
Citation: Nanni, L.; Trambaiollo, L.;

Brahnam, S.; Guo, X.; Woolsey, C.

Ensemble of Networks for Multilabel

Classification. Signals 2022, 3,

911–931. https://doi.org/10.3390/

signals3040054

Academic Editor: João

Paulo Carvalho

Received: 15 October 2022

Accepted: 12 December 2022

Published: 14 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

signals

Article

Ensemble of Networks for Multilabel Classification
Loris Nanni 1,* , Luca Trambaiollo 1, Sheryl Brahnam 2 , Xiang Guo 2 and Chancellor Woolsey 2

1 Dipartimento di Ingegneria Dell’informazione, University of Padova, Via Gradenigo 6, 35122 Padova, Italy
2 Information Technology and Cybersecurity, Missouri State University, Springfield, MO 65897, USA
* Correspondence: loris.nanni@unipd.it

Abstract: Multilabel learning goes beyond standard supervised learning models by associating a
sample with more than one class label. Among the many techniques developed in the last decade to
handle multilabel learning best approaches are those harnessing the power of ensembles and deep
learners. This work proposes merging both methods by combining a set of gated recurrent units,
temporal convolutional neural networks, and long short-term memory networks trained with variants
of the Adam optimization approach. We examine many Adam variants, each fundamentally based
on the difference between present and past gradients, with step size adjusted for each parameter.
We also combine Incorporating Multiple Clustering Centers and a bootstrap-aggregated decision
trees ensemble, which is shown to further boost classification performance. In addition, we provide
an ablation study for assessing the performance improvement that each module of our ensemble
produces. Multiple experiments on a large set of datasets representing a wide variety of multilabel tasks
demonstrate the robustness of our best ensemble, which is shown to outperform the state-of-the-art.

Keywords: multilabel; ensemble; incorporating multiple clustering centers; gated recurrent neural
networks; temporal convolutional neural networks; long short-term memory

1. Introduction

Multilabel learning extends the standard supervised learning model that associates
a sample with a single label by simultaneously categorizing samples with more than one
class label. In the past, multilabel learning has been successfully implemented in many
different domains [1], such as bioinformatics [2–4], information retrieval [5,6], speech
recognition [7,8], and online user reviews with negative comment classification [9,10].

As proposed by various researchers, one of the most intuitive handlings of multilabel
classification is to treat it as a series of independent two-class binary classification problems,
known as Binary Relevance (BR) [11,12]. However, this approach has several limitations:
the performance is relatively poor; it lacks scalability; and it cannot retain label correlations.
Researchers have tried improving these issues using chains of binary classifiers [13], feature
selections [14–16], class dependent and label specific features [17], and data augmenta-
tion [5]. Among these investigations, the augmentation method in [5] has demonstrated
the best performance on some multilabel datasets using Incorporating Multiple Cluster
Centers (IMCC). In biomedical datasets, hML-KNN [18] has also proven to be one of
the best multilabel classifiers, its success relying on feature-based and neighbor-based
similarity scores.

Generating ensembles of classifiers is yet another robust and dependable method
for enhancing performance on multilabel data [15,19], with bagging shown to perform
well in several multilabel classification benchmarks [20,21]. However, a common problem
in bagging is pairwise label correlation. To solve this problem, [22] invented a stacking
technique where learners were trained on each label. The decisions of the classifiers were
fed into stacked combinations combined with a meta-level classifier whose output produced
a final decision. Another algorithm of note is the RAndom k-labELsets (RAkEL) [19], which

Signals 2022, 3, 911–931. https://doi.org/10.3390/signals3040054 https://www.mdpi.com/journal/signals

https://doi.org/10.3390/signals3040054
https://doi.org/10.3390/signals3040054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/signals
https://www.mdpi.com
https://orcid.org/0000-0002-3502-7209
https://orcid.org/0000-0001-7664-6930
https://orcid.org/0000-0001-6795-5395
https://doi.org/10.3390/signals3040054
https://www.mdpi.com/journal/signals
https://www.mdpi.com/article/10.3390/signals3040054?type=check_update&version=2

Signals 2022, 3 912

constructed ensembles by training single-label learning models on random subsets of labels.
The reader is referred to [23,24] for a discussion of some recent RAkEL variants.

Rather quickly, multilabel systems incorporating deep learners have risen to the top
in classification performance. The impact deep learning has had on this field is visible in
the large number of open source and commercial APIs currently providing deep learning
solutions to multilabel classification problems. Some open source APIs are DeepDetect [25],
VGG19 (VGG) [26], Inception v3 [27], InceptionResNet v2 [28], ResNet50 [29], MobileNet
v2 [30], YOLO v3 [31], and fastai [32]. Some of the commercially available APIs include
Imagga [33], Wolfram Alpha’s Image Identification [34], Clarifai [35], Microsoft’s Computer
Vision [36], IBM Watson’s Visual Recognition [37], and Google’s Cloud Vision [38]. A
comparison of performance across several multilabel benchmarks is reported in [39].

Despite these advances in deep multilabel learning, research using advanced tech-
niques, including those for building ensembles, has lagged compared to work in other
areas of machine learning. The few ensembles that have been built for multilabel problems
apply simple techniques (we describe the state of the art in Section 2). More innovative
ensembling techniques have yet to be explored. The most advanced is proposed in [9],
where random forest [40] was used as the ensembling technique. Only a couple of studies
have explored ensembling with deep learners [2,41]. There is a need to investigate cutting
edge deep learning ensembling methods for the multilabel problem.

The goal of this paper is to experimentally derive a more advanced ensemble for
multilabel classification that combines Long Short-Term Memory networks (LSTM) [42],
GRU [43], and Temporal Convolutional Neural Networks (TCN) [44] using Adam vari-
ants [45] as the means of ensuring diversity. We posted some early preliminary results
combining these classifiers on ArXiv [46]. Conceptually, a GRU is a simplified Bidirectional
Long Short-Term Memory (LSTM) model. GRU and LSTM have hidden temporal states
and gating mechanisms. Both networks have a problem with intermediate activations, a
function of low-level features. To offset this shortcoming, these models must be combined
with classifiers that discern high-level relationships. In the research presented here, we
investigate the potential of TCN as a complement classifier since it offers the advantage of
hierarchically capturing relationships across high, intermediate, and low-level timescales.

As mentioned, diversity in ensembles composed of LSTM, GRU, and TCN is assured
in our approach by incorporating different Adam optimization variants. Adam finds low
minima of the training loss, and many variants have been developed for augmenting
Adam’s strengths and offsetting its weaknesses. As will be demonstrated, combining
ensembles of LSTM, GRU, and TCN with IMCC [5] and a bootstrap-aggregated (bagged)
decision trees ensemble (TB) [9] (carefully modified for managing multilabel data) further
enhances performance.

Some of the contributions of this study are the following:

• To the best of our knowledge, we are the first to propose an ensemble method for
managing multilabel classification based on combining sets of LSTM, GRU, and TCN,
and we are the first to use TCN on this problem.

• Two new topologies of GRU and TCN are also proposed here, as well as a novel
topology that combines the two.

• Another advance in multilabel classification is the application of variants of Adam
optimization for building our ensembles.

• Finally, for comparison with future works by other researchers in this area, the MAT-
LAB source code for this study is available at https://github.com/LorisNanni (ac-
cessed on 1 November 2022).

The effectiveness and strength of investigating more cutting-edge ensembling tech-
niques are demonstrated in the experimental section where we evaluate the performance of
different ensembles with some baseline approaches across several multilabel benchmarks.
Our best deep ensemble is compared with the best multilabel methods tested to date and
shown to obtain state-of-the-art performance across many domains.

https://github.com/LorisNanni

Signals 2022, 3 913

This paper is organized as follows: In Section 2, we report on some recent work
applying deep learning to multilabel classification. In Section 3 we describe the benchmarks
and performance indicators used in the experimental section. In Section 4, each element and
pre-processing in the proposed approach is detailed. This section covers a brief discussion
of the preprocessing methods used and descriptions of GRU, TCN, IMCC, and LSTM
networks. This section also describes pooling, training, and our method for generating
the ensembles. In Section 5, Adam optimization and all the Adam variants tested here
are addressed. In Section 6, experimental results are presented and discussed. Finally, in
Section 7, we summarize the results and outline some future directions of research.

2. Related Works

One of the first works to apply deep learning to the problem of multilabel classification
is [47]. The authors in that study proposed a simple feed-forward network using gradient
descent to handle the functional genomics problem in computational biology. A growing
body of research has since ensued that has advanced the field and application of deep
learning to a wide range of multilabel problems. In [48], for example, a Convolutional
Neural Network (CNN) combined with data augmentation using binary cross entropy
(BCE) loss and adagrad optimization was designed to tackle the problem of land cover
scene categorization. In [49], a CNN using multiclass cross entropy loss was developed to
detect heart rhythm/conduction abnormalities. In that study, each element in the output
vector corresponded to a rhythm class. An early ensemble was developed in [50], that
combined CNN with LSTM to handle the multilabel classification problem of protein-
lncRNA interactions, and in [2] an ensemble of LSTM combined with an ensemble of
classifiers based on Multiple Linear Regression (MLR) was generated to predict a given
compound’s Anatomical Therapeutic Chemical (ATC) classifications. Recurrent CNNs
(RCNNs) have recently been evaluated in many multilabel problems, including identifying
surgical tools in laparoscopic videos [51] using a GRU and in recommendation systems for
prediagnosis support [52].

A growing number of researchers, in addition to [51], have explored the benefits
of adding GRUs to enhance the performance of multilabel systems. In [53], for example,
sentiment in tweets were analyzed by extracting topics with a C-GRU (Context-aware GRU).
a sentiment in tweets were analyzed by extracting topics with a C-GRU (Context-aware
GRU). In [54], a classifier system called NCBRPred was designed with bidirectional GRUs
(BiGRUs) to predict nucleic acid binding residues based on the multilabel sequence labeling
model. The BiGRUs were selected to capture the global interactions among the residues.

In terms of ensembles built to handle multilabel problems, GRUs have been shown to
work well with CNNs. In [41], an Inception model using was combined with GRU network
to identify nine classes of arrhythmias. Adam was used for optimization in [41], but no
variants were used for building ensembles as in the system proposed here.

