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Abstract: In this paper, a new sampling technique is proposed that can be used in the Multistart
global optimization technique as well as techniques based on it. The new method takes a limited
number of samples from the objective function and then uses them to train an Radial Basis Function
(RBF) neural network. Subsequently, several samples were taken from the artificial neural network
this time, and those with the smallest network value in them are used in the global optimization
method. The proposed technique was applied to a wide range of objective functions from the relevant
literature and the results were extremely promising.
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1. Introduction

A novel method to draw samples for global optimization methods is presented here.
The process of locating the global minimum of a continuous and differentiable function
f : S→ R, S ⊂ Rn is described as, determine

x∗ = arg min
x∈S

f (x) (1)

with S:
S = [a1, b1]⊗ [a2, b2]⊗ . . . [an, bn]

The above problem is commonly used to describe problems in economics [1–3],
physics [4–6], chemistry [7–9], medicine [10,11] etc. The global optimization methods
have two major categories: deterministic and stochastic methods. The most common
methods of the first category are the so-called Interval methods [12–14], where the set S
is divided iteratively in subregions and some subregions that do not contain the global
solution are discarded using some pre-defined criteria. The majority of the methods
belong to the second category where the reader can find Controlled Random Search meth-
ods [15–17], Simulated Annealing methods [18,19], Differential Evolution methods [20,21],
Genetic algorithms [22–24], Particle Swarm optimization methods [25,26], Ant Colony
methods [27,28] etc. Moreover, many hybrid stochastic methods have appeared recently in
the relevant literature, such as methods that combine Particle Swarm Optimization and
Simulated Annealing [29,30], methods that combine Genetic Algorithms and Differential
Evolution [31,32], combinations of Genetic Algorithms and Particle Swarm Optimiza-
tion [33] etc. Furthermore, due to the wide spread of parallel architectures in recent years
as well as the widespread use of Graphics Processing Units (GPU), many methods have
emerged that exploit such architectures [34–36].

This paper proposes an innovative sampling technique for the Multistart stochastic
global sampling method. The Multistart technique is one of the simplest stochastic global
optimization techniques and is the basis for many modern global optimization methods. In
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the Multistart method, a series of random samples are taken from the objective function
and then a local optimization method is started from each sample. Regarding its simplicity,
the method has been used with success in a wide area of practical applications, such as
the Travelling Salesman Problem (TSP) [37–39], the vehicle routing problem [40,41], the
facility location problem [42], the maximum clique problem [43], the maximum fire risk
insured capital problem [44], aerodynamic shape problems [45] etc. In addition, the Multi-
start method has been thoroughly studied by many researchers in recent years, and many
works have been proposed on this method, such as methods for finding all local minima
of a function [46–48], hybrid techniques [49,50], GRASP methods [51], new termination
rules [52–54], parallel techniques [55,56]. Usually, in the Multistart method, samples are
used from the objective function using some distribution such as the uniform distribu-
tion. In the present work, it is proposed that these samples are obtained from an RBF
network [57] , which has already been trained on a limited number of real samples from
the objective function. RBF networks have been widely used in many real world problems,
such as face recognition [58], function approximation [59,60], image classification [61],
water quality prediction [62] etc.

The proposed sampling methodology generates an approximation of the objective
function by first taking some samples from it and then trains a neural network to approx-
imate the function. Once the neural network training process is completed, a bunch of
points can be sampled from the neural network and those with the lowest functional value
will be used as starting points for the Multistart method. This way, the actual function will
not be sampled but the neural network approximating it, which should significantly reduce
the required number of function calls. Furthermore, using points with a low function value
as starting points is expected to speed up the location of the global minimum. In addition,
the RBF neural network is incorporated since it has a very fast training technique.

The rest of this article is organized as follows: in Section 2 the proposed sampling
technique is outlined in detail, in Section 3 the test functions used as well the experimental
results are listed and finally in Section 4 some conclusions are presented.

2. Method Description
2.1. The Multistart Method

A commonly used representation of the Multistart method is shown in Algorithm 1.
In practice, the method takes N samples at each iteration and starts a local minimization
method for each sample, without doing any other checking. However, despite its simplicity,
it has two key components which, with proper adaptation, can make the method extremely
efficient. The first component is the termination method used and the second is the
sampling method within the central iteration. The local search procedure used here is
an adaptation of the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [63]. The used
termination rule was also used in a variety of global optimization methods [64,65]. This
termination method is outlined in Section 2.2 The second point, which this paper focuses
on, is the sampling method. Usually, sampling is performed with random samples from
some distribution such as the uniform one. In this paper, samples will be taken from an
approximation of the objective function f (x) constructed using an RBF neural network.
This approach is discussed in Section 2.3.
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Algorithm 1 Representation of the Multistart algorithm.

