
smart cities

Review

Cyber Resilience and Incident Response in Smart
Cities: A Systematic Literature Review

Gabriela Ahmadi-Assalemi 1 , Haider Al-Khateeb 1,* , Gregory Epiphaniou 2

and Carsten Maple 2

1 Wolverhampton Cyber Research Institute (WCRI), School of Mathematics and Computer Science,
University of Wolverhampton, West Midlands WV1 1LY, UK; G.Ahmadi-Assalemi@wlv.ac.uk

2 Warwick Manufacturing Group (WMG), University of Warwick, International Manufacturing Centre,
Coventry CV4 7AL, UK; Gregory.Epiphaniou@warwick.ac.uk (G.E.); CM@warwick.ac.uk (C.M.)

* Correspondence: H.Al-Khateeb@wlv.ac.uk

Received: 11 July 2020; Accepted: 9 August 2020; Published: 13 August 2020
����������
�������

Abstract: The world is experiencing a rapid growth of smart cities accelerated by Industry 4.0,
including the Internet of Things (IoT), and enhanced by the application of emerging innovative
technologies which in turn create highly fragile and complex cyber–physical–natural ecosystems.
This paper systematically identifies peer-reviewed literature and explicitly investigates empirical
primary studies that address cyber resilience and digital forensic incident response (DFIR) aspects
of cyber–physical systems (CPSs) in smart cities. Our findings show that CPSs addressing cyber
resilience and support for modern DFIR are a recent paradigm. Most of the primary studies are
focused on a subset of the incident response process, the “detection and analysis” phase whilst
attempts to address other parts of the DFIR process remain limited. Further analysis shows that
research focused on smart healthcare and smart citizen were addressed only by a small number of
primary studies. Additionally, our findings identify a lack of available real CPS-generated datasets
limiting the experiments to mostly testbed type environments or in some cases authors relied on
simulation software. Therefore, contributing this systematic literature review (SLR), we used a
search protocol providing an evidence-based summary of the key themes and main focus domains
investigating cyber resilience and DFIR addressed by CPS frameworks and systems. This SLR also
provides scientific evidence of the gaps in the literature for possible future directions for research
within the CPS cybersecurity realm. In total, 600 papers were surveyed from which 52 primary
studies were included and analysed.

Keywords: cyber–physical systems; mobility; critical national infrastructure; digital citizens;
smart homes; healthcare; energy

1. Introduction

Industry 4.0, synonymously known as cyber–physical production systems (CPPSs), is a concept
formed in 2011 at the Hannover Fair to describe how cyber–physical systems (CPSs) can be applied
within production and manufacturing industries with enabled automation [1–4]. From the inception
of the visionary notion specifically for factories and large-scale enterprises, CPSs’ reach have extended
beyond production enterprises linking the Industry 4.0 concept with aspects of smart city initiatives [3,4].
Smart cities have evolved and transformed over the past two decades becoming deeply integrated
within the society facilitating an interconnected digital environment [3–5]. The estimated growth of
the urban population is estimated to reach 5 billion by 2030 globally [6]. A variety of definitions for
the term “smart city” [7–12], its sectors and components [3,13–17], the variants [8] and concepts of
the term “smart” [6,14,18–21] have been suggested. The description of smart cities is heterogeneous
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and commonly agreed facets converge sustainability, ICT-based technology and community needs.
Therefore, in this study, we consider the smart city as an urban space using technology and resources
innovatively, intelligently and securely to improve the lives of its citizens focusing on the spectrum of
attributes that improve the cyber resilience of smart cities.

A key component of smart cities, CPSs can be described as smart, embedded and networked
systems within production systems [22]; a tangible element that is not completely controlled by an
automated system and a cyber element that focuses on the digital information form CPS entities
capable of autonomous interaction regardless of human supervision [23]. Furthermore, these
complex and growing networks of connected objects incorporate human-users and form complex
cyber–physical–natural (CPN) ecosystems interrelating systems, software, people and services. As such,
a problem within this complex cyberspace, including cybersecurity challenges, can have a cascading
effect on the entirety of the ecosystem [24,25].