Table 1 compares existing models for deep learning, as discussed above, applied to the
multilabel problem. The first column lists the techniques and models used in these systems
and indicates whether ensembles were used in the study. An X means that the indicated
technique or model was used.

Signals 2022, 3 914

Table 1. Summary of existing deep learning studies. An X indicates whether a particular technique
or model was used.

[47] [48] [49] [50] [2] [51] [52] [53] [54] [41] [9] Here

Ensemble X X X X
GRU X X X X X
CNN X X X X X
LSTM X X X
TCN X
RNN X
Inception model X
Random forest X X
Gradient descend X X
Stochastic gradient descend X X
Data augmentation X X X X
Multiple loss functions X
Binary cross entropy (BCE) loss X X X X X
Multiclass cross entropy loss X
Logistic regression X
Multiple linear regression X
Quantile regression X X
Various optimization methods X
Adagrad optimization X
Variants of Adam optimization X X X

3. DataSets

The following multilabel data sets were selected to evaluate our approach. These
are standard benchmarks in multilabel research and run the gamut of typical multilabel
problems (music, image, biomedical, and drug classifications). The names provided below
are not necessarily those reported in the original papers but rather those commonly used in
the literature.

1. Cal500 [55]: This dataset contains human-generated annotations, which label some
popular Western music tracks. Tracks were composed by 500 artists. Cal500 has
502 instances, including 68 numeric features and 174 unique labels.

2. Scene [11]: This dataset contains 2407 color images. It includes a predefined training
and testing set. The images can have the following labels: beach (369), sunset (364), fall
foliage (360), field (327), mountain (223), and urban (210). Sixty-three images have been
assigned two category labels and one image three, making the total number of labels
fifteen. The images all went through a preprocessing procedure. First, the images were
converted to the CIE Luv space, which is perceptually uniform (close to Euclidean
distances). Second, the images were divided into a 7 × 7 grid, which produced
49 blocks. Third, the mean and variance of each band were computed. The mean
represents a low-resolution image, while the variance represents computationally
inexpensive texture features. Finally, the images were transformed into a feature
vector (49 × 3 × 2 = 294 dimensions).

3. Image [56]: This dataset contains 2000 natural scene images. Images are divided into
five base categories: desert (340 images), mountains (268 images), sea (341 images),
sunset (216 images), and trees (378 images). Categorizing images into these five basic
types produced a large dataset of images that belonged to two categories (442 images)
and a smaller set that belonged to three categories (15 images). The total number of
labels in this set, however, is 20 due to the joint categories. All images went through
similar preprocessing methods as discussed in [11].

4. Yeast [57]: This dataset contains biological data. In total there are 2417 micro-array
expression data and phylogenetic profiles. They are represented by 103 features and
are classified into 14 classes based on function. A gene can be classified into more than
one class.

Signals 2022, 3 915

5. Arts [5]: This dataset contains 5000 art images, which are described by a total of
462 numeric features. Each image can be classified into 26 classes.

6. Liu [15]: This dataset contains drug data used to predict side effects. In total it has
832 compounds. They are represented by 2892 features and 1385 labels.

7. ATC [58]: This dataset contains 3883 ATC coded pharmaceuticals. Each sample is
represented by 42 features and 14 classes.

8. ATC_f: This dataset is a variation of the ATC data set described above. In this dataset,
however, the patterns are represented by a descriptor of 806 dimensions (i.e., all three
descriptors are examined in this dataset as described in [59]).

9. mAn [4]: This dataset contains protein data represented by 20 features and 20 labels.
10. Bibtex: This dataset is highly sparse and was used in [5].
11. Enron: a highly sparse dataset used in [5].
12. Health: a highly sparse dataset used in [5].

Table 2 shows a summary of the benchmarks along with their names, number of pat-
terns, features, and labels, as well as the average number of class labels per pattern (LCard).

Table 2. Datasets summary.

Name #Patterns #Features #Labels LCard

CAL500 502 68 174 26.044
Image 2000 294 5 1.236
Scene 2407 294 5 1.074
Yeast 2417 103 14 4.24
Arts 5000 462 26 1.636
ATC 3883 42 14 1.265

ATC_f 3883 700 14 1.265
Liu 832 2892 1385 71.160

mAn 3916 20 20 1.650
bibtex 7395 1836 159 2.402
enron 1702 1001 53 3.378
health 5000 612 32 1.662

For dataset 6 (Liu), a 5-fold cross-validation testing protocol is used, and the results
are averaged. For datasets 7 to 9, a 10-fold protocol is used. Datasets 1–5 and 10–12 are in
the MATLAB IMCC toolkit [5]. Available at https://github.com/keauneuh/Incorporating-
Multiple-Cluster-Centers-for-Multi-Label-Learning/tree/master/IMCCdata (accessed on
24 September 22). All other datasets can be obtained from the references provided in their
description above.

Performance Indicators

In the experimental section, several performance indicators are used to evaluate the
classifiers on the multiclass benchmarks.

Let X be a dataset with m samples xi ∈ <d. A given sample has an actual label
yi ∈ {0, 1}l , where l is the number of total labels. Let H and F be the set of predicted
labels, where hi ∈ {0, 1}l is the predicted label vector for sample xi, and fi ∈ <l is the
confidence relevance of each prediction. The performance indicators are defined for H and
F as follows:

• Hamming loss is the fraction of misclassified labels,

HLoss(H) =
1

ml

m

∑
i=1

l

∑
j=1

I(yi(j) 6= hi(j)) , (1)

where I() is the indicator function. Hamming loss must be minimized. When hamming
loss is 0, there is no error in the predicted label vector.

https://github.com/keauneuh/Incorporating-Multiple-Cluster-Centers-for-Multi-Label-Learning/tree/master/IMCCdata
https://github.com/keauneuh/Incorporating-Multiple-Cluster-Centers-for-Multi-Label-Learning/tree/master/IMCCdata

Signals 2022, 3 916

• One error is the fraction of instances whose most confident label is incorrect. The
indicator should be minimized:

OneError(F) =
1
m

m

∑
i=1

I

(
hi

(
argmax

j
fi

)
6= yi

(
argmax

j
fi

))
, (2)

• Ranking loss is the average fraction of reversely ordered label pairs for each instance. It
is derived from the confidence value by taking into account the number of confidence
values correctly ranked (i.e., when a true label is ranked before a wrong label). Ranking
loss is also an error. Therefore, it should be minimized.

• Coverage is the average number of steps needed to move down the ranked label list
of an instance to cover all its relevant labels. As such, coverage should be minimized.

• Average precision is the average fraction of relevant labels ranked higher than a
particular label. As such, average precision should be maximized.

Another set of indicators adopted by many researchers [60]:include:

• Aiming is the ratio of correctly predicted labels and practically predicted labels:

Aiming(H) =
1
m ∑m

i=1
||hi ∩ yi||
||hi||

(3)

• Recall is the rate of the correctly predicted labels and actual labels:

Recall(H) =
1
m ∑m

i=1
||hi ∩ yi||
||yi||

. (4)

• Accuracy is the average ratio of correctly predicted labels over total labels:

Accuracy (H) =
1
m ∑m

i=1
||hi ∩ yi||
||h∪ yi||

. (5)

• Absolute true is the ratio of the perfectly correct prediction events and the total number
of prediction events:

AbsTrue(H) =
1
m ∑m

i=1 I(hi = yi) . (6)

• Absolute false is the ratio of the completely wrong prediction events and total number
of prediction events:

AbsFalse(H) =
1
m ∑m

i=1
||hi ∪ yi||−||hi ∩ yi||

l
. (7)

All ten indicators lie within the range [0, 1] and should be maximized, except for
Absolute false.

4. Proposed Approaches
4.1. Model Architectures

As previously indicated, the Deep Neural Network (DNN) architectures developed
in this work combine LSTM, GRU, and TCN networks that have been adapted to handle
multilabel classification. The general structure of each model is available in Figure 1.
GRU with (N = 50) hidden units is followed by a max pooling and a fully connected
layer. Multiclass classification is provided in the sigmoid output layer. TCN has a similar
architecture, except that a fully connected layer is followed by a max pooling layer. These
two architectures are labeled in this work GRU_A and TCN_A.

Signals 2022, 3 917

Signals 2022, 3, FOR PEER REVIEW 7

with (N = 50) hidden units is followed by a max pooling and a fully connected layer. Mul-

ticlass classification is provided in the sigmoid output layer. TCN has a similar architec-

ture, except that a fully connected layer is followed by a max pooling layer. These two

architectures are labeled in this work GRU_A and TCN_A.

Figure 1. Schema of the proposed recurrent DNNs: GRU_A; TCN_A; GRU_B, TCN_B; LSTM_GRU.

Experiments reveal that both GRU and TCN perform better in some situations when

a convolutional level is placed immediately before the network itself. Convolution modi-

fies input features with simple mathematical operations on other local features. These op-

erations can produce better model generalization where features achieve higher special

independence. When a convolutional level is attached before any TCN topologies, the net-

work is labeled here as TCN_B.

In some GRU experiments, we add a batch-normalization layer immediately after a

convolutional because batch normalization standardizes the inputs to a layer for each

mini-batch, thereby stabilizing the learning process and dramatically reducing the num-

ber of training epochs required to train very deep networks. A GRU with a batch-normal-

ization layer following a convolution is labeled GRU_B.

In addition, we investigate a sequential combination of GRU_A (without the pooling

layer) followed by a TCN_A, where the sigmoid output of GRU_A becomes the input of

TCN_A. This combination is labeled GRU_TCN.

The last architecture shown in Figure 1 is a network composed first of an LSTM layer

with 125 hidden units followed by a dropout layer that randomly sets input elements to

zero with a probability of 0.4. This is followed by a GRU layer with 100 hidden units and

another dropout layer with a probability of 0.4. The end of the architecture is composed

of a fully connected layer followed by a sigmoid layer.