1. Initialization step.
(a) Set N the number of samples, that will taken in every iteration.
(b) Set ITERMAX, the maximum number of allowed iterations.
(c) Set Iter=0, the iteration number.
(d) Set (x∗, y∗) as the global minimum. Initially y∗ = ∞

2. Evaluation step.
(a) Set Iter=Iter+1
(b) For i = 1 . . . N Do

i. Take a new sample xi ∈ S
ii. yi = LS(xi). Where LS(x) is a predefined local search method.
iii. If yi ≤ y∗ then x∗ = xi, y∗ = yi

(c) EndFor
3. Termination check. The termination criteria are checked and if they are true, then the

method terminates.

2.2. The Used Termination Rule

A typical termination method used is the maximum number of iterations, i.e., to
terminate the method when Iter ≥ ITERMAX. However, this way of termination is not
particularly efficient, since for small values of the ITERMAX number the total minimum
may not be found, while for larger values of it it may be found at an early stage of the
search and then the computer wastes time on calls of local search method. As an example,
consider the Hansen function, defined as:

f (x) =
5

∑
i=1

i cos[(i− 1)x1 + i]
5

∑
j=1

j cos[(j + 1)x2 + j], x ∈ [−10, 10]2

The global minimum for the function is−176.541793. The progress of solving the above
function with ITERMAX = 100 is shown in Figure 1. The global minimum was discovered
too early, at the 21th iteration, but the algorithm continues until Iter = 100, spending 80% of
computing time. The termination rule used in this work was first proposed in [64]: at every
iteration n the variance of the quantity f (x∗) is calculated. This quantity is denoted as v(n).
If the variance falls below a predetermined threshold, then the method is terminated. This
limit is half the value of this variance for the last time a new low was found for y∗. The
algorithm terminates when

v(n) ≤ v(nlast)

2
(2)

where nlast is the last iteration where a new better estimation of the global minimum was
discovered. A graphical representation for the proposed method and the function EXP8
is shown in Figure 2. The value v(n) is denoted as VARIANCE in the plot and the value
v(nlast)

2 is denoted as STOPAT. The function EXP8 is given by

f (x) = − exp

(
−0.5

8

∑
i=1

x2
i

)
, −1 ≤ xi ≤ 1

The method now terminates at generation 12.
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Figure 1. Progress of Multistart for the Hansen function.
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Figure 2. Plot of the used termination rule for the EXP8 test function.

2.3. RBF Networks

An RBF neural network typically is expressed as a function:

y(−→x ) =
k

∑
i=1

wiφ(‖x− ci‖) (3)

where the vector −→x stands for the input vector of the network and the vector −→w is called
weight vector with k elements. Typically, the function φ(x) is the so-called Gaussian
function defined as:

φ(x) = exp

(
− (x− c)2

σ2

)
(4)

where the value φ(x) depends mainly on the distance between x and x. The vector −→c is
called centroid and the vector −→σ = (σ1, σ2, . . . , σk) is considered as the variance vector. A
typical plot of this function is shown in Figure 3.

The network of Equation (3) can be used to approximate functions f (x), x ∈ S ⊂ Rn

by minimizing the error:

E
(
y
(−→x )) = M

∑
i=1

(y(xi)− f (xi))
2 (5)

where the variable M denotes the number of training samples provided for the function
f (x). The RBF network is shown graphically in Figure 4. During a training procedure, the
parameters of the RBF network are adapted in order to minimize the error of Equation (5).
The RBF network us trained using a two-phase methodology:
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1. During the first phase the k centers of and the associated variances are calculated
through K-Means algorithm [66].

2. During the second phase, the weight vector −→w = (w1, w2, . . . , wk) is calculated by
solving a linear system of equations with the following procedure:

(a) Set W = wkj, the matrix for the k weights
(b) Set Φ = φj(xi)

(c) Set T = {ti = f (xi), i = 1, .., M}.
(d) The system to be solved is defined as:

ΦT
(

T −ΦWT
)
= 0 (6)

The solution is:
WT =

(
ΦTΦ

)−1
ΦTT = Φ†T (7)

The matrix Φ† =
(
ΦTΦ

)−1ΦT is the so - called pseudo-inverse of Φ, with the
property

Φ†Φ = I (8)

In the proposed technique, the previously defined network constructs an approxima-
tion of the objective function f (x) and subsequently the method Multistart takes samples
from the approximation of the objective function. The process starts by taking some sam-
ples from the actual f (x) function. These samples are then used to train an RBF neural
network. After training, many samples are taken from the neural network function and the
best ones will be used in the global optimization method. The overall sampling procedure
is shown in Algorithm 2.