The motivation and tactics of the cyber threats landscape shifted from individuals hobby hacking
to gain kudos amongst their peers toward well-organised cybercrime [26–28]. The motivations are often
intensified by the possibilities to gain sensitive information, which can be used in subsequent attacks
including cyberattacks against industrial control systems (ICSs) or critical national infrastructure (CNI).
Verizon reported in their 2016 Data Breach Investigation Report the outcome of the investigation
of 500 cybersecurity incidents in over 40 countries. In 89% of the cases, the key motives reported
were described as “financial” and “espionage” fixated on targets including manufacturing, healthcare,
utilities and public services by organised crime and state-affiliated groups. Many of these attacks had a
secondary motive to aid an intrusion of another target [29,30]. This class of attacks known as advanced
persistent threats (APTs) characterise a well-resourced group of attackers that carry out multi-stage
and often multi-year persistent targeted campaigns. Traditional incident response (IR) methods fail in
mitigating APTs because they assume successful intrusion before IR takes place. A kill chain model
enables one to map such campaigns, identify patterns linking individual intrusions and through an
iterative intelligence gathering enables the development of a resilient intelligence-driven mitigation
approach [31]. In 2018, although the key motives remained largely unchanged, the most noteworthy
attack vectors reported by the European Union Agency for Network and Information Security (ENISA)
included malicious attachments, URLs in emails targeting the human element, web browser-based
malicious scripts, malvertising, exploit kits and password reuse or weak service credentials in Internet
exposed assets [26]. In 2019, law enforcement agencies responded to more attacks on CNI than we ever
saw before; this trend was highlighted as a key emerging threat by Europol [32]. CNI such as smart
energy, water or transport are complex, large-scale interconnected CPSs converging physical and cyber
domains and utilise geographically dispersed ubiquitous distribution networks, which extend beyond
the boundary of a smart city, often across national borders and legal jurisdictions.

The rise of cybercrime has been greatly facilitated by the proliferation of modern advanced
electronic communication technologies and the integration of IoT with physical systems [17,28,33].
High profile cyberattacks on ICSs have been well reported for some years, such as the Stuxnet malware
targeting the Iranian nuclear plant [34], the attack on the Ukrainian power grid [35] or Norsk Hydro,
a renewable energy supplier and the world’s largest aluminium producer, which was compromised by
the LockerGoga ransomware [32]. In case of a successful cyberattack, the disruption of power, water
or fuel supplies to these facilities could have a potentially serious socio-economic impact including
civilian unrest; however, consequences could be more profound. For example, in the widely reported
Kemuri Water Company attack, the mixture of chemicals used to treat a water plant was altered. In this
attack, the sensors responsible for monitoring the water treatment plants were compromised [29].
Due to the distributed nature and heterogeneity of CPSs, human interactions and the omnipresence
of the underpinning technologies create hugely diverse attack vectors which increase the threat of
cyberattacks on critical systems.

Comparatively, smart cities, smart healthcare and smart homes are in the earlier stages of
development with several evolving projects including initiatives to improve the wellbeing of elderly
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people through early changes detection [36] or application of digital forensics as a service in the
context of smart homes [37]. Furthermore, connected appliances and app-based utility management
will become the norm in connected homes [38] whilst automated congestion control, smart traffic
lights or parking [39,40] will be part of smart cities’ digitalization projects [14]. The cyber challenges
in these smart sectors differ but the effect could be just as profound. For example, the ransomware
attack against the San Francisco Municipal Transportation Agency’s transport service only resulted in
financial impact [41]. Accidents caused by cyberattacks including GPS ghosting, hijacking command
and control systems, ransomware or attacks targeted at sensors, actuators or controllers could result in
serious accidents and increase the pressure on healthcare systems. Digital transformation utilising
mobile and emerging technologies such as artificial-intelligence (AI)-enabled networked medical
devices or wearable health sensors are identified as enablers for healthcare organisations. However,
healthcare does not escape cyberattacks as learnt from the WannaCry incident in May 2017 affecting
over 300,000 computers, some of which belonged to 80 National Health Service (NHS) Trusts across
the UK [26,32,42].