The loss function is the binary cross entropy loss between the predicted labels (the

output) and the actual labels (the target). Binary cross entropy loss computes the loss of a

set of m observations by computing the following average:

CELoss = -
1

𝑚
∑ ∑ 𝐲𝑖(𝑗) ∙ log(𝐡𝑖(𝑗)) + (1 − 𝐲𝑖(𝑗)) ∙ log(1 − 𝐡𝑖(𝑗))

𝑙

𝑗=1

𝑚

𝑖=1

 (8)

Figure 1. Schema of the proposed recurrent DNNs: GRU_A; TCN_A; GRU_B, TCN_B; LSTM_GRU.

Experiments reveal that both GRU and TCN perform better in some situations when
a convolutional level is placed immediately before the network itself. Convolution mod-
ifies input features with simple mathematical operations on other local features. These
operations can produce better model generalization where features achieve higher special
independence. When a convolutional level is attached before any TCN topologies, the
network is labeled here as TCN_B.

In some GRU experiments, we add a batch-normalization layer immediately after
a convolutional because batch normalization standardizes the inputs to a layer for each
mini-batch, thereby stabilizing the learning process and dramatically reducing the number
of training epochs required to train very deep networks. A GRU with a batch-normalization
layer following a convolution is labeled GRU_B.

In addition, we investigate a sequential combination of GRU_A (without the pooling
layer) followed by a TCN_A, where the sigmoid output of GRU_A becomes the input of
TCN_A. This combination is labeled GRU_TCN.

The last architecture shown in Figure 1 is a network composed first of an LSTM layer
with 125 hidden units followed by a dropout layer that randomly sets input elements to
zero with a probability of 0.4. This is followed by a GRU layer with 100 hidden units and
another dropout layer with a probability of 0.4. The end of the architecture is composed of
a fully connected layer followed by a sigmoid layer.

The loss function is the binary cross entropy loss between the predicted labels (the
output) and the actual labels (the target). Binary cross entropy loss computes the loss of a
set of m observations by computing the following average:

CELoss = − 1
m

m

∑
i=1

l

∑
j=1

yi(j)· log(hi(j)) + (1− yi(j))· log(1− hi(j)) (8)

where yi ∈ {0, 1}l and hi ∈ {0, 1}l are the actual and predicted label vectors of each
sample (i ∈ 1 . . . m), respectively.

For details on the implementation environment, see the source code at https://github.
com/LorisNanni (accessed on 1 November 2022). All the code was tested and developed
with MATLAB 2022a using a Titan RTX GPU.

https://github.com/LorisNanni
https://github.com/LorisNanni

Signals 2022, 3 918

4.2. Pre-Processing

In the main, most dataset samples require no preprocessing before being fed into our
proposed networks. However, some preprocessing is needed when feature vectors are
very sparse.

Two types of preprocessing were applied in our experiments:

• Feature normalization in the range [0, 1] for the dataset ATC_f for IMCC [5];
• For the datasets Liu, Arts, bibtex, enron, and health, feature transform was performed

with PCA, where 99% of the variance was retained. Feature transform is only necessary
for our proposed networks and not for IMCC and TB. Poor performance resulted when
using the original sparse data as input to our proposed networks.

We also discovered that LSMT_GRU does not converge if a normalization step is not
performed for the ATC_f dataset; it performs poorly even when the normalization step is
performed. However, LSMT_GRU does converge when normalization is followed by PCA
projection, where 99% of the variance is retained.

4.3. Long Short-Term Memory (LSTM)

The LSTM layer in our topologies learns long-term dependencies between the time
steps in a time series and sequence data [61]. This layer performs additive interactions,
which can help improve gradient flow over long sequences during training.

LTSM can be defined as follows. Let the output or hidden state be ht, and the cell
state be ct at time step t. The first LSTM block uses the initial state of the network and the
first-time step of the sequence to compute the first output and updated cell state. At time
step t, the block uses the current state of the network (ct−1, ht−1) and the next time step of
the sequence to compute the output and the updated cell state ct.

The state of the layer is the hidden state/output state and the cell state. The hidden
state at time step t contains the output of the LSTM layer for this time step. The cell state
contains information learned from previous time steps. At each time step, the layer adds to
or removes information from the cell state. The layer controls these updates using gates.

The basic components of a LSTM are an input gate, forget gate cell candidate, and
output gate: the first determines the level of cell state update, the second the level of cell
state reset (forget), the third adds information to cell state, and the fourth controls the level
of the cell state added to the hidden state.

Given the above and letting xt be the input sequence with h0 = 0, we can then define
the input gate it, the forget gate ft, the cell candidate gt and the output gate ot as:

it = og(Wixt + Riht−1 + bi) (9)

ft = og(Wfxt + Rfht−1 + bf) (10)

gt = oc
(
Wgxt + Rght−1 + bg

)
(11)

ot = og(Woxt + Roht−1 + bo) (12)

where Wi, Ri, bi, Wf, Rf, bf, Wg, Rg, bg, Wo, Ro, bo are matrices and vectors and og de-
notes the gate activation function and σc the state activation function. The LSTM layer
function, by default, uses the sigmoid function given by σ(x) = (1 + e−x)

−1 to compute
the gate activation function.

We then define:
ct = ft � ct−1 + it � gt (13)

as the cell state, where
⊙

is the Hadamard (component-wise) product.
The output vector is defined as:

ht = ot � σt(ct) (14)

Signals 2022, 3 919

The LSTM layer function, by default, uses the hyperbolic tangent function to compute
the state activation function.

4.4. Gated Recurrent Units (GRU)

GRU [43], like LTSM, is also a recurrent neural network with a gating mechanism.
GRUs can handle the gradient vanishing problem and increase the length of term depen-
dencies from the input. GRU has a forget gate that enables the network learn which old
information is relevant for understanding the new information [62]. Unlike LSTM, GRU
has fewer parameters because there is no output gate, yet the performance of GRU is similar
to LSTM at many tasks: speech signal modeling, polyphonic music modeling, and natural
language processing [7,61]. They also perform better on small datasets [63] and work well
on denoising tasks [64].

The basic components of GRU are an update gate and a reset gate. The Reset gate
measures how much old information to forget. The reset gate decides which information to
forget and which should be passed on to the output.

Letting xt be the input sequence and h0 = 0, the update gate vector zt and the reset
gate vector rt can be defined as

zt = σ(Wzxt + Uzht−1 + bz) (15)

rt = σ(Wrxt + Urht−1 + br), (16)

where Wz, Uz, bz, Wr, Ur and br are matrices and vectors and σ is the sigmoid function.
We define

ĥt = φ(Whxt + Uh(rt � ht−1) + bh) (17)

as the candidate activation vector, where φ is the tanh activation, and
⊙

is the Hadamard
(component-wise) product. The term rt is the amount of past information for the candidate
activation vector.

The output vector is

ĥt = φ(Whxt + Uh(rt � ht−1) + bh) (18)

As can be observed, the update gate vector zt measures how much new vs. old
information is combined and kept [43].

4.5. Temporal Convolutional Neural Networks (TCN)

TCNs [65] contain a hierarchy of one-dimensional convolutions stacked over time to
form deep networks that perform fine-grained detection of events in sequence inputs. Sub-
sequent layers are padded to match the size of the convolution stack, and the convolutions
of each layer make use of a dilation factor that exponentially increases over the layers. In
this architecture, the first layers find short-term connections in the data while the deeper
layers discover longer-term dependencies based on the features extracted by previous
layers. Thus, TCNs have a large receptive field that bypasses a significant limitation of
most RNN architectures.

The design of TCN blocks can vary considerably. The TCN block in this work is
composed of a convolution of size three with 175 different filters, followed by a ReLU
and batch normalization, followed by another convolution with the same parameters, a
ReLU, and batch normalization. Four of these blocks are stacked. The dilation factors of
the convolutions are 2k−1, with k the number of a layer. We use a fully connected layer on
top, then a max pooling layer followed by the output layer. The output layer is a sigmoid
layer for multiclass classification. For training, we use dropout with a probability of 0.05.

Signals 2022, 3 920

4.6. IMCC

IMMC [5] has two steps: (1) creates virtual samples to augment the training set and
(2) performs multilabel training. As augmentation is what provides IMCC its performance
boost, the remainder of this discussion will be on the first step.

Augmentation is performed with k-means clustering [66], along with the calculation of
clustering centers. Let X = [x1, x2 . . . xn]

T ∈ Rn×d be a feature matrix and
Y = [y1, y2 . . . xyn]

T ∈ (−1,+1)n×q be the label matrix, where n is the number of sam-
ples. If all samples are partitioned into c clusters Z1,Z2 . . .Zc and xi is partitioned into
cluster Zj so that xi ∈ Zj, then the average of samples should capture the semantic meaning
of the cluster.

The center zj of each cluster Zi is defined as

zj =
1∣∣zj
∣∣ n

∑
i=1

x· ‖
(

xi ∈ Zj
)
, (19)

where ||(·) is an indicator function that is equal to 1 when xi ∈ Zj or to 0, otherwise [5].
A complementary training set D′ =

{
zj, tj

} c
j=1 can be generated by averaging the

label vectors of all instances of Zi, thus:

tj =
1∣∣zj
∣∣ n

∑
i=1

yi· ‖
(

xi ∈ Zj
)
. (20)

To understand more fully how the objective function deals with the original dataset D
and the complementary dataset D′, see [5]. In this study, the hyperparameters of IMCC are
chosen by five-fold cross-validation on the training set.

4.7. Pooling

Pooling layers (comprised of a single max along the time dimension) are added to
the end of the GRU and TCN block. In this way, the dimensionality of the processed data
is reduced and only the most important information is retained, and the probability of
overfitting is diminished.

4.8. Fully Connected Layer and Sigmoid Layer

The fully connected layer has l neurons, where l is the number of output labels in
the given problem. This layer is fully connected with the previous layer. The activation
function of this final layer is a sigmoid in the range [0 . . . 1]. These values are interpreted as
the confidence relevance, or final probabilities, of each label. The output of the model is thus
a multilabel classification vector, where the output of each neuron of the fully connected
layer provides a score ranging from 0 to 1 for a single label in the set of labels.

4.9. Training

As noted in the introduction, training is accomplished using different Adam variants.
Each of these variants is discussed below in Section 4. The learning rate is 0.01, and the
gradient decay and squared gradient decay factors are 0.5 and 0.999, respectively.

