be used to define performance indexes to be optimized for the
selection of optimal shunt parameter values. In the case of multiple-mode shunt damping,
the range of interest contains multiple peaks in the region of modes chosen to be damped.
Therefore, in this work, the whole frequency range of interest is divided into regions
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containing the frequencies of interest, and the objective function f is chosen to be the
weighted sum of the maximum amplitudes of the FRF over those regions, i.e.,

f (x) = ∑
k

ak max
ωk≤ωk≤ωk

∣∣∣Hsh
ii (ωk)

∣∣∣ (53)

where x denotes the set of design variables, Hsh
ii (ω) denotes the response of the beam at

the tip (i node) for an excitation at the same point (i node), [ωk, ωk] denotes a region close
to the frequency ωk and the summation index k takes values over the set of frequencies
of interest. In Equation (53), ak is the weighting factors satisfying ak ≥ 0 , ∑k ak = 1. By
varying the values of ak we can give emphasis to a particular resonant frequency of interest.
In this work, the second and third mode of a cantilever piezoelectric beam are considered
for damping without giving emphasis in a particular mode, so k = 2, 3, and a2 = a3 = 0.5.

2.4.3. Optimization Problem

In the proposed method, the resistance values Ri, the capacitances Ci and the induc-
tance values of the shunt-damping sub-branch L̃i are considered as design variables. The
inductance values L̂i are given by Equation (31), while the inductance of the simplified
shunt circuit in Figure 3b is given by Li = L̂i + L̃i. Thus, the optimization problem of choos-
ing the shunt circuit parameters for minimizing the performance index of Equation (53) is
formulated as follows:

Model 1 (Proposed Method):

Find the optimal set of design variable (optimal design vector) x =
{

Ri, C, L̃i

}T
to

minimize f
(

Ri, Ci, L̃i

)
st RL ≤ Ri ≤ RU i = 1, 2, . . . , n

CL ≤ Ci ≤ CU i = 1, 2, . . . , n
LL ≤ L̃i ≤ LU i = 1, 2, . . . , n

(54)

where a value with subscript L denotes the lower bound of the corresponding variable, and
a value with subscript U denotes the upper bound of the corresponding variable.

Next, to investigate the effect of the design variables on the optimal design of the
compound system and for comparison reasons, two additional models with fewer design
variables are addressed.

Model 2 (Method of Behrens et al. [15]):

In this case, only the resistance values Ri are the design variables. The capacitance
values Ci are chosen to be 10% of the inherent capacitance of the piezoelectric patch, and
the inductance values Li are given by Equation (35). In fact, this case corresponds to the
optimization approach proposed by Behrens et al. [12,15,17]. Thus, the formulation of the
optimization problem is as follows:

Find design variables Ri to

minimize f (Ri)
st RL ≤ Ri ≤ RU i = 1, 2, . . . , n

(55)

Model 3 (Case Study):

In this case, the resistance values Ri and the capacitance values Ci are the design
variables. The inductance values Li are given by Equation (35). Thus, the formulation of
the optimization problem is as follows:
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Find design variables Ri, Ci to

minimize f (Ri, Ci)
st RL ≤ Ri ≤ RU i = 1, 2, . . . , n
CL ≤ Ci ≤ CU i = 1, 2, . . . , n

(56)

where CL and CU are, respectively, the lower and upper bounds of Ci.

2.4.4. Particle Swarm Optimization (PSO)

A population-based optimization approach with naturalistic inspiration is the particle
swarm optimization method. The same as genetic algorithms and other optimization
techniques of a similar nature, it is a wholly stochastic process. This algorithm replicates
the movement of particles, such as the swarming or shoaling of a school of fish, the flying
motion of a flock of birds or the schooling of insects. In a similar way, the swarm of potential
solutions “wings” in the direction of the best solution.

Due to its reputation as one of the most promising, nature-inspired algorithms, particle
swarm optimization is often applied in a wide range of scientific applications. This class of
optimization technique is significantly well liked because of how easily it can be applied to
a variety of problems.

PSO is one of several optimization strategies that have been chosen for this work due
to some of its benefits over other approaches, including:

1. The PSO algorithm is simple to implement, making it applicable to both engineering
and scientific research problems;

2. It has fewer parameters to be adjusted;
3. PSO is more efficient since only the most optimistic particle may pass information to

the other particles over the evolution of generations, and, therefore, the optimization
procedure moves quite quickly to better fitness values.