The overall algorithm is graphically represented in Figure 5 in the form of a flowchart.
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Figure 3. Typical plot of the Gaussian function.
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Figure 4. An example of an RBF network.

Algorithm 2 The proposed sampling procedure.

1. Initialization step.
(a) Set N, the number of required samples.
(b) Set ISAMPLES, the initial samples that will be drawn from the function f (x).
(c) Set FR a real number, with FR > N. For example, FR = 10× N
(d) Set IS = ∅
(e) Set FS = ∅. This is the final outcome of the algorithm.
(f) Set k, the number of weights for the RBF network,

2. Initial Sampling step.
(a) For i = 1, . . . , ISAMPLES do

i. Take a sample si = (xi, f (xi)), xi ∈ S ⊂ Rn

ii. IS = IS∪ si

(b) End For
3. Training step.

(a) Construct an RBF network y(x) with k weights.
(b) Train y(x) using the set IS by minimizing the train error of Equation (5).

4. Final sampling step.
(a) For i = 1, . . . , FR do

i. Take a sample si = (xi, y(xi))
ii. FS = FS∪ si

(b) End For
(c) Sort FS according to the function values.
(d) Keep in the set only the N samples with the lowest functional value.
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Figure 5. The Overall Algorithm as a Flowchart.
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3. Experiments

The effectiveness of the proposed method was evaluated using some benchmark
functions from the relevant literature [67,68].

3.1. Test Functions

• Bent Cigar function The function is

f (x) = x2
1 + 106

n

∑
i=2

x2
i

with the global minimum f (x∗) = 0. For the conducted experiments the value n = 10
was used.

• Bf1 function. The function Bohachevsky 1 is given by the equation

f (x) = x2
1 + 2x2

2 −
3

10
cos(3πx1)−

4
10

cos(4πx2) +
7

10

with x ∈ [−100, 100]2. The value of the global minimum is 0.0.

• Bf2 function. The function Bohachevsky 2 is given by the equation

f (x) = x2
1 + 2x2

2 −
3

10
cos(3πx1) cos(4πx2) +

3
10

with x ∈ [−50, 50]2. The value of the global minimum is 0.0.

• Branin function. The function is defined by f (x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+

10
(

1− 1
8π

)
cos(x1)+ 10 with−5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15. The value of the global min-

imum is 0.397887.with x ∈ [−10, 10]2. The value of the global minimum is −0.352386.
• CM function. The Cosine Mixture function is given by the equation

f (x) =
n

∑
i=1

x2
i −

1
10

n

∑
i=1

cos(5πxi)

with x ∈ [−1, 1]n. The value of the global minimum is −0.4 and in our experiments
we have used n = 4. The corresponding function is denoted as CM4

• Camel function. The function is given by

f (x) = 4x2
1 − 2.1x4

1 +
1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2, x ∈ [−5, 5]2

The global minimum has the value of f (x∗) = −1.0316
• Discus function. The function is defined as

f (x) = 106x2
1 +

n

∑
i=2

x2
i

with global minimum f (x∗) = 0. For the conducted experiments the value n = 10 was
used.

• Easom function. The function is given by the equation

f (x) = − cos(x1) cos(x2) exp
(
(x2 − π)2 − (x1 − π)2

)
with x ∈ [−100, 100]2 and global minimum −1.0
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• Exponential function. The function is given by

f (x) = − exp

(
−0.5

n

∑
i=1

x2
i

)
, −1 ≤ xi ≤ 1

The global minimum is located at x∗ = (0, 0, . . . , 0) with value −1. In our experiments
we used this function with n = 4, 16, 64 and the corresponding functions are denoted
by the labels EXP4, EXP16, EXP64.

• Griewank2 function. The function is given by

f (x) = 1 +
1

200

2

∑
i=1

x2
i −

2

∏
i=1

cos(xi)√
(i)

, x ∈ [−100, 100]2

The global minimum is located at the x∗ = (0, 0, . . . , 0) with value 0.
• Griewank10 function. The function is given by the equation

f (x) =
n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos
(

xi√
i

)
+ 1

In our experiments we have used n = 10 and the global minimum is 0.0. The function
has several local minima in the specified range.