In addition, gradients are cut off with a threshold equal to one using L2 norm gradient
clipping. The minibatch size is set to 30, and the number of epochs in our experiments is
set to 150 for GRU, LSTM_GRU, and GRU_TCN but 100 for TNC.

4.10. Ensemble Generation

Ensembles combine the outputs of more than one model. In this work, models are
trained on the same problem, and their decisions are fused using the average rule. The
reason for constructing ensembles is that they improve system performance and prevent
overfitting. It is well known that an ensemble’s prediction and generalization increase
when the diversity among the classifiers is increased.

Signals 2022, 3 921

A simple way of generating diversity in a set of neural networks is to initialize them
randomly. However, applying different optimization strategies is a better way to strengthen
diversity. By varying the optimization strategy, it is possible for the system to find different
local minima and achieve different optima. In this work, we evaluate several Adam
optimizers suitable for ensemble creation: the Adam optimizer [45], diffGrad [67] and four
diffGrad variants: DGrad [68], Cos#1 [68], Exp [69], and Sto.

We generate an ensemble of 40 networks using this method: for each layer of each
network, an optimization approach (DGrad, Cos#1, Exp, and Sto) is randomly selected for
that layer.

5. Optimizers
5.1. Adam Optimizer

Proposed in [45], Adam calculates the adaptive learning rates for each parameter by
combining momentum and adaptive gradient. The Adam update rule is based on the value
of the gradient at the current step and the exponential moving averages of the gradient and
its square.

Specifically, the moving averages, mt (the first moment) and ut (the second moment),
can be defined as

mt = ρ1mt−1 + (1− ρ1)gt (21)

ut = ρ2ut−1 + (1− ρ2)g2
t (22)

where gt is the gradient at time t, the square on gt is the component-wise square, and ρ1
and ρ2 are hyperparameters representing the exponential decay rate for the first moment
and the second moment estimates (usually set to 0.9 and 0.999), respectively, with moments
initialized to 0: mo = u0 = 0 [45].

The values of the moving averages are very small, at least in the first few steps, due to
their initialization to zero. To handle this situation, Adam is defined to correct for the bias
of the moving averages:

m̂t =
mt

(1−ρt
1)

(23)

ût =
ut

(1−ρt
2)

(24)

The final update for each θt parameter of the network is

θt = θt−1 − λ m̂t√
ût+ε

, (25)

where λ is the learning rate, ε is a small positive number to prevent division by zero
(usually set to 10−8), and all operations are component-wise [45].

Though gt can have positive or negative components, g2
t can have only positive

components. It is possible, therefore, that in the case where the gradient changes sign often,
the value of m̂t could be much lower than

√
ût. In this case, the step size is very small.

5.2. The DiffGrad Optimizer

The diffGrad optimizer, proposed in [67], uses the difference of the gradient to set
the learning rate. Gradient changes begin to reduce during training, a behavior often
indicating the presence of a global minima. The diffGrad optimizer takes advantage of this
situation with an adaptive adjustment driven by the difference between the present and the
immediate past values to lock parameters into a global minimum. This makes the step size
larger for faster gradient changes and smaller for lower gradient changes in parameters.

For diffGrad, the update is defined as the absolute difference between two consecutive
steps of the gradient:

∆gt = |gt−1 − gt| (26)

Signals 2022, 3 922

The final update for each θt parameter of the network is Equation (28), where m̂t and ût
are defined as in Equations (23) and (24), but the learning rate is modulated by the Sigmoid
of ∆gt [67]:

ξt = Sig(∆gt) (27)

θt+1 = θt − λ · ξt
m̂t√
ût+ε (28)

5.3. DiffGrad Variants

These are the variants of the diffGrad optimization method used in generating the ensembles:

• DGrad [68] is based on the moving average of the element-wise squares of the param-
eter gradients;

• Cos#1 [68] is a minor variant of DGrad based on the application of a cyclic learning
rate [70];

• Exp is a variant of a method proposed in [69] that is based on the application of an
exponential function;

• Sto is a stochastic approach that stalls the optimizer on flat surfaces or small wells.

The proposed approaches have different methods for defining ξt, followed by the
application of Equation (28) to calculate the final update for θt.

The rationale for all these variants is to avoid optimizer stalling on flat surfaces due to
the low value of ∆gt.

DGrad [68] differs from diffGrad by defining the absolute difference between two
consecutive steps of the gradient as

∆agt =|gt − avgt|, (29)

where avgt contains the moving average of the element-wise squares of the parameter
gradients; we then normalize ∆agt by its maximum as

∆ ˆagt =
(

∆agt
max(∆agt)

)
(30)

With DGrad, ξt is defined as the Sigmoid of 4 · ∆ ˆagt. The rationale for multiplying by
four is to exploit the range of the output of the sigmoid function [68]:

ξt = Sig(4 · ∆ ˆagt) (31)

Cos#1 [68] is a variant of DGrad with a cyclic learning rate. The idea is to improve
classification accuracy without tuning and with fewer iterations [17]. In this work, the cos()
periodic function is selected to define a range of variation in the learning rate:

lrt =
(

2−
∣∣∣cos

(
π·t

steps

)∣∣∣e−0.01·(mod(t,steps)+1)
)

, (32)

where mod() denotes the function modulo and where steps = 30 is the period [68]. The plot
of lrt for t in the range 1:2 × steps is reported in Figure 2.

With Cos#1, lrt is used as a multiplier of ∆ ˆagt in the definition of ξt (Equation (31)):

ξt = Sig(4 · lrt · ∆ ˆagt) (33)

Exp [69] performs the element-wise operations of product and exponential. Exp is
designed to reduce the impact of large variations in the gradient and help the function
converge for small values. The function in Equation (34) decays slower than the negative
exponential for larger values. It also provides less focus on gradient variations that tend to
zero. A larger area of greater gain is thus produced [69]:

lrt = ∆agt·e(−k·∆agt), (34)

Signals 2022, 3 923

with k set to 2 in our experiments.

Signals 2022, 3, FOR PEER REVIEW 13

𝑙𝑟𝑡 = (2 − |cos (
𝜋 ⋅ 𝑡

𝑠𝑡𝑒𝑝𝑠
)| 𝑒−0.01⋅(𝑚𝑜𝑑(𝑡,𝑠𝑡𝑒𝑝𝑠)+1)) , (32)

where mod() denotes the function modulo and where steps = 30 is the period [68]. The plot

of 𝑙𝑟𝑡 for t in the range 1:2 × steps is reported in Figure 2.

Figure 2. Cyclic learning rate.

With Cos#1, 𝑙𝑟𝑡is used as a multiplier of ∆𝑎𝑔�̂� in the definition of 𝜉𝑡 (Equation (31)):

𝜉𝑡 = 𝑆𝑖𝑔(4 ⋅ 𝑙𝑟𝑡 ⋅ ∆𝑎𝑔�̂�) (33)

Exp [69] performs the element-wise operations of product and exponential. Exp is

designed to reduce the impact of large variations in the gradient and help the function

converge for small values. The function in Equation (34) decays slower than the negative

exponential for larger values. It also provides less focus on gradient variations that tend

to zero. A larger area of greater gain is thus produced [69]:

𝑙𝑟𝑡 = ∆𝑎𝑔𝑡 ∙ 𝑒(−𝑘∙∆𝑎𝑔𝑡), (34)

with k set to 2 in our experiments.

The final learning rate (𝜉𝑡) is the normalized result multiplied by a correction factor

(1.5), which moves the mean towards the unit as illustrated in Figure 3:

𝜉𝑡 = 1.5
𝑙𝑟𝑡

max(𝑙𝑟𝑡)
 (35)

Figure 3. The plot of Equation (35).

Sto (short for Stochastic), proposed here, adds noise to the learning rate to reduce the

tendency to stall on flat surfaces or small wells. The noise is independent of the gradient

direction.

Let 𝒳 be a matrix of independent uniform random variables in range [0,1] and J an

all-ones matrix:

Figure 2. Cyclic learning rate.

The final learning rate (ξt) is the normalized result multiplied by a correction factor
(1.5), which moves the mean towards the unit as illustrated in Figure 3:

ξt = 1.5 lrt
max(lrt)

(35)

Signals 2022, 3, FOR PEER REVIEW 13

𝑙𝑟𝑡 = (2 − |cos (
𝜋 ⋅ 𝑡

𝑠𝑡𝑒𝑝𝑠
)| 𝑒−0.01⋅(𝑚𝑜𝑑(𝑡,𝑠𝑡𝑒𝑝𝑠)+1)) , (32)

where mod() denotes the function modulo and where steps = 30 is the period [68]. The plot

of 𝑙𝑟𝑡 for t in the range 1:2 × steps is reported in Figure 2.

Figure 2. Cyclic learning rate.

With Cos#1, 𝑙𝑟𝑡is used as a multiplier of ∆𝑎𝑔�̂� in the definition of 𝜉𝑡 (Equation (31)):

𝜉𝑡 = 𝑆𝑖𝑔(4 ⋅ 𝑙𝑟𝑡 ⋅ ∆𝑎𝑔�̂�) (33)

Exp [69] performs the element-wise operations of product and exponential. Exp is

designed to reduce the impact of large variations in the gradient and help the function

converge for small values. The function in Equation (34) decays slower than the negative

exponential for larger values. It also provides less focus on gradient variations that tend

to zero. A larger area of greater gain is thus produced [69]:

𝑙𝑟𝑡 = ∆𝑎𝑔𝑡 ∙ 𝑒(−𝑘∙∆𝑎𝑔𝑡), (34)

with k set to 2 in our experiments.

The final learning rate (𝜉𝑡) is the normalized result multiplied by a correction factor

(1.5), which moves the mean towards the unit as illustrated in Figure 3:

𝜉𝑡 = 1.5
𝑙𝑟𝑡

max(𝑙𝑟𝑡)
 (35)

Figure 3. The plot of Equation (35).

Sto (short for Stochastic), proposed here, adds noise to the learning rate to reduce the

tendency to stall on flat surfaces or small wells. The noise is independent of the gradient

direction.

Let 𝒳 be a matrix of independent uniform random variables in range [0,1] and J an

all-ones matrix:

Figure 3. The plot of Equation (35).