Due to the attacks becoming more sophisticated and targeted, the countermeasures also need
consistency and coordination [5,26,28,32]. Therefore, a new paradigm must address cyber threats
and cybercrime. Formulating cyber resilience to counter cybersecurity threats is required to resist
cyberattacks and continue to function effectively under adverse conditions [43]. Accepting that not all
cyberattacks are avoidable and computer-related crime is on the increase, the IR becomes an important
component of CPS security management [32] including the need for digital evidence (DE). Forensic
DE gathering must be carried out without compromising the integrity and authenticity of the DE to
ensure admissibility in a court of law [44]. Therefore, the cybersecurity paradigm needs to shift to
withstand cyberattacks, to function effectively under adverse conditions and support digital forensic
investigations by producing DE that is admissible in the court of law. Collaborative practice and
interdisciplinary approaches across smart sectors based on threat information sharing could increase
situational awareness and help deal with potential threats or incidents more effectively.

Although CPS-related research is an active area, there seems to be substantially less empirical
research available on frameworks and systems that address CPS in smart cities. For example,
the following study [45] defines its framework as a risk-based approach to reducing cybersecurity risk
consisting of three tiers: core, profile and implementation. Another study [46] defines a CPS framework
as activities and outputs that support CPS engineering, which provides not a one-size-fits-all approach
but a flexible way to address cybersecurity across the physical, cyber and people dimensions. Therefore,
to make a meaningful contribution, we use a broad definition for frameworks as a common carefully
designed organising structure of multiple approaches [47–49]. Furthermore, systems described by the
National Institute of Standards and Technology (NIST) as a combined set of complex and coherent
elements that constitute a use-case [46] can operate in different smart city sectors creating highly complex
systems of systems. Systems can be represented by scientific modelling to describe hypothetical
behaviour of phenomena that are challenging to observe directly. To help discover contributions
in the literature of the specific research area we include systems to gain a deeper understanding of
addressing support for cyber resilience across the physical, cyber and people dimensions in cross-sector
applications within smart cities [50,51].

Specifically, concerning frameworks and systems that address cyber resilience and modern digital
forensics and incident response (DFIR), there appears to be lack of available systematic literature
review (SLR) based on recognised methodology, comprehensive protocols and quality assessment.
For instance, to identify how CPS-related frameworks and systems support cyber resilience and to
determine the support for modern DFIR in smart cities it is important to conclude what research has
been published and systematically review relevant and available studies. Therefore, one of the key
objectives of this study is to identify the current gaps in this research area. Overarchingly, the focus
of this paper is on reported empirical evidence in existing literature concerning cyber resilience and
DFIR support in CPSs across smart city sectors. Traditionally, “resilience” in a mechanical context was
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the materials’ resistance to shock, in the conventional networking context resilience focused on fault
tolerance; however, the scope of this term extends to the cybersecurity discipline. In this study, we
consider cyber resilience as the ability of the frameworks addressing smart cities to resist cyberattacks
across the physical and digital domains regardless of an external or insider attack [43,52–54].

A small number of SLR studies in the realm of CPS have been published. These are outlined
to examine the difference between the authors’ focus on topics and our research. The author of [55]
performed an SLR focusing on smart grid and related cybersecurity. In this study, the author presents
results aimed at addressing cybersecurity by identifying all standards which define cybersecurity
requirements for smart grids and reviews applicable standards and guidelines. In reference [56],
the authors provide analysis to address cybersecurity issues in an Industry 4.0 context and focus on the
physical Internet-connected systems. The authors concentrated on four areas, the definition of concepts
relevant to Industry 4.0 and cybersecurity, the industrial focus, the characterization of cybersecurity
and the management of the cybersecurity issues. Authors in reference [57] presented their SLR findings
concerning smart cities focusing on instrumented, interconnected and intelligent systems investigating
four areas including security. One of the authors’ conclusions was that little was mentioned in the
newly emerging security and privacy challenges. Although the studies into this growing area of
research provide valuable knowledge consolidation, they answer questions about the wider use of
CPS and related cybersecurity. No other SLR on this research topic was found by the authors during
the preparation of the study. The focus of our SLR remains specifically on CPS-related cyber resilience
and modern DFIR informed by cyber threat intelligence (CTI) to strengthen and accelerate the cyber
defence in smart cities.