The MATLAB optimization toolbox package contains the algorithm employed in the
current work. The size of the problem, the computational cost and the required accuracy
are all taken into consideration while choosing the algorithm’s parameters by trial and
error. Specifically, the algorithm’s self-adjustment and social-adjustment parameters are set
to 1.49, the maximum number of iterations to 250, the inertia range to [0.1, 1.1], the stall
iteration limit to 20 and the swarm size to 100 particles.

In Figure 4, the optimization procedure is displayed. At each iteration, the MATLAB
code that we developed for the FE model implementation is executed to calculate the
objective function of Equation (53) needed by the optimization process. As the first step
of the optimization procedure, the PSO parameters (number of design variables, swarm
size, maxiter, lower and upper bounds of the design variables) are defined. At each step,
the algorithm evaluates the objective function at each particle. After this evaluation, the
algorithm decides on the new velocity of each particle. The particles move, then the
algorithm reevaluates. The maximum number of iterations or a sufficient level of fitness
serve as the convergence criteria. As long as the criterion is not satisfied, the algorithm
continues to evolve the particles population. Finally, the optimal solution is obtained.
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Figure 4. Flowchart of the optimization procedure.

3. Results and Discussion

This section presents the numerical results of the optimal design for the cantilever
composite beam seen in Figure 1. Thomas et al. [24] previously studied this beam for single-
mode shunt damping. The host beam is made of aluminum, and the piezoceramics are
PIC151 and are placed 0.5 mm from the fixed end. The material and geometric properties
of the structure are given in Table 2. In this study, the second and third mode of the
cantilever beam are damped using the multimode resonant shunt shown in Figure 3b.
The reason for only addressing the second and third modes is that, due to the position of
the piezoelectric patch, these modes have greater authority than other structural modes.
For the determination of the frequency response, the proposed FE model is used, and the
harmonic force is applied at the tip of the beam. The system response is determined at the
same position.

Table 2. Geometric and material parameters of the compound structure.

Parameter Beam PZT

Length L (mm) 170 25
Width b (mm) 20 20

Thickness h (mm) 2 0.5
Young’s modulus E (GPa) 72 66.7
Shear modulus G12 (GPa) 27.48 25.46

Poisson’s ratio v12 0.31 0.31
Density ρ (Kg/m3) 2800 8500

Piezoelectric constant ẽ31 (C/m2) - −14
Dielectric constant ξ33 (nF/m) - 2068ε0

ε0 = 8.854× 10−12 F/m is the free space permittivity.
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Three different optimization problems are studied, as already discussed in Section 4.
In each problem, the particle swarm optimization method is applied with the number of
particles in the swarm set to be 150 and the maximum number of iterations to be 250. The
numerical experiment is carried out in the Windows 10 Pro environment running MATLAB
2019b. The computer processor is 11th Gen Intel(R) Core (TM) i7-11370H @ 3.30 GHz,
and the RAM is 16.00 GB. Initially, the parameters of the model 1 are chosen with the
trial-and-error method by taking into account the commercial availability of the electrical
components, the size of the problem and the desired accuracy. The upper and lower bounds
of the design variables are given in Table 3.

Table 3. The limits of the design variables.

Variable Minimal Value Maximum Value

R2 (kΩ) 0 30
R3 (kΩ) 0 30
C2 (µF) 10−8 1
C3 (µF) 10−8 1
L̃2 (H) 1 20
L̃3(H) 1 20

3.1. Validation versus Results from a Cantilever Beam Connected to a R− L Shunt Circuit

The developed finite-element model is verified with the results of [24]. For comparison
reasons, a concentrated mass of 4.2 g at the tip of the beam is added to model the magnet
used in the non-contact electromagnetic driving system. The dynamic analysis of the
beam is performed, and the first three flexural modes are presented in Table 4. Comparing
the results from the present FE model with that of the finite-element computations and
experiments obtained in [24], an excellent agreement is obtained.

Table 4. The first three natural frequencies (Hz) of the piezoelectric composite beam.