Sto (short for Stochastic), proposed here, adds noise to the learning rate to reduce the
tendency to stall on flat surfaces or small wells. The noise is independent of the gradient
direction.

Let X be a matrix of independent uniform random variables in range [0, 1] and J an
all-ones matrix:

X =

X1,1 · · · X1,n
...

. . .
...

Xm,1 · · · Xm,n

 and J =

1 · · · 1
...

. . .
...

1 · · · 1

,

where Xi,j ∼ U (0, 1) are random variables with a uniform density function. The learning
rate is defined as

lrt = ∆agt·e(−4·∆agt)·(X + 0.5 ·J) (36)

ξt = 1.5 lrt
max(lrt)

(37)

In Equation (36), matrix J shifts the range of X by 0.5 to move the mean across 1.

6. Experimental Results

The goal of the first experiment was to build and evaluate the performance of the
different variants of the base models combined with all the components detailed in
Sections 4 and 5. All ensembles were fused by the average rule. In Table 3, we provide
a summary of each of these ensembles: the number of classifiers and hidden units, the
number of training epochs, and the loss function. Given a base standalone GRU_A with
50 hidden units trained by Adam for 50 epochs (labeled Adam_sa), we generated different
ensembles by incrementally increasing complexity. We do this by combining ten Adam_sa

Signals 2022, 3 924

(Adam_10s), increasing the number of epochs to 150 (Adam_10), selecting differnt optimiz-
ers (DG_10, Cos_10, Exp_10, Sto_10), and fusing the best results in the following ways:

• DG_Cos is the fusion of DG_10 + Cos_10;
• DG_Cos_Exp is the fusion of DG_10 + Cos_10 + Exp_10;
• DG_Cos_Exp_Sto is the fusion of DG_10 + Cos_10 + Exp_10 + Sto_10;
• StoGRU is an ensemble composed of 40 GRU_A, combined by average rule, each

coupled with the stocastic approach explained in Section 4.10;
• StoGRU_B as StoGRU but based on GRU_B;
• StoTCN is an ensemble of 40 TCN_A, combined by average rule, each coupled with

the stochastic approach explained in Section 4.10;
• StoTCN_B as StoTCN but based on TCN_B;
• StoGRU_TCN is an ensemble of 40 GRU_TCN each coupled with the stochastic ap-

proach explained in Section 4.10;
• StoLSTM_GRU is an ensemble of 40 LSTM_GRU each coupled with the stochastic

approach explained in Section 4.10;
• ENNbase is the fusion by average rule of StoGRU and StoTCN;
• ENN is the fusion by average rule of StoGRU, StoTCN, StoGRU_B, StoTCN_B and

StoGRU_TCN;
• ENNlarge is the fusion by average rule of StoGRU, StoTCN, StoGRU_B, StoTCN_B,

StoGRU_TCN and StoLSTM_GRU.

Table 3. Summary of tested ensembles.

Name Hidden Units #Classifiers #Epoch Optimizer

Adam_sa 50 1 50 Adam
Adam_10s 50 10 50 Adam
Adam_10 50 10 150 Adam

DG_10 50 10 150 DGrad
Cos_10 50 10 150 Cos
Exp_10 50 10 150 Exp
Sto_10 50 10 150 Sto

DG_Cos = DG_10 + Cos_10 50 20 150 DGrad, Cos
DG_Cos_Exp = DG_10 + Cos_10

+ Exp_10 50 30 150 DGrad, Cos, Exp

DG_Cos_Exp_Sto = DG_10 + Cos_10 +
Exp_10 + Sto_10 50 40 150 DGrad, Cos, Exp, Sto

StoGRU 50 40 150 DGrad, Cos, Exp, Sto
StoGRU_B 50 40 150 DGrad, Cos, Exp, Sto

StoTCN --- 40 100 DGrad, Cos, Exp, Sto
StoTCN_B --- 40 100 DGrad, Cos, Exp, Sto

StoGRU_TCN 50 (GRU) 40 150 DGrad, Cos, Exp, Sto

StoLSTM_GRU 125 (LSTM layer) 100
(GRU layer) 40 150 DGrad, Cos, Exp, Sto

ENNbase = StoTCN+StoGRU 50 (GRU) 80 100 (TCN)/150 (GRU) DGrad, Cos, Exp, Sto

ENN = StoTCN + StoGRU + StoTCN_B
+ StoGRU_B + StoGRU_TCN

50 (GRU, GRU_B &
GRU_TCN) 200

100 (TCN &
TCN_B)/150 (GRU,

GRU_B & GRU_TCN)
DGrad, Cos, Exp, Sto

ENNlarge = StoTCN + StoGRU +
StoTCN_B + StoGRU_B + StoGRU_TCN

+ StoLSTM_GRU

50 (GRU, GRU_B &
GRU_TCN) 100/125

(LSTM_GRU)
240

100 (TCN &
TCN_B)/150 (GRU,

GRU_B, LSTM_GRU &
GRU_TCN)

DGrad, Cos, Exp, Sto

An ablation study for assessing the performance improvement that each module of
our ensemble achieved is reported in Table 4. Only tests on GRU_A is reported here. The
other topologies tested in this work produced similar conclusions. In Table 4, we compare
approaches using Wilcoxon signed rank test.

Signals 2022, 3 925

Table 4. Ablation study showing that StoGRU is the best method among the approaches based on
GRU_A (other approaches produced similar results).

Method Comparison

Adam_10s Outperforms Adam_sa with a p-value of 0.0156

Adam_10 Outperforms Adam_sa with a p-value of 0.0172
Same performance of Adam_10s

DG_10 Outperforms Adam_10 with a p-value of 0.0064
Cos_10 Outperforms Adam_10 with a p-value of 0.0137
Exp_10 Outperforms Adam_10 with a p-value of 0.0016
Sto_10 Outperforms Adam_10 with a p-value of 0.1014

DG_Cos_Exp_Sto Outperforms Exp_10 (the best of the approaches reported above in this
table) with a p-value of 0.0134

StoGRU Outperforms DG_Cos_Exp_Sto with a p-value of 0.0922

Table 5 shows the performance of the ensembles in Table 3 in terms of average precision.
Moreover, we report the performance of IMCC [5] and TB. For both IMCC and TB, the
hyperparameters were chosen by a five-fold cross-validation on the training set. Also
reported in this table are the different fusions among ENNlarge, IMCC, and TB:

• ENNlarge + w × IMCC is the sum rule between ENNlarge and IMCC; before fusion,
the scores of ENNlarge (notice that the ensemble ENNlarge is obtained by average
rule) were normalized since it has a different range of values compared to IMCC. Nor-
malization was performed as ENNlarge = (ENNlarge− 0.5)× 2, the classification
threshold of the the ensemble is simply set to zero. The scores of IMCC were weighted
by a factor of w.

• ENNlarge + w × IMCC + TB is the same as the previous fusion, but TB is in-
cluded in the ensemble. Before fusion, the scores of TB were normalized since it
has a different range of values compared to IMCC. Normalization was performed as
TB = (TB− 0.5)× 2.

• StoLSTM_GRU + IMCC + TB is the sum rule among StoLSTM_GRU, IMCC, and TB.
StoLSTM_GRU and TB are normalized before the fusion as
StoLSTMGRU = (StoLSTMGRU − 0.5)× 2; TB = (TB− 0.5)× 2.

IMCC and TB do not use PCA when sparse datasets are tested, as noted in Section 4.2.

Table 5. Average precision of the ensembles and state of the art on the twelve benchmarks (boldface
values indicate the best performance within each group of similar approaches). Bold highlights
superior performance.

Average Precision Cal500 Image Scene Yeast Arts ATC ATC_f Liu mAn Bibtex Enron Health Ave

IMCC 0.502 0.836 0.904 0.773 0.619 0.866 0.922 0.523 0.978 0.623 0.714 0.781 0.753
TB 0.489 0.844 0.873 0.778 0.625 0.882 0.897 0.518 0.983 0.572 0.701 0.753 0.743

StoGRU 0.498 0.851 0.911 0.740 0.561 0.872 0.872 0.485 0.979 0.403 0.680 0.739 0.715
StoGRU_B 0.490 0.861 0.908 0.741 0.555 0.877 0.848 0.485 0.978 0.400 0.688 0.724 0.712

StoTCN 0.498 0.847 0.913 0.764 0.506 0.882 0.900 0.498 0.977 0.406 0.669 0.710 0.714
StoTCN_B 0.497 0.855 0.917 0.765 0.541 0.883 0.903 0.505 0.976 0.404 0.666 0.732 0.720

StoGRU_TCN 0.491 0.852 0.916 0.752 0.592 0.890 0.913 0.510 0.977 0.354 0.674 0.764 0.724
StoLSTM_GRU 0.493 0.839 0.901 0.771 0.633 0.888 0.912 0.541 0.978 0.618 0.702 0.790 0.756

ENNbase 0.502 0.855 0.922 0.756 0.552 0.888 0.916 0.497 0.979 0.417 0.687 0.735 0.726
ENN 0.499 0.859 0.924 0.762 0.582 0.893 0.916 0.505 0.979 0.424 0.689 0.749 0.732

ENNlarge 0.498 0.860 0.923 0.776 0.628 0.892 0.926 0.520 0.979 0.534 0.708 0.780 0.752
ENNlarge + IMCC 0.502 0.853 0.920 0.784 0.633 0.883 0.926 0.526 0.979 0.627 0.717 0.790 0.762

ENNlarge + 3 × IMCC 0.503 0.847 0.913 0.778 0.628 0.875 0.925 0.526 0.979 0.626 0.718 0.787 0.759
ENNlarge + IMCC + TB 0.500 0.856 0.913 0.784 0.641 0.889 0.927 0.526 0.982 0.622 0.718 0.788 0.762

ENNlarge + 3 × IMCC + TB 0.502 0.850 0.910 0.783 0.637 0.880 0.926 0.527 0.981 0.627 0.717 0.787 0.761
StoLSTM_GRU + IMCC + TB 0.500 0.851 0.898 0.786 0.641 0.883 0.920 0.538 0.983 0.635 0.727 0.800 0.764

These are some of the conclusions that can be drawn from examining Table 5:

Signals 2022, 3 926

• GRU/TCN-based methods work poorly on very sparse datasets (i.e., on Arts, Liu,
bibtex, enron, and health);

• StoGRU_TCN outperforms the other ensembles based on GRU/TCN; StoGRU and
StoTCN perform similarly;

• StoLSTM_GRU works very well on sparse datasets. On datasets that are not sparse,
the performance is similar to that obtained by the other methods based on GRU/TCN.
StoLSTM_GRU average performance is higher than that obtained by IMCC;

• ENNlarge outperforms each method from which it was built;
• ENNlarge + 3 × IMCC+TB outperforms ENNlarge+3×IMCC with a p-value 0.09;
• StoLSTM_GRU + IMCC + TB is the best choice for sparse datasets;
• ENNlarge + 3 × IMCC + TB tops or equals IMCC in all the datasets (note that

ENN+IMCC+TB and StoLSTM_GRU+IMCC+TB have performance equal to or lower
than IMCC in some datasets). ENNlarge + 3 × IMCC + TB is our suggested approach.