Narrative reviews were found to focus on various Internet of Things (IoT) aspects and applications
addressing challenges, threats and solutions. For example, the authors in reference [58] provided a
brief review of IoT concepts and models. The paper focused on the IoT network model and related
modelling challenges from the interconnections’ perspective and briefly discussed the concept of
interdependent infrastructure resilience. Another recent study investigated the autonomy, integration
and level of intelligence in emerging applications related to CPSs across a range of application domains
in smart cities [59] including big data challenges and data and communication security. Further, the
authors explored the intelligence and interconnectivity of systems into a shared environment from
a simulation perspective. Interestingly, the study concluded that the security of collected data and
distributed systems are a persistent challenge that must be continually addressed. They expressed
the need to design systems with agility to react to the changing security landscape. A study focusing
on the IoT from the edge computing perspective was published in reference [60]. The focus of this
study was on improving IoT networks’ performance utilising edge computing exploring the relevant
confidentiality, integrity and availability strategies. Another survey [61] examined the integration
of the IoT and fog/edge computing. The paper clarified the difference between CPSs and the IoT
and investigated the relationships and issues affecting the IoT and fog/edge computing; however, the
paper’s approach remained high-level and general. All the previous studies address broader aspects
related to the IoT, but do not specifically investigate CPSs with a focus on improving cyber resilience,
the value of CTI- or CPS-specific DFIR support in smart cities. The field of research related to CPSs
is still emerging, but the advancement is accelerating. Therefore, a comprehensive SLR is required
focusing on ways that current CPSs deal with cyber resilience and DFIR to guide future research.

This paper’s main aim is to provide a systematic literature review (SLR) that consolidates primary
studies’ research investigating what empirical evidence has been reported for existing frameworks and
systems that address CPS cyber resilience in smart cities. Second, we investigate how current CPS
applications address modern DFIR. Finally, we explore existing integration proposals or applications
that leverage CPSs across smart city sectors to improve digital forensics. We critically examine existing
research and use the insights to conclude with suggestions for future research. The remainder of
this paper covers our methodology in Section 2 which also discusses the research questions and the
protocol including the data extraction strategy. Section 3 contains the results, analysis and key findings
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from the included primary studies followed by a discussion in Section 4. Finally, the conclusion and
future research suggestions are in Section 5.

2. Materials and Methods

The aim of this study was achieved with an evidence-based systematic literature review (SLR) as
the means to objectively address our research questions. The protocol is based on the SLR guidelines
for the computer engineering discipline proposed by Kitchenham and Charters [62]. These guidelines,
which aim to present a rigorous and credible methodology, are based on three key phases: planning,
conducting and reporting, as demonstrated in Figure 1. We demonstrate the discreet activities in each
phase in the subsequent sections to allow replication of findings. Summarily, the core aspects of the
systematic review protocol, the key contributions and the research questions are identified within the
planning phase. The conducting phase consists of identifying the search strategy including the selection
criteria for the primary studies, selection procedure, the search strings and the quality assessment
criteria. This phase involves the development of the data extraction strategy, data synthesis and
critical analysis. Finally, the information dissemination strategy is considered in the reporting phase.
Each phase of the SLR is conducted iteratively to ensure a comprehensive evaluation. To maintain
objectivity and mitigate bias, each phase was subject to a review and an approval process between the
team before moving onto the next phase.
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2.1. Research Questions and Rationale

The main aim of this research is to identify and present scientific evidence of gaps in current
research and help inform the direction for further research. The aim can be achieved by answering the
following three research questions (RQs):

RQ1: How do existing frameworks and systems that address CPSs in smart cities support cyber
resilience and what empirical evidence has been reported? Use cases and application of CPSs have
diversified, and complexities of these ecosystems have evolved. In addition to frameworks, we
investigate how complex systems support cyber resilience identifying commonalities. Within the
many diverse definitions used in existing studies addressing smart cities [7–12] and the numerous
terminologies used in literature to describe frameworks and systems [51,52,63–65], providing an answer
to RQ1 helps us conclude a list of all existing and relevant frameworks and systems that address CPSs
in smart cities supporting cyber resilience as defined by the scope of this SLR.
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RQ2: How do the identified frameworks and systems in smart cities address modern digital
forensics and incident response (DFIR)? Application of DFIR in the context of a smart city is a new
field of study [37]. Whilst the research focuses on the applications of IoT-enabled CPSs, smart cities are
found to be vulnerable to cyberattacks [40]. It is acknowledged that DFIR methodologies are lacking in
smart city sectors [17,66] and research suggests that DFIR faces more challenges in smart cities than
other forms of digital breach investigations [67]. However, apart from the complexity to the cyberspace,
the IoT enabled CPSs to create opportunities to facilitate modern DFIR [44]. RQ2 investigates how the
components of the CPS frameworks help address modern DFIR.