Modes
Short-Circuit Frequencies (Hz) Open-Circuit Frequencies (Hz)

FE [24] Exp. [24] Present FE FE [24] Exp. [24] Present FE

1 48.96 51.64 48.96 49.42 52.17 49.2
2 337.1 337.0 336.9 340.7 340.2 338.68
3 951.8 936.3 950.23 960.6 940.0 954.64

In addition, the effect of an R− L shunt circuit connected in series with the upper
and lower piezoelectric patch, as presented in [24], is studied next. Using the values
of R = 7900Ω and L = 21.8H, the driving point FRF modulus at the tip of the beam
(i.e., the response at the tip for an excitation at the same point) from the present finite-
element formulation as well as from the formulation of [24] is shown in Figure 5. Again,
an excellent agreement is obtained between the two formulations.

The results clearly illustrate the high accuracy and reliability of the present FE formu-
lation for frequency response analysis of piezoelectric composite beams, and, therefore, this
numerical analysis can be readily integrated efficiently with the PSO algorithm to provide
optimal solutions to the optimization problems.

3.2. Solution of Optimization Problem: Model 1

The optimization problem in Equation (54) is addressed at this stage by considering the
resistance values Ri, the capacitances Ci and the inductance values of the shunt-damping
sub-branch L̃i as the design variables. The inductance values L̂i of the current-flowing
branch are given by Equation (31), while the inductances of the simplified shunt circuit in
Figure 3b are obtained as Li = L̂i + L̃i. The problem is solved with the limit values given in
Table 3. The optimal values of the electrical parameters of the simplified shunt circuit are
given in Table 5.
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Figure 5. Beam tip FRF with RL shunt tuned on mode 2: undamped response (blue —),
damped—present FE (red), damped FE of Thomas et al., 2009 [24] (black).

Table 5. Shunt parameters for model 1.

Parameter Value

R2 (kΩ) 1.40
R3 (kΩ) 2.36
C2 (µF) 1
C3 (µF) 0.0083
L̃2 (H) 7.43
L̃3 (H) 1.68
L2 (H) 7.68
L3 (H) 5.06

To justify the H∞ norm optimization technique, the magnitude frequency response
of the tip displacement, before and after shunt damping, is presented in Figure 6. It is
observed that the damped FRF exhibits two peaks of equal amplitude around each of the
second and the third natural frequencies, which are comparatively low with respect to the
uncontrolled structure (when the transducer is either short or open circuited). Indeed, the
resonant amplitudes for the second and third modes are reduced by 39.61 dB and 55.92 dB,
respectively.

Figure 6. Simulated frequency response: undamped response (blue —), damped response—model
1 (red).



Signals 2022, 3 849

Figure 7 shows the convergence of the particle swarm optimization algorithm for
model 1. As can be seen from Figure 7, the process converges after generation 45, when the
fitness function remains quasi constant. It takes about 1 h to carry out the 105 iterations. In
addition, the algorithm stops before the maximum iteration is reached, since the relative
changes in objective function are less than the tolerance (10−6).

Figure 7. Iteration process of the fitness function using PSO—model 1.

3.3. Solution of Optimization Problem: Model 2

In this case, the optimization problem described by Equation (55) is solved by setting
the lower RL and upper RU bounds for the resistance values to be the same as in model 1
(see Table 3). The capacitance values Ci are chosen to be 10% of the inherent capacitance
of the piezoelectric patch, and the inductance values Li are given by Equation (35). The
optimal values of the resistance variables found by the PSO algorithm are R2 = 12.29 kΩ
and R3 = 4.02 kΩ. Figure 8 shows the magnitude of the tip FRF, before and after shunt
damping, using the method proposed by Behrens et al. [16] (model 2). For comparison
reasons, the corresponding FRF of the damped system using the proposed method (model 1)
is also illustrated simultaneously in this figure. It is obvious from Figure 8 that the proposed
method provides greater amplitude reduction in both target modes. Indeed, the FRF
amplitude reduction of the second mode is 25.47 dB, i.e., 35.69% lower compared with
that of model 1 (39.61 dB). Additionally, the FRF amplitude reduction of the third mode
is 47.08 dB, i.e., 15.81% lower compared with that of model 1 (55.92 dB). The overall
parameters of the shunt circuit for model 2 are shown in Table 6. It can be observed that
the required inductance values for the convectional current-flowing method (model 2) are
considerably large, especially those corresponding to low-frequency modes. In comparison
with the optimal inductance values of model 1, it follows that the suitable choice of the
capacitance values Ci via the proposed optimization method significantly reduces the
inductive requirements.
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Figure 8. Simulated frequency response: undamped response (blue —), damped response—model
2 (red).