• In the following tests, we simplify the names of our best ensembles to reduce clutter:
• Ens refers to ENNlarge + 3 × IMCC+TB;
• EnsSparse refers to StoLSTM_GRU + IMCC + TB.

In Table 6, we compare IMCC and Ens using more performance indicators. Our
ensemble Ens outperforms IMCC.

Table 6. Comparison of IMCC and our proposed ensemble ENS using five performance indicators.
Bold highlights superior performance.

One Error ↓ Hamming Loss ↓ Ranking Loss ↓ Coverage ↓ Avg Precision ↑
Cal500-IMCC 0.150 0.134 0.182 0.736 0.502

Cal500-Ens 0.150 0.134 0.179 0.729 0.502
Image-IMCC 0.237 0.150 0.138 0.173 0.836

Image-Ens 0.225 0.147 0.127 0.159 0.850
scene-IMCC 0.164 0.070 0.053 0.062 0.904

scene-Ens 0.151 0.067 0.047 0.057 0.910
Yest-IMCC 0.220 0.185 0.165 0.448 0.773

Yest-Ens 0.211 0.178 0.155 0.433 0.783
Arts-IMCC 0.438 0.054 0.164 0.242 0.619

Arts-Ens 0.431 0.053 0.144 0.219 0.637
Bibtex-IMCC 0.336 0.012 0.079 0.158 0.623

Bibtex-Ens 0.338 0.012 0.072 0.143 0.627
Enron-IMCC 0.226 0.044 0.072 0.211 0.714

Enron-Ens 0.226 0.044 0.069 0.204 0.717
Health-IMCC 0.266 0.035 0.052 0.107 0.781

Health-Ens 0.262 0.035 0.046 0.097 0.787

In Table 7, we compare Ens with state of the art on the mAn dataset using the perfor-
mance measures covered in the literature for this dataset, viz., coverage, accuracy, absolute
true, and absolute false.

Table 7. Performance comparison of Ens and IMCC on the mAn data set. Bold highlights supe-
rior performance.

mAn Aiming Coverage Accuracy Absolute True Absolute False

[2] 88.31 85.06 84.34 78.78 0.07
[4] 96.21 97.77 95.46 92.26 0.00

IMCC 92.80 92.02 88.83 80.76 1.43
Ens 93.84 93.06 90.24 83.64 1.20

Ens outperforms IMCC on mAn on these five measures; however, Ens does not achieve
top performance. A recent ad hoc method [4] does better on this dataset than does Ens.

In Table 8, we show the performance reported in a recent survey [71] of many multil-
abel methods (the meaning of the acronyms and sources are noted in [71] and not included

Signals 2022, 3 927

here as the intention of this table to demonstrate the superiority of Ens compared to the
score reported in the survey). The last column reports the performance of our proposed
ensemble. As can be observed, it obtains the average best performance.

Table 8. Comparisons with results reported in a recent survey [71] using average precision as the
performance indicator. Bold highlights superior performance.

EPS CDE MLkNN MLARM BR DEEP1 PCT HOMER AdaBoost.MH BPNN RAkEL CLR RFPCT PSt TREMLCRFDTBR MBR CDN ECCJ48 EBRJ48 DEEP4 RSLP CLEMS Ens

bibtex 0.466 0.414 0.161 0.423 0.350 0.335 0.016 0.316 0.472 0.434 0.081 0.463 0.515 0.538 0.483 0.559 0.265 0.231 0.492 0.546 0.258 0.491 0.183 0.627
Cal500 0.440 0.411 0.441 0.352 0.236 0.489 0.497 0.288 0.475 0.508 0.271 0.355 0.520 0.485 0.497 0.500 0.381 0.292 0.427 0.458 0.329 0.490 0.446 0.502
enron 0.622 0.580 0.517 0.529 0.512 0.624 0.531 0.388 0.627 0.642 0.447 0.623 0.683 0.629 0.675 0.686 0.498 0.485 0.623 0.675 0.537 0.548 0.538 0.717
scene 0.789 0.812 0.785 0.715 0.790 0.686 0.745 0.753 0.880 0.855 0.851 0.889 0.868 0.887 0.856 0.874 0.711 0.501 0.813 0.856 0.810 0.797 0.850 0.910
yeast 0.745 0.718 0.704 0.598 0.663 0.701 0.732 0.693 0.711 0.761 0.693 0.710 0.762 0.766 0.760 0.763 0.576 0.437 0.719 0.740 0.709 0.748 0.715 0.787

Finally, in Table 9, our best ensembles, Ens and EnsSparse, are compared with the liter-
ature across all twelve benchmarks using average precision as the performance indicator.
Ens and EnsSparse obtain state-of-the-art performance using this measure on several of the
multilabel benchmarks.

Table 9. Other comparisons with the literature using average precision. Bold highlights superior performance.

Average Precision Cal500 Image Scene Yeast Arts ATC ATC_f Liu mAn Bibtex Enron Health

Ens 0.503 0.849 0.912 0.780 0.632 0.878 0.926 0.527 0.981 0.626 0.717 0.788
EnsSparse 0.500 0.851 0.898 0.786 0.641 0.883 0.920 0.538 0.983 0.635 0.727 0.800
FastAi [32] 0.425 0.824 0.899 0.718 0.588 0.860 0.908 0.414 0.976 --- --- ---

IMCC 0.502 0.836 0.904 0.773 0.619 0.866 0.922 0.523 0.978 0.623 0.714 0.781
hML 0.453 0.810 0.885 0.792 0.538 0.831 0.854 0.433 0.965 --- --- ---

ECC [5] 0.491 0.797 0.857 0.756 0.617 --- --- --- --- 0.617 0.657 0.719
MAHR [5] 0.441 0.801 0.861 0.745 0.524 --- --- --- --- 0.524 0.641 0.715
LLSF [5] 0.501 0.789 0.847 0.617 0.627 --- --- --- --- 0.627 0.703 0.780
JFSC [5] 0.501 0.789 0.836 0.762 0.597 --- --- --- --- 0.597 0.643 0.751
LIFT [5] 0.496 0.789 0.859 0.766 0.627 --- --- --- --- 0.627 0.684 0.708

[15] --- --- --- --- --- --- --- 0.513 --- --- --- ---
[72] --- --- --- --- --- --- --- 0.261 --- --- --- ---

hMuLab [18] --- --- --- 0.778 --- --- --- --- --- --- --- ---
MlKnn [18] --- --- --- 0.766 --- --- --- --- --- --- --- ---
RaKel [18] --- --- --- 0.715 --- --- --- --- --- --- --- ---

ClassifierChain [18] --- --- --- 0.624 --- --- --- --- --- --- --- ---
IBLR [18] --- --- --- 0.768 --- --- --- --- --- --- --- ---

MLDF [73] 0.512 0.842 0.891 0.770 --- --- --- --- --- --- 0.742 ---
RF_PCT [73] 0.512 0.829 0.873 0.758 --- --- --- --- --- --- 0.729 ---
DBPNN [73] 0.495 0.672 0.563 0.738 --- --- --- --- --- --- 0.679 ---
MLFE [73] 0.488 0.817 0.882 0.759 --- --- --- --- --- --- 0.656 ---
ECC [73] 0.482 0.739 0.853 0.752 --- --- --- --- --- --- 0.646 ---

RAKEL [73] 0.353 0.788 0.843 0.720 --- --- --- --- --- --- 0.596 ---
[14] --- --- --- 0.758 --- --- --- --- --- --- --- ---
[74] 0.484 --- --- 0.740 --- --- --- --- --- --- --- ---
[75] --- --- --- 0.775 0.636 --- --- --- --- --- --- ---

Wrap [76] 0.520 --- 0.832 0.761 --- --- --- --- --- 0.578 0.710 ---
Wrapk [76] 0.518 --- 0.892 0.781 --- --- --- --- --- 0.571 0.720 ---

7. Conclusions

The system proposed in this work for multilabel classification is composed of en-
sembles of gated recurrent units (GRU), temporal convolutional neural networks (TCN)
and long short-term memory networks (LSTM) trained with several variants of Adam
optimization. This approach combines Incorporating Multiple Clustering Centers (IMCC)
to produce an even better multilabel classification system. Many ensembles are tested
across a set of twelve multilabel benchmarks representing many different applications.
Experimental results show that the best ensemble constructed using our novel approach
obtains state-of-the-art performance.

Future studies will focus on combining our proposed method with other topologies
for extracting features. Moreover, more sparse datasets will be used to evaluate the per-

Signals 2022, 3 928

formance of the proposed ensemble for further validation of the conclusions drawn in
this work.

Another area of research will be to investigate deep ensembling techniques for mul-
tilabel classification that utilizes edge intelligence. Accelerated by the success of AI and
IoT technologies, there is an urgent need to push the AI frontiers to the network edge
to fully unleash the potential of big data. Edge Computing is a promising concept to
support computation-intensive AI applications on edge devices [77]. Edge Intelligence
or Edge AI is a combination of AI and Edge Computing; it enables the deployment of
machine learning algorithms to the edge devices where the data is generated. One of the
main problems in edge intelligence is how to apply ensemble systems usually developed
for high performance servers. A possible solution is to adopt and develop distillation
approaches. For example, in [78], the authors propose a framework for learning compact
deep learning models.