RQ3: What are the current cross-sector proposals or applications in smart cities that attempt to
utilise interactions in CPSs for the purpose of improving DFIR? This RQ explores the transferable
solutions and cross-sector interactions between smart buildings, smart homes, smart healthcare, smart
energy and others as illustrated in Figure 2. Despite digitalisation in smart cities, information security
strategies are limited to the sector boundary with little evidence of cross-sector information security
practice sharing [28]. We draw on the use of the term of cross-sector partnerships in reference [68]
as intensive and long-term interactions between organisations from at least two sectors such as
business and healthcare. Throughout this study, cross-sector collaborations are used as interactions
to adopt, share or coordinate cyber defence practice between at least two different smart city sectors.
To address the existing and emerging cyberattacks, transferable and innovative solutions should
emerge from individual sectors within a smart environment to support modern digital forensics [28,68].
RQ1, RQ2 and RQ3 help uncover key themes and gaps in current literature and suggestions for future
research direction.
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The PICOC (population, intervention, comparison, outcomes, context) criteria as demonstrated in
Table 1 is used from an engineering point of view, as proposed by Kitchenham and Charters [62] to
frame the research questions effectively.
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Table 1. Application of PICOC criteria [59] to the research questions (RQs).

PICOC Criteria Criteria Description

Population Frameworks addressing smart cities

Intervention Digital forensic incident response (DFIR)
frameworks that support cyber resilience

Comparison Frameworks addressing cyber resilience

Outcomes Scope, technique, security application and sector
of the studies analysed

Context Academic research

2.2. Primary Studies’ Data Sources and the Search Strategy

Digital library (DL) sources for computer science research publications were used. To help answer
the RQs, keywords representative of the research topic were pre-defined and a search string was
constructed using Boolean operators, key terms and synonyms to fetch all relevant studies. The Boolean
operators were limited to AND and OR. The following search string was used:

(‘Cyber Physical Systems’ OR ‘Cyber-Physical Systems’ OR ‘CPS’ OR ‘Cyber Physical Object’ OR ‘CPO’
OR ‘smart device’ OR ‘IoT device’) AND (‘cybersecurity’ OR ‘cybersecurity’ OR ‘cyber-resilience’ OR ‘resilience’)
AND (‘smart cities’ OR ‘smart city’) AND (‘model’ OR ‘modeling’ OR ‘technique’ OR ‘framework’
OR ‘information modeling’ OR ‘modeling technique’ OR ‘analytical modeling’ OR ‘reference architecture’
OR ‘reference model’ OR ‘Security Solutions’ OR ‘IoT Architecture’).

The DLs used in this SLR were the Institute of Electrical and Electronics Engineers (IEEE),
Association of Computing Machinery Digital Library (ACM DL), Science Direct, Web of Knowledge
and Scopus. The search string was aligned to the built-in options within the DLs’ search engines to
filter the results. Where possible, searches were performed to match the search string from the title,
abstract, keywords, and the full text. The search of the specified DLs concluded by 5 April 2019 taking
into consideration all studies returned by the defined search string published to that date. In addition
to the set of studies produced through the search of the DLs, we applied a snowballing approach in our
search strategy, as outlined by Wohlin [69], which produced a further set of relevant studies. This was
a manual process applied to the studies collected by the pre-identified search criteria until no further
studies met the inclusion criteria. Subsequent to identifying studies from the specific data sources
using the defined search string, the rest of the protocol outlined in Sections 2.3–2.7 was applied to the
studies identified by the initial search.