• Hansen function. f (x) = ∑5
i=1 i cos[(i− 1)x1 + i]∑5

j=1 j cos[(j + 1)x2 + j],
x ∈ [−10, 10]2. The global minimum of the function is −176.541793.

• Hartman 3 function. The function is given by

f (x) = −
4

∑
i=1

ci exp

(
−

3

∑
j=1

aij
(
xj − pij

)2
)

with x ∈ [0, 1]3 and a =


3 10 30

0.1 10 35
3 10 30

0.1 10 35

, c =


1

1.2
3

3.2

 and

p =


0.3689 0.117 0.2673
0.4699 0.4387 0.747
0.1091 0.8732 0.5547

0.03815 0.5743 0.8828


The value of the global minimum is −3.862782.

• Hartman 6 function.

f (x) = −
4

∑
i=1

ci exp

(
−

6

∑
j=1

aij
(
xj − pij

)2
)

with x ∈ [0, 1]6 and a =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

, c =


1

1.2
3

3.2

 and

p =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381
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the value of the global minimum is −3.322368.
• High Conditioned Elliptic function, defined as

f (x) =
n

∑
i=1

(
106
) i−1

n−1 x2
i

with global minimum f (x∗) = 0 and the value n = 10 was used in the conducted
experiments

• Potential function. The molecular conformation corresponding to the global minimum
of the energy of N atoms interacting via the Lennard-Jones potential [69] is used as a
test case here. The function to be minimized is given by:

VLJ(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

(9)

In the current experiments two different cases were studied: n = 3, 5
• Rastrigin function. The function is given by

f (x) = x2
1 + x2

2 − cos(18x1)− cos(18x2), x ∈ [−1, 1]2

The global minimum is located at x∗ = (0, 0) with value −2.0.
• Shekel 7 function.

f (x) = −
7

∑
i=1

1
(x− ai)(x− ai)T + ci

with x ∈ [0, 10]4 and a =



4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 3 5 3


, c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3


. The value of the global

minimum is −10.342378.

• Shekel 5 function.

f (x) = −
5

∑
i=1

1
(x− ai)(x− ai)T + ci

with x ∈ [0, 10]4 and a =


4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7

, c =


0.1
0.2
0.2
0.4
0.4

. The value of the global

minimum is −10.107749.

• Shekel 10 function.

f (x) = −
10

∑
i=1

1
(x− ai)(x− ai)T + ci
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with x ∈ [0, 10]4 and a =



4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6


, c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.6


. The value of the global

minimum is −10.536410.

• Sinusoidal function. The function is given by

f (x) = −
(

2.5
n

∏
i=1

sin(xi − z) +
n

∏
i=1

sin(5(xi − z))

)
, 0 ≤ xi ≤ π.

The global minimum is located at x∗ = (2.09435, 2.09435, . . . , 2.09435) with f (x∗) =
−3.5. In our experiments we used n = 4, 8, 16 and z = π

6 and the corresponding
functions are denoted by the labels SINU4, SINU8 and SINU16 respectively.

• Test2N function. This function is given by the equation

f (x) =
1
2

n

∑
i=1

x4
i − 16x2

i + 5xi, xi ∈ [−5, 5].

The function has 2n in the specified range and in our experiments we used n =
4, 5, 6, 7. The corresponding values of the global minimum is −156.664663 for n = 4,
−195.830829 for n = 5, −234.996994 for n = 6 and −274.163160 for n = 7.

• Test30N function. This function is given by

f (x) =
1
10

sin2(3πx1)
n−1

∑
i=2

(
(xi − 1)2

(
1 + sin2(3πxi+1)

))
+ (xn − 1)2

(
1 + sin2(2πxn)

)
with x ∈ [−10, 10]. The function has 30n local minima in the specified range and we
used n = 3, 4 in our experiments. The value of the global minimum for this function is
0.0.