Table 6. Shunt parameters for model 2.

Parameter Value

R2 (kΩ) 12.29
R3 (kΩ) 4.02
C2 (nF) 1.83
C3 (nF) 1.83
L2 (H) 134.07
L3 (H) 16.85

Figure 9 shows the iteration process of optimization. It can be seen from the figure, that
the process converges after generation 15, when the fitness function remains quasi constant.
It takes about 17 min to carry out the 39 iterations. In addition, the algorithm stops before
the maximum iteration is reached, since the relative changes in objective function are less
than the tolerance (10−6).

Figure 9. Iteration process of the fitness function using PSO—model 2.
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3.4. Solution of Optimization Problem: Model 3

Finally, the optimization problem defined by Equation (56) is solved with the resis-
tance values Ri and the capacitance values Ci considered as design variables. Given the
capacitances, the inductance values Li of the simplified shunt circuit are determined by
Equation (35). The lower and upper limits for the resistances and the capacitances vary, the
same as in model 1 and are given in Table 3. The optimal values of the design variables,
along with the calculated inductances, are given in Table 7. As we can see, the required
inductance values for this model are even larger relative to model 2 and considerably
larger compared to the ones of model 1. The magnitude frequency response of the tip
displacement, before and after shunt damping, are presented in Figure 10. For the purpose
of comparison, the corresponding magnitude frequency response of model 1 is also illus-
trated simultaneously in this figure. It can be observed from this figure that the amplitude
reduction for model 1 is higher than that of model 3. It means that model 1 yields better
results than the model 3. Using the values of the shunt circuit from Table 7, the resonant
amplitudes for the second and third modes are reduced by 24.07 dB and 44.22 dB, respec-
tively. Compared with the corresponding reduction obtained when the shunt system is
tuned according to the proposed method of model 1, these reductions are obvious lower.

Table 7. Shunt parameters for model 3.

Parameter Value

R2 (kΩ) 16.34
R3 (kΩ) 5.43
C2 (µF) 0.001
C3 (µF) 0.001
L2 (H) 235.36
L3 (H) 29.59

Figure 10. Simulated frequency response: undamped response (blue —), damped response—model
3 (red).

Figure 11 shows the iteration process of optimization. It can be seen from the figure,
that the process converges after generation 5, when the fitness function remains quasi
constant. It takes about 15 min to carry out the 38 iterations. Again, the algorithm stops
before the maximum iteration is reached, since the relative changes in objective function
are less than the tolerance (10ˆ-6).
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Figure 11. Iteration process of the fitness function using PSO—model 3.

3.5. Comparison between the Three Models

An overall comparison between the three models is given in this section. For this
reason, the tip FRFs using optimal solutions of all models are illustrated simultaneously
in Figure 12. It can be observed from this figure that the optimal solution of the proposed
model 1 gives greater amplitude reduction than both the other models. This means that the
proposed model 1 yields better results than all the other models. The same conclusion can
be obtained by comparing the amplitude reduction for the second and the third mode for
all models given in Table 8.

Figure 12. Simulated frequency response of the three models.
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Table 8. Amplitude reduction (dB).

Model 1 Model 2 Model 3

Mode 2 39.60 25.47 24.07
Mode 3 55.92 47.08 44.22

Additionally, in comparison to model 2, the numerical results demonstrate the benefi-
cial impact of the third design variable, “inductance of the shunting branches”. Another
benefit of the approach introduced in model 1 is that of reducing the required inductance
values of the multimode shunt circuits. Indeed, comparing the inductance values required
for shunt damping control in all models (see Tables 5 and 6), the total inductances in model
1 have the lower values. It seems that considering the capacitances as design variables to
be determined and tuning their values via optimization method is an alternative way to
reduce the inductance requirements of piezoelectric shunt-damping systems [16]. However,
in contrast to the method of [16], the proposed approach is not performed at the expense of
damping performance.

3.6. A Comparison between PSO and GA Algorithms

In this section, a comparison between the proposed PSO method and GA algorithm
is performed in order to demonstrate the capability of the proposed PSO method to im-
prove the performance of shunt-damping circuits. Each algorithm is run 10 times with
the same number of particles/population (100) and the same number of maximum itera-
tions/generations (250). The remaining parameters for the GA algorithm are the default
parameters of the GA solver in MATLAB, while, for PSO, the same parameters as mentioned
above are used.