2.3. Selection Criteria

Rigorous inclusion and exclusion criteria, as defined in Table 2, were applied to the produced
set of studies from the DLs to ascertain that only relevant studies are retained in response to the
research questions.

Table 2. Inclusion and exclusion criteria for the primary studies.

Inclusion Criteria (IC) Exclusion Criteria (EC)

IC1: Must be a peer-reviewed, English language
primary study. EC1: Duplicate studies.

IC2: Must contain cyber–physical system
(CPS)-specific information related to cyber resilience,

modern DFIR or frameworks.

EC2: Study is not a framework that supports
cyber resilience or DFIR.

IC3: Must include empirical evidence related to the
cyber resilience security application and use of CPSs.
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Included studies must satisfy all inclusion criteria. I.e., they must be primary, peer-reviewed,
written in English and contain appropriate information on new applications or development
of an existing mechanism for cyber resilience, modern DFIR or framework in CPSs, providing
empirical findings.

2.4. Selection Process

The selection process consisted of three key phases as demonstrated in Figure 3. The authors have
critically reviewed this.
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Phase 0—Keyword Filtering. During this phase, the identified search string was applied to each
of the DLs utilised returning a combined result of 441 research studies. These studies were passed
through to the next phase.

Phase 1—Title, Indexing Keywords, Abstract, and Conclusion Filtering. Following the initial
keyword filtering, in phase 0, the titles, indexing keywords, abstracts and conclusion were scrutinised
against the inclusion criteria. Studies showing relevance to the research topic were included in the
next phase. In this phase, 319 studies were excluded and 122 were put through to the final phase.

Phase 2—Full-Text Filtering. The full texts of the 122 studies were read. After applying the
selection criteria in this final phase, some studies were excluded for several reasons. For example,
references [37,70,71] did not include an empirical study, references [72–74] at the time of review
were not peer-reviewed publications, reference [75] is not an English language study, reference [76]
is a poster, the focuses of references [77–79] were not specific to CPS cyber resilience or modern
DFIR. Additionally, 10 studies were identified as duplicates and excluded from the final selection list.
Snowballing identified an additional 159 studies. After applying the selection process, these studies
were reduced to 19 after excluding nine duplicate studies and three PhD theses.

The final list of primary studies included in this SLR resulted in 52 articles, as shown in Figure 3.
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2.5. Quality Assessment

Motivated by the guidance in reference [62], a checklist was developed according to
references [80,81] to make sure all included studies satisfy quality assessment (QA) criteria.
This evidence-based approach assesses the validity of experimental data and reduces bias. The following
QA criteria were applied:

Phase 1: CPS. The study must be focused predominantly on CPS security or the application of
the CPS framework to a specific cyber resilience problem and appropriately documented.

Phase 2: Context. The context of the study must be provided in sufficient detail to accurately
interpret the research.

Phase 3: Detail. The framework details are critical to answering RQ1 and RQ2. Sufficient detail
about the approach to build the framework and comparison with other approaches must be presented
clearly in assisting to answer RQ3.

Phase 4: Data. Sufficient detail about the type of training and test data identified and how the
data was acquired, measured and reported must be provided clearly to determine the accuracy of the
results reported.

2.6. Validation Process

A random set of 30 primary studies from the pool of studies were selected and had the
inclusion/exclusion criteria re-applied to validate the effectiveness and the objectivity of the process
application. A further 30 random primary studies were selected from the pool of studies and had the
QA criteria applied to validate the effectiveness and the application of the quality assessment process.

2.7. Data Extraction Strategy

The data extraction was applied to the final 52 primary studies. Initially, the process and format
were trialled on a subset of studies before extending the process to all included studies. The data were
categorized, stored in a spreadsheet and tabulated using the following characteristics.

Context: year of publication, type of article, application of the study, sector, model type and
security approach.

Qualitative data: were recorded including the conclusion and future research directions provided
by the authors.

Quantitative data: experiment observations were noted including the technique and
dataset source.