3.2. Experimental Results

The proposed sampling method was tested against the uniform sampling, for the
Multistart global optimization technique. The uniform distribution used to sample points
is defined as:

xi = ai + r× (bi − ai), i = 1 . . . n (10)

with r ∈ [0, 1] a random number. The parameters for the experiments are listed in Table 1.
All the experiments were executed 30 times with different random numbers each time. In
all cases, the stopping rule of Section 2.2 was incorporated. The random number function
used was the drand48() function of the C programming language. The used software
was implemented using the OPTIMUS global optimization environment freely available
from https://github.com/itsoulos/OPTIMUS (accessed on 27 November 2022). All the
experiments were conducted on an AMD Ryzen 5950X equipped with 128 GB of RAM.
The operating system used was Debian Linux and all the programs are compiled using the
GNU C++ compiler. The experimental results for used test functions are listed in Tables 2–4.
The number in the cells denotes the average function calls for the 30 independent runs. The
fraction in parentheses stands for the fraction of runs where the global optimum was found.
If this number is missing then the global minimum was discovered in every independent
run (100% success). At the end of each table, an additional line named total has been added,

https://github.com/itsoulos/OPTIMUS
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representing the total number of function calls and, in parentheses, the average success rate
in finding the total minimum.

From the experimental results, it follows in principle that the use of neural networks
significantly reduces the required number of function calls needed to find the total mini-
mum. This reduction is proportional to the objective function and can reach up to 60% of
the original number of function calls. In addition, the usage of the ISAMPLES parameter
significantly increases the reliability of the new sampling method. For example, in the case
where N = 20 there is an increase in the average success rate for finding the total minimum
from 90% to approximately 96%. However, improving the reliability of the method does
not imply an increase in the number of function calls. For example, for N = 20 the calls
are in the interval [75, 000 . . . 90, 000] without showing any clear increase. However, the
use of the new sampling technique requires significantly more computing time than the
uniform distribution because of the need to train the RBF networks and also because of
the classification that precedes taking the final samples. This difference is demonstrated in
Figure 6. In this we see the significant difference in running time for the SINU problem
with a different number of dimensions each time.

Table 1. Parameters for the experiments.

PARAMETER VALUE

ITERMAX 100

k 10

N 20,50

FR 10× N

Table 2. Experimental results for the Multistart method, using uniform distribution for the samples
as defined in Equation (10).

FUNCTION N = 20 N = 50

BF1 3004 5975

BF2 2828 5826

BRANIN 2409 5415

CAMEL 2661 5599

CIGAR 5588 8410

CM4 3551 (0.87) 6431 (0.80)

DISCUS 2817 5965

EASOM 2204 5202

EXP4 2769 5772

EXP16 2836 5837

EXP64 2912 5914

GRIEWANK2 3938 (0.40) 6572 (0.30)

GRIEWANK10 4536 (0.97) 7520

POTENTIAL3 3121 6120

POTENTIAL5 4363 7320

HANSEN 5344 (0.93) 9536 (0.90)

HARTMAN3 2618 5608
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Table 2. Cont.

HARTMAN6 3014 6037

HIGHELLIPTIC 4398 7306

RASTRIGIN 3850 (0.83) 6401 (0.77)

ROSENBROCK4 6456 8584

ROSENBROCK8 7646 10095

SHEKEL5 3144 6215

SHEKEL7 3354 6508

SHEKEL10 3388 6860

SINU4 3935 6670 (0.97)

SINU8 5547 8056

SINU16 19,313 35,751 (0.97)

TEST2N4 3035 (0.87) 6002 (0.97)

TEST2N5 3127 (0.73) 6042 (0.67)

TEST2N6 3393 (0.40) 6169 (0.47)

TEST2N7 4075 (0.37) 6443 (0.33)

TEST30N3 3723 6322

TEST30N4 3736 6465

TOTAL 142,632 (0.923) 254,988 (0.916)

Table 3. Experimental results for the proposed method with N = 20.

FUNCTION ISAMPLES = 100 ISAMPLES = 200 ISAMPLES = 500

BF1 1086 1159 1500

BF2 922 1026 1304

BRANIN 503 590 899

CAMEL 670 756 1060

CIGAR 3482 3236 2849

CM4 1583 (0.83) 1716 (0.83) 1861 (0.90)

DISCUS 931 1206 1525

EASOM 1063 401 704

EXP4 766 803 1049

EXP16 912 1009 1303

EXP64 968 1070 1359

GRIEWANK2 2409 (0.53) 1641 (0.40) 2069 (0.57)

GRIEWANK10 2607 (0.97) 2609 2902 (0.93)

POTENTIAL3 1211 1297 1613

POTENTIAL5 2414 2521 2835

HANSEN 6079 (0.87) 4785 (0.83) 6504 (0.77)

HARTMAN3 729 830 1143
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Table 3. Cont.