Tables 9 and 10 show the best fitness value found, the total time (in s) the itera-
tions/generations executed for the algorithm take in order to start to converge, the total
number of iterations and the total function evaluations required to find the optimal solution
for both algorithms in each run time. Based on the results tabulated in Tables 8 and 9,
most best fitness values found by PSO are lower than the ones found by GA in most of
the 10 test runs. In fact, 70% of the fitness values reached by PSO are lower than −86,
a value that is never reached by GA. For PSO, the lowest fitness value of −86.34 is reached
with 10,600 objective function evaluations. Nevertheless, GA reaches its best value −84.77
using a computational effort relative to 23,855 evaluations, as shown in Tables 8 and 9.
Additionally, it is observed that the average time required by PSO to find the optimal circuit
design (in 10 test runs) is shorter compared to GA, which shows that PSO can perform
faster than GA.

Table 9. Fitness, computation time and iterations of GA.

Number of
Runs Best Fitness Time (s) Total

Iterations
Function

Evaluations

1 −84.77 8326.053 250 23,855
2 −70.5 6513.69 250 23,855
3 −80.96 7823.02 250 23,855
4 −69.33 3644.80 111 10,650
5 −83.34 7231.36 250 23,855
6 −70.72 7508.04 250 23,855
7 −70.24 4252.65 189 18,060
8 −69.6 2168.00 72 6945
9 −80.7 7050.17 250 23,855

10 −83.58 7220.28 250 23,855

Avg Total −76.374 6173.81 212.2 20,264
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Table 10. Fitness, computation time and iterations of PSO.

Number of
Runs Best Fitness Time (s) Total

Iterations
Function

Evaluations

1 −70.19 4277.75 112 11,300
2 −86.34 3897.51 105 10,600
3 −86.23 6653.82 230 23,100
4 −86.23 3428.34 132 13,300
5 −70.19 2256.21 90 9100
6 −86.18 8431.59 250 25,100
7 −86.21 5426.75 173 17,400
8 −86.23 8045.17 250 25,100
9 −70.19 3946.70 142 14,300

10 −86 7613.49 250 25,100

Avg Total −81.399 5397.73 173.4 17,440

Figure 13 shows a comparison of the PSO and GA methodologies’ convergence during
the search process of the optimal parameters for the test run (execution) with the best fitness
value. It is clear from this figure that PSO converges at a faster rate (around 45 iterations)
than GA (around 232 generations). Another interesting outcome of this figure is that, in
GA, although the best solution is improved relatively fast in the first 70 iterations, in the
remaining iterations, it is trapped in a local optimum, which is worster from the solution
found using the PSO. Thus, this comparison demonstrates the capability of PSO to reach
better values for this kind of problem and exert less computational effort to reach the
“optimum” when compared to GA. Nevertheless, a more comprehensive study is needed
to establish this statement, which is out of the scope of this study.

Figure 13. Convergence of the best fitness for PSO and GA optimization techniques.

4. Conclusions

This work provides a new design optimization approach for enhancing multimode
vibration damping of composite beam structures. A modification of the “current-flowing”
shunt circuit [15] for controlling multimode vibration in a piezoelectric laminate beam is
used. The proposed method is based on considering the capacitor and inductor values
of each shunting branch as new design variables along with the resistor values. The
optimization is performed for the minimum H∞ norm of the piezoelectric composite beam
using a PSO algorithm. A two-mode shunt circuit is designed and simulated for a cantilever
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piezo laminated beam. Two additional models with different combinations of variables are
investigated; model 2 considers only the resistances of the shunt circuit as design variable,
and model 3 considers both resistances and capacitances. Frequency response analysis
is conducted by the finite-element method using super-convergent beam elements. The
obtained optimal solutions are presented and discussed. The overall results show that
the proposed approach of model 1 improves the multimode shunt damping and gives the
highest peak amplitude reduction of 39.61 dB for the second mode and 55.92 dB for the
third mode. Another benefit of the approach introduced in model 1 is that of the reduction
of the required values for the inductors without any expense in the damping performance.
Finally, a comparison of the proposed PSO method with the GA algorithm is performed,
which demonstrates the capability of PSO to reach better values for this kind of problem
and exert less computational effort to reach the “optimum”.
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