To conclude, the protocol used in this SLR process, which is based on Kitchenham and Charters [62]
guidelines, was rigorously applied and documented to objectively address the research questions.
The resulting set of primary studies after applying the protocol are summarised in Figure 3. Therefore,
this SLR consolidates previous research within the defined scope; however the methodology used
can be applied iteratively to studies beyond this SLR’s defined scope as an extension and update of
literature reviews to further expand the scientific body of knowledge.
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3. Results Analysis and Discussion

3.1. Primary Studies

Applying our protocol revealed that no primary studies were published before 2011, suggesting
that cyber resilience and DFIR addressed by CPS frameworks and systems in smart cities is a recent
paradigm. Nevertheless, as Figure 4 shows, there is an upward trend in CPS-related research within
smart cities addressing cyber resilience and modern DFIR, which indicates that this has emerged into
an active research area. This trend will likely continue as the first quarter (Q1) of 2019 is just over half
of the studies published in 2018, as demonstrated in Table 3.
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Table 3. Primary studies’ distribution by type. Journal—J or conference—C and publication year.

Year 11 14 15 16 17 18 Q1/19 Total Studies

%/year 2% 2% 2% 10% 23% 40% 21% 52
J 1 13 10 24
C 1 1 5 12 8 1 28

3.2. Keyword Analysis

To help establish common themes amongst the primary studies, a keyword analysis including
all 52 primary studies was carried out. The frequency of specific keywords appearing in the primary
studies is shown in Table 4. As the table captures, the second most frequently used keyword in the
dataset is “System”, closely followed by “Security”, “Internet of Things” and “Cyber-Physical Systems”
(CPSs). This shows an increasing research interest in the security of CPSs in the context of the IoT.
Furthermore, the keyword “framework” indicates that it is an active but still emerging area of research
interest in the context of CPS cyber resilience and support for DFIR. The dataset also demonstrates that
there is a significant disparity in the research interests in “detection” compared to other aspects of
CPS security. The keywords used in established investigation models and frameworks to define these
investigation phases including “Response”, “Recovery” or “Prevention” rank lowest in the dataset.
In addition, “Forensics” and “Cyber Resilience” rank also low in the dataset indicating potential areas
of further research requirement.
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Table 4. Primary studies’ keyword analysis.

Keyword Occurrence In Studies

Attacks 4165 50
System(s) 3650 52
Security 2272 51

Internet of Things/IoT 2024 36
Model(s)(ing) 2002 52

Cyber-Physical Systems 1857 52
Smart 1750 52

Device(s) 1610 50
Detection 1193 47

Approach(es) 589 50
Method(s) 579 49
Analysis 579 52

Framework(s) 491 44
Technique(s) 461 44

Cyber * resilience/resilience 251 26
Processing 242 38

Architecture 239 43
Forensic(s) 214 16

Cyber * security 179 37
Response 156 33

Incident(s) 41 15
Prevention 38 20
Recovery 32 10

The asterisk (*) in this table is used to represent the variants considered during the keyword search: space, dash or
continuous word without any space i.e., ‘cyber resilience’, ‘cyber-resilience’, ‘cyberresilience’ and ‘cyber security’,
‘cyber-security’, ‘cybersecurity’.

3.3. Key Themes

Our analysis of the primary studies shows several emerging themes and main focus domains,
each of which is discussed within Sections 3.3.1–3.3.7.

3.3.1. Chronological Analysis of Key Events

The purpose of the chronological analysis is to examine the main determinants and the time
correlation for the research distribution addressing CPS cyber resilience and modern DFIR in smart
cities concerning the defined scope. To achieve this, the primary studies were organised in chronological
order and classified depending on the year published and type of publication, as shown in Table 3.
The trend shows that the first empirical study concerning this topic is dated from 2011 from a conference
proceeding. It is not until 2016 that there is an 8% increase in research for this subject area through
conference proceedings as the main outlet for the research publications. By 2017, the number of articles
doubled and increased again in 2018. The differentiating factor was the high proportion of journal
articles over publications from conference proceedings whilst by the first calendar quarter (Q1) of
2019 and the articles published in journals reached over 75% of studies published throughout the
entire 2018.

Further investigating the results from the chronological analysis, the following key years
were highlighted as a potential influencing factor concerning the investigated CPS-related research
developments: 2011, 2016, 2018.