Author Contributions: Conceptualization, L.N. and L.T.; methodology, L.N.; formal analysis, L.N.,
S.B., X.G. and C.W.; writing—review and editing, L.N., S.B., X.G. and C.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: https://github.com/LorisNanni (accessed on 1 November 2022).

Acknowledgments: Through their GPU Grant Program, NVIDIA donated the TitanX GPU that was
used to train the CNNs presented in this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Galindo, E.G.; Ventura, S. Multi label learning: A review of the state of the art and ongoing research. Wiley Interdiscip. Rev. Data

Min. Knowl. Discov. 2014, 4, 411–444. [CrossRef]
2. Cheng, X.; Lin, W.-Z.; Xiao, X.; Chou, K.-C. pLoc_bal-mAnimal: Predict subcellular localization of animal proteins by balancing

training dataset and PseAAC. Bioinformatics 2018, 35, 398–406. [CrossRef] [PubMed]
3. Chen, L.; Li, Z.; Zeng, T.; Zhang, Y.-H.; Li, H.; Huang, T.; Cai, Y.-D. Predicting gene phenotype by multi-label multi-class model

based on essential functional features. Mol. Genet. Genom. MGG 2021, 296, 905–918. [CrossRef] [PubMed]
4. Shao, Y.; Chou, K. pLoc_Deep-mAnimal: A Novel Deep CNN-BLSTM Network to Predict Subcellular Localization of Animal

Proteins. Nat. Sci. 2020, 12, 281–291. [CrossRef]
5. Shu, S.; Lv, F.; Feng, L.; Huang, J.; He, S.; He, J.; Li, L. Incorporating Multiple Cluster Centers for Multi-Label Learning. arXiv

2020, arXiv:2004.08113. [CrossRef]
6. Ibrahim, M.; Khan, M.U.G.; Mehmood, F.; Asim, M.; Mahmood, W. GHS-NET a generic hybridized shallow neural network for

multi-label biomedical text classification. J. Biomed. Inform. 2021, 116, 103699. [CrossRef]
7. Ravanelli, M.; Brakel, P.; Omologo, M.; Bengio, Y. Light Gated Recurrent Units for Speech Recognition. IEEE Trans. Emerg. Top.

Comput. Intell. 2018, 2, 92–102. [CrossRef]
8. Kim, Y.; Kim, J. Human-Like Emotion Recognition: Multi-Label Learning from Noisy Labeled Audio-Visual Expressive Speech.

In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB,
Canada, 15–20 April 2018.

9. Messaoud, M.B.; Jenhani, I.; Jemaa, N.B.; Mkaouer, M.W. A Multi-label Active Learning Approach for Mobile App User Review
Classification. In Proceedings of the KSEM, Athens, Greece, 28–30 August 2019.

10. Singh, J.P.; Nongmeikapam, K. Negative Comments Multi-Label Classification. In Proceedings of the 2020 International
Conference on Computational Performance Evaluation (ComPE), Shillong, India, 2–4 July 2020; pp. 379–385. [CrossRef]

11. Boutell, M.; Luo, J.; Shen, X.; Brown, C.M. Learning multi-label scene classification. Pattern Recognit. 2004, 37, 1757–1771.
[CrossRef]

12. Tsoumakas, G.; Katakis, I.; Vlahavas, I. Mining Multi-label Data. In Data Mining and Knowledge Discovery Handbook; Springer:
New York, NY, USA, 2020; pp. 667–685.

13. Read, J.; Pfahringer, B.; Holmes, G.; Frank, E. Classifier chains for multi-label classification. Mach Learn. 2011, 85, 333–359.
[CrossRef]

14. Qian, W.; Xiong, C.; Wang, Y. A ranking-based feature selection for multi-label classification with fuzzy relative discernibility.
Appl. Soft Comput. 2021, 102, 106995. [CrossRef]

https://github.com/LorisNanni
http://doi.org/10.1002/widm.1139
http://doi.org/10.1093/bioinformatics/bty628
http://www.ncbi.nlm.nih.gov/pubmed/30010789
http://doi.org/10.1007/s00438-021-01789-8
http://www.ncbi.nlm.nih.gov/pubmed/33914130
http://doi.org/10.4236/ns.2020.125024
http://doi.org/10.1016/j.ins.2021.12.104
http://doi.org/10.1016/j.jbi.2021.103699
http://doi.org/10.1109/TETCI.2017.2762739
http://doi.org/10.1109/ComPE49325.2020.9200131
http://doi.org/10.1016/j.patcog.2004.03.009
http://doi.org/10.1007/s10994-011-5256-5
http://doi.org/10.1016/j.asoc.2020.106995

Signals 2022, 3 929

15. Zhang, W.; Liu, F.; Luo, L.; Zhang, J. Predicting drug side effects by multi-label learning and ensemble learning. BMC Bioinform.
2015, 16, 365. [CrossRef] [PubMed]

16. Huang, J.; Li, G.; Huang, Q.; Wu, X. Joint Feature Selection and Classification for Multilabel Learning. IEEE Trans. Cybern. 2018,
48, 876–889. [CrossRef] [PubMed]

17. Huang, J.; Li, G.; Huang, Q.; Wu, X. Learning Label-Specific Features and Class-Dependent Labels for Multi-Label Classification.
IEEE Trans. Knowl. Data Eng. 2016, 28, 3309–3323. [CrossRef]

18. Wang, P.; Ge, R.; Xiao, X.; Zhou, M.; Zhou, F. hMuLab: A Biomedical Hybrid MUlti-LABel Classifier Based on Multiple Linear
Regression. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 14, 1173–1180. [CrossRef]

19. Tsoumakas, G.; Katakis, I.; Vlahavas, I. Random k-Labelsets for Multilabel Classification. IEEE Trans. Knowl. Data Eng. 2011, 23,
1079–1089. [CrossRef]

20. Yang, Y.; Jiang, J. Adaptive Bi-Weighting Toward Automatic Initialization and Model Selection for HMM-Based Hybrid Meta-
Clustering Ensembles. IEEE Trans. Cybern. 2019, 49, 1657–1668. [CrossRef]

21. Moyano, J.M.; Galindo, E.G.; Cios, K.; Ventura, S. Review of ensembles of multi-label classifiers: Models, experimental study and
prospects. Inf. Fusion 2018, 44, 33–45. [CrossRef]

22. Xia, Y.; Chen, K.; Yang, Y. Multi-label classification with weighted classifier selection and stacked ensemble. Inf. Sci. 2021,
557, 421–442. [CrossRef]

23. Moyano, J.M.; Galindo, E.G.; Cios, K.; Ventura, S. An evolutionary approach to build ensembles of multi-label classifiers. Inf.
Fusion 2019, 50, 168–180. [CrossRef]

24. Wang, R.; Kwong, S.; Wang, X.; Jia, Y. Active k-labelsets ensemble for multi-label classification. Pattern Recognit. 2021, 109, 107583.
[CrossRef]

25. DeepDetect. DeepDetect. Available online: https://www.deepdetect.com/ (accessed on 1 January 2021).
26. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition; Cornell University: Ithaca, NY,

USA, 2014.
27. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.
28. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-Resnet and the Impact of Residual Connections on Learning;

Cornell University: Ithaca, NY, USA, 2016; pp. 1–12. Available online: https://arxiv.org/pdf/1602.07261.pdf (accessed on 1
January 2021).

29. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

30. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520.

31. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
32. Howard, J.; Gugger, S. Fastai: A Layered API for Deep Learning. Information 2020, 11, 108. [CrossRef]
33. Imagga. Imagga Website. Available online: https://imagga.com/solutions/auto-tagging (accessed on 1 January 2021).
34. Wolfram. Wolfram Alpha: Image Identification Project. Available online: https://www.imageidentify.com/ (accessed on 1

January 2020).
35. Clarifai. Clarifai Website. Available online: https://www.clarifai.com/ (accessed on 1 January 2021).
36. Microsoft. Computer-Vision API Website. Available online: https://www.microsoft.com/cognitive-services/en-us/computer-

vision-api (accessed on 1 January 2021).
37. IBM. Visual Recognition. Available online: https://www.ibm.com/watson/services/visual-recognition/ (accessed on 1 Jan-

uary 2020).
38. Google. Google Cloud Vision. Available online: https://cloud.google.com/vision/ (accessed on 1 January 2021).
39. Kubany, A.; Ishay, S.B.; Ohayon, R.-s.; Shmilovici, A.; Rokach, L.; Doitshman, T. Comparison of state-of-the-art deep learning

APIs for image multi-label classification using semantic metrics. Expert Syst. Appl. 2020, 161, 113656. [CrossRef]
40. Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844.
41. Li, D.; Wu, H.; Zhao, J.; Tao, Y.; Fu, J. Automatic Classification System of Arrhythmias Using 12-Lead ECGs with a Deep Neural

Network Based on an Attention Mechanism. Symmetry 2020, 12, 1827. [CrossRef]
42. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
43. Cho, K.; Merrienboer, B.V.; Gülçehre, Ç.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations

using RNN Encoder Decoder for Statistical Machine Translation. In Proceedings of the EMNLP, Varna, Bulgaria, 25–29 October
2014; pp. 25–32.

44. Lea, C.S.; Flynn, M.D.; Vidal, R.; Reiter, A.; Hager, G. Temporal Convolutional Networks for Action Segmentation and Detection.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 1003–1012.

45. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980.
46. Nanni, L.; Lumini, A.; Manfe, A.; Brahnam, S.; Venturin, G. Gated recurrent units and temporal convolutional network for

multilabel classification. arXiv 2021, arXiv:2110.04414.

http://doi.org/10.1186/s12859-015-0774-y
http://www.ncbi.nlm.nih.gov/pubmed/26537615
http://doi.org/10.1109/TCYB.2017.2663838
http://www.ncbi.nlm.nih.gov/pubmed/28212104
http://doi.org/10.1109/TKDE.2016.2608339
http://doi.org/10.1109/TCBB.2016.2603507
http://doi.org/10.1109/TKDE.2010.164
http://doi.org/10.1109/TCYB.2018.2809562
http://doi.org/10.1016/j.inffus.2017.12.001
http://doi.org/10.1016/j.ins.2020.06.017
http://doi.org/10.1016/j.inffus.2018.11.013
http://doi.org/10.1016/j.patcog.2020.107583
https://www.deepdetect.com/
https://arxiv.org/pdf/1602.07261.pdf
http://doi.org/10.3390/info11020108
https://imagga.com/solutions/auto-tagging
https://www.imageidentify.com/
https://www.clarifai.com/
https://www.microsoft.com/cognitive-services/en-us/computer-vision-api
https://www.microsoft.com/cognitive-services/en-us/computer-vision-api
https://www.ibm.com/watson/services/visual-recognition/
https://cloud.google.com/vision/
http://doi.org/10.1016/j.eswa.2020.113656
http://doi.org/10.3390/sym12111827
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

Signals 2022, 3 930

47. Zhang, M.-L.; Zhou, Z.-H. Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization. IEEE
Trans. Knowl. Data Eng. 2006, 18, 1338–1351. [CrossRef]

48. Stivaktakis, R.; Tsagkatakis, G.; Tsakalides, P. Deep Learning for Multilabel Land Cover Scene Categorization Using Data
Augmentation. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1031–1035. [CrossRef]

49. Zhu, H.; Cheng, C.; Yin, H.; Li, X.; Zuo, P.; Ding, J.; Lin, F.; Wang, J.; Zhou, B.; Li, Y.; et al. Automatic multilabel electrocardiogram
diagnosis of heart rhythm or conduction abnormalities with deep learning: A cohort study. Lancet. Digit. Health 2020, 2, e348–e357.
[CrossRef] [PubMed]

50. Navamajiti, N.; Saethang, T.; Wichadakul, D. McBel-Plnc: A Deep Learning Model for Multiclass Multilabel Classification
of Protein-lncRNA Interactions. In Proceedings of the 2019 6th International Conference on Biomedical and Bioinformatics
Engineering (ICBBE’19), Shanghai, China, 13–15 November 2019.

51. Namazi, B.; Sankaranarayanan, G.; Devarajan, V. LapTool-Net: A Contextual Detector of Surgical Tools in Laparoscopic Videos
Based on Recurrent Convolutional Neural Networks. arXiv 2019, arXiv:1905.08983.

52. Zhou, X.; Li, Y.; Liang, W. CNN-RNN Based Intelligent Recommendation for Online Medical Pre-Diagnosis Support. IEEE/ACM
Trans. Comput. Biol. Bioinform. 2021, 18, 912–921. [CrossRef] [PubMed]

53. Samy, A.E.; El-Beltagy, S.R.; Hassanien, E. A Context Integrated Model for Multi-label Emotion Detection. Procedia Comput. Sci.
2018, 142, 61–71. [CrossRef]

54. Zhang, J.; Chen, Q.; Liu, B. NCBRPred: Predicting nucleic acid binding residues in proteins based on multilabel learning. Brief.
Bioinform. 2021, 22, bbaa397. [CrossRef]

55. Turnbull, D.; Barrington, L.; Torres, D.A.; Lanckriet, G. Semantic Annotation and Retrieval of Music and Sound Effects. IEEE
Trans. Audio Speech Lang. Process. 2008, 16, 467–476. [CrossRef]

56. Zhang, M.-L.; Zhou, Z. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognit. 2007, 40, 2038–2048.
[CrossRef]

57. Elisseeff, A.; Weston, J. A Kernel Method for Multi-Labelled Classification; MIT Press Direct: Cambridge, MA, USA, 2001. [CrossRef]
58. Chen, L. Predicting anatomical therapeutic chemical (ATC) classification of drugs by integrating chemical-chemical interactions

and similarities. PLoS ONE 2012, 7, e35254. [CrossRef]
59. Nanni, L.; Lumini, A.; Brahnam, S. Neural networks for anatomical therapeutic chemical (ATC) classification. Appl. Comput.

Inform. 2022. Available online: https://www.emerald.com/insight/content/doi/10.1108/ACI-11-2021-0301/full/html (accessed
on 1 January 2021). [CrossRef]

60. Chou, K.C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst. 2013, 9, 10922–11100.
[CrossRef]

61. Su, Y.; Huang, Y.; Kuo, C.-C.J. On Extended Long Short-term Memory and Dependent Bidirectional Recurrent Neural Network.
Neurocomputing 2019, 356, 151–161. [CrossRef]

62. Gers, F.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471.
[CrossRef] [PubMed]

63. Chung, J.; Gülçehre, Ç.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
arXiv 2014, arXiv:1412.3555.

64. Jing, L.; Gülçehre, Ç.; Peurifoy, J.; Shen, Y.; Tegmark, M.; Soljb, M.; Bengio, Y. Gated Orthogonal Recurrent Units: On Learning to
Forget. Neural Comput. 2019, 31, 765–783. [CrossRef]

65. Zhang, K.; Liu, Z.; Zheng, L. Short-Term Prediction of Passenger Demand in Multi-Zone Level: Temporal Convolutional Neural
Network With Multi-Task Learning. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1480–1490. [CrossRef]

66. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comp. Surv. 1999, 31, 264–323. [CrossRef]
67. Dubey, S.; Chakraborty, S.; Roy, S.K.; Mukherjee, S.; Singh, S.K.; Chaudhuri, B. diffGrad: An Optimization Method for Convolu-

tional Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 4500–4511. [CrossRef]
68. Nanni, L.; Maguolo, G.; Lumini, A. Exploiting Adam-like Optimization Algorithms to Improve the Performance of Convolutional

Neural Networks. arXiv 2021, arXiv:2103.14689.
69. Nanni, L.; Manfe, A.; Maguolo, G.; Lumini, A.; Brahnam, S. High performing ensemble of convolutional neural networks for

insect pest image detection. arXiv 2021, arXiv:2108.12539. [CrossRef]
70. Smith, L.N. Cyclical Learning Rates for Training Neural Networks. In Proceedings of the 2017 IEEE Winter Conference on

Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–34 March 2017; pp. 464–472.
71. Bogatinovski, J.; Todorovski, L.; Džeroski, S.; Kocev, D. Comprehensive comparative study of multi-label classification methods.

Expert Syst. Appl. 2022, 203, 117215. [CrossRef]
72. Liu, M.; Wu, Y.; Chen, Y.; Sun, J.; Zhao, Z.; Chen, X.-w.; Matheny, M.; Xu, H. Large-scale prediction of adverse drug reactions

using chemical, biological, and phenotypic properties of drugs. J. Am. Med. Inform. Assoc. JAMIA 2012, 19, e28–e35. [CrossRef]
[PubMed]

73. Yang, L.; Wu, X.-Z.; Jiang, Y.; Zhou, Z. Multi-Label Learning with Deep Forest. arXiv 2020, arXiv:1911.06557.
74. Nakano, F.K.; Pliakos, K.; Vens, C. Deep tree-ensembles for multi-output prediction. Pattern Recognit 2022, 121, 108211. [CrossRef]
75. Fu, X.; Li, D.; Zhai, Y. Multi-label learning with kernel local label information. Expert Syst. Appl. 2022, 207, 118027. [CrossRef]
76. Yu, Z.B.; Zhang, M.L. Multi-Label Classification With Label-Specific Feature Generation: A Wrapped Approach. IEEE Trans.

Pattern Anal. Mach. Intell. 2022, 44, 5199–5210. [CrossRef]

http://doi.org/10.1109/TKDE.2006.162
http://doi.org/10.1109/LGRS.2019.2893306
http://doi.org/10.1016/S2589-7500(20)30107-2
http://www.ncbi.nlm.nih.gov/pubmed/33328094
http://doi.org/10.1109/TCBB.2020.2994780
http://www.ncbi.nlm.nih.gov/pubmed/32750846
http://doi.org/10.1016/j.procs.2018.10.461
http://doi.org/10.1093/bib/bbaa397
http://doi.org/10.1109/TASL.2007.913750
http://doi.org/10.1016/j.patcog.2006.12.019
http://doi.org/10.7551/mitpress/1120.003.0092
http://doi.org/10.1371/journal.pone.0035254
https://www.emerald.com/insight/content/doi/10.1108/ACI-11-2021-0301/full/html
http://doi.org/10.1108/ACI-11-2021-0301
http://doi.org/10.1039/c3mb25555g
http://doi.org/10.1016/j.neucom.2019.04.044
http://doi.org/10.1162/089976600300015015
http://www.ncbi.nlm.nih.gov/pubmed/11032042
http://doi.org/10.1162/neco_a_01174
http://doi.org/10.1109/TITS.2019.2909571
http://doi.org/10.1145/331499.331504
http://doi.org/10.1109/TNNLS.2019.2955777
http://doi.org/10.1016/j.ecoinf.2021.101515
http://doi.org/10.1016/j.eswa.2022.117215
http://doi.org/10.1136/amiajnl-2011-000699
http://www.ncbi.nlm.nih.gov/pubmed/22718037
http://doi.org/10.1016/j.patcog.2021.108211
http://doi.org/10.1016/j.eswa.2022.118027
http://doi.org/10.1109/TPAMI.2021.3070215

Signals 2022, 3 931

77. Li, X.; Zhang, T.; Wang, S.; Zhu, G.; Wang, R.; Chang, T.-H. Large-Scale Bandwidth and Power Optimization for Multi-Modal
Edge Intelligence Autonomous Driving. arXiv 2022, arXiv:2210.09659.

78. Asif, U.; Tang, J.; Harrer, S. Ensemble knowledge distillation for learning improved and efficient networks. arXiv 2019,
arXiv:1909.08097.

	Introduction
	Related Works
	DataSets
	Proposed Approaches
	Model Architectures
	Pre-Processing
	Long Short-Term Memory (LSTM)
	Gated Recurrent Units (GRU)
	Temporal Convolutional Neural Networks (TCN)
	IMCC
	Pooling
	Fully Connected Layer and Sigmoid Layer
	Training
	Ensemble Generation

	Optimizers
	Adam Optimizer
	The DiffGrad Optimizer
	DiffGrad Variants

	Experimental Results
	Conclusions
	References