HARTMAN6 1111 (0.90) 1290 (0.93) 1525 (0.97)

HIGHELLIPTIC 2618 2671 3098

RASTRIGIN 1727 (0.57) 1043 (0.87) 1386

ROSENBROCK4 4111 2672 4357

ROSENBROCK8 5417 6253 5609

SHEKEL5 1751 (0.73) 2152 (0.90) 1245 (0.90)

SHEKEL7 1667 (0.87) 1627 (0.83) 1676 (0.93)

SHEKEL10 2329 (0.80) 2946 (0.73) 3678 (0.77)

SINU4 938 991 1227

SINU8 1194 1360 1479

SINU16 14,305 (0.87) 32,647 (0.97) 21,363 (0.97)

TEST2N4 904 (0.57) 936 (0.73) 1227

TEST2N5 1881 (0.80) 1218 1351

TEST2N6 1092 (0.67) 1224 (0.87) 1435 (0.97)

TEST2N7 1452 (0.70) 1397 (0.80) 1477 (0.90)

TEST30N3 1244 2054 2584

TEST30N4 2027 2644 2638

TOTAL 74,103 (0.902) 91,780 (0.932) 89,834 (0.958)

Table 4. Experimental results for the proposed method with N = 50.

FUNCTION ISAMPLES = 100 ISAMPLES = 200 ISAMPLES = 500

BF1 1093 1175 1527

BF2 943 1022 1319

BRANIN 502 (0.97) 594 900

CAMEL 642 729 1046

CIGAR 3527 3228 6729

CM4 1491 (0.87) 1884 (0.90) 1799 (0.97)

DISCUS 828 1365 1215

EASOM 2320 398 723

EXP4 766 827 1050

EXP16 912 1007 1298

EXP64 983 1064 1358

GRIEWANK2 1788 (0.50) 1762 (0.43) 2345 (0.50)

GRIEWANK10 2505 2677 2868

POTENTIAL3 1244 1313 1609

POTENTIAL5 2420 2502 2795

HANSEN 6711 (0.70) 4278 (0.70) 7264 (0.67)

HARTMAN3 728 830 1144

HARTMAN6 1027 (0.93) 1202 (0.93) 1492
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Table 4. Cont.

HIGHELLIPTIC 3455 2889 3078

RASTRIGIN 977 (0.53) 1269 (0.77) 1397 (0.97)

ROSENBROCK4 2348 2453 3278

ROSENBROCK8 3928 4461 4865

SHEKEL5 5630 (0.67) 7498 (0.87) 1510 (0.93)

SHEKEL7 2135 (0.67) 1973 (0.67) 1815 (0.97)

SHEKEL10 1864 (0.73) 1245 (0.60) 3165 (0.83)

SINU4 984 1020 1355

SINU8 10,502 1517 1456

SINU16 95,225 (0.83) 21,658 (0.90) 21,330 (0.87)

TEST2N4 820 (0.63) 1079 (0.90) 1274

TEST2N5 1140 (0.67) 1107 (0.80) 1333

TEST2N6 1203 (0.73) 1371 (0.97) 1440 (0.97)

TEST2N7 1602 (0.50) 1200 (0.77) 1618 (0.97)

TEST30N3 1494 1903 2279

TEST30N4 1164 2287 2284

TOTAL 164,901 (0.880) 82,787 (0.918) 91,958 (0.960)

Figure 6. Comparison of execution times for the SINU function between the uniform sampling and
the proposed method.

4. Conclusions

In this paper, an innovative sampling technique was proposed for the Multistart global
optimization method. The new technique improves on using a limited number of samples
from the objective function in order to construct an estimator of the function. The estimator
in the present work was an RBF neural network. After the neural network is trained, a
large number of samples are taken from the estimator without using the objective function
anymore. Of these samples, only those with the lowest functional value of the estimator are
used by the global optimization method. From the experiments performed on a wide range
of objective functions, many of which had a large number of dimensions, it appears that the
proposed technique significantly outperforms the traditionally used uniform sampling. The
gain in the number of calls in many cases exceeds 60%. Nevertheless, the new technique
requires more computational time than the uniform distribution, since it is required to train
the network as well as to classify a series of samples from it. However, this increase in
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time could be significantly reduced with the potential use of parallel computing techniques
to train neural networks. Moreover, in large computational problems, where the cost of
evaluating the objective function is extremely large, the training time of a neural network
will be almost negligible. Future research may include:

1. Application of the proposed technique to other more efficient global optimization
methods.

2. Parallelization of the training method for the neural network.
3. Usage of more efficient methods to train the RBF networks such as Genetic Algorithms.
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