2011. This year was defined by the Hannover Messe Fair, where the term “Industry 4.0” was born
to describe the next industrial revolution, a vision of three German engineers. Whilst the first industrial
revolution dates back to the end of the 18th century introducing water and steam power, the second
industrial revolution at the turn of the 20th century was centred around mass production using
electricity and the third industrial revolution integrated IT and electronics into production systems, the
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4th industrial revolution introduces digital processing and implementation of the IoT into production.
In this context, the concept and the vision have been established for CPSs for production systems.
Industry 4.0, a German origin of the Industry 4.0 term, is used synonymously with cyber–physical
production systems [1,82]. In the post-recession output fall, the vision of Industry 4.0 elevated the
German manufacturers and economy back into the spotlight [83,84].

2016. The creation of the UK’s National Cyber Security Centre (NCSC) as the technical cybersecurity
lead was a feature of this year. Furthermore, the investment and economic infrastructure plans
announced in the National Infrastructure Delivery Plan in the UK [85] and the announcement of the
significant cybersecurity fund as part of the USA’s Cybersecurity National Action Plan also took place
in 2016 [86]. The World Economic Forum (WEF) was also held in Davos. The WEF used the motto:
“Mastering the Fourth Industrial Revolution” [87]. The event was attended by 2500 participants and
40 heads of states from 140 different countries discussing ideas to tackle global challenges sustainably
with the aid of technology and the economic impact of Industry 4.0.

2018. In the USA, there was the notable creation of the Cybersecurity and Infrastructure Security
Agency (CISA) responsible for national critical infrastructure from physical and cyber threats. Australia
released an update for its cybersecurity sector competitiveness plan outlining Australia’s significant
economic opportunities to become a “global cybersecurity powerhouse” [88]. Despite Industry 4.0
being a global phenomenon, the acceleration of efforts by countries in the race of Industry 4.0 is local
to lead the change and be the face of the new digital transformation. This era is characterized by
high-capacity and low-latency 5G networks that will catapult digitalisation, which is predicted to create
significant opportunities in many economic sectors. Furthermore, in terms of cybersecurity, the NCSC
reported on the growing cybercrime threat, recording 34 significant cyberattacks that typically required
cross-government responses over two years [42]. The government has explicitly acknowledged the
need to improve the resilience of the UK’s critical national infrastructure [89]. The consequence of
the transformation not having peaked yet results in a continued increase in investment, grants and
financial incentives; therefore, research efforts continue [90,91].

Relating the primary studies’ trend with the key events, we identify a link between the technological
and economic landscape and cyber-resilience-centric research that addresses CPSs in smart cities.
From the primary studies, it emerges that the trend in the increase of papers has been influenced by a
strategic focus on cybersecurity; improving the cybersecurity defence landscape, including the creation
of NCSC and CISA; significant investment in improvements and strengthening of the national critical
infrastructures. Coupled with efforts and initiatives exclusively focused on digital transformations to
gain economic advantage could explain the surge in research studies published from 2016 onwards.

3.3.2. Cyber Resilience Analysis

To address the question of how existing frameworks and systems that address CPSs in smart cities
support cyber resilience, we consider the scope of resilience within the cybersecurity discipline and
the evidence reported in the primary studies. To achieve this, the primary studies were organised in
order of the reported evidence of how the cyberattacks across the physical and digital domains were
addressed and how the external or insider threats were approached.

Although cyber resilience is widely acknowledged by governments including the UK’s National
Cyber Security Strategy 2016–2021, which promotes the cyberspace resilience by shaping technical
standards that govern emerging technologies, promoting best practices and security-by-design [5],
the Joint Committee on National Security and Strategy in their report acknowledged that the UK
Government must do more to improve the cyber resilience of the critical national infrastructure
(CNI) [89]. Cyber resilience has been acknowledged as a challenge in the IoT; President Obama
issued an Executive Order (EO) 13636 to strengthen the critical infrastructure cybersecurity resilience.
Likewise, improving cyber resilience is at the forefront of the Australian Government [88].

Despite many efforts to define the term “resilience” and although CPS resilience is accepted as an
important aspect by the scientific community, governments and industry, it is a multi-dimensional
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and multi-disciplinary facet that has no clear and uniform definition or performance metrics [92,93].
The term resilience is described by the NIST as “[t]he ability to quickly adapt and recover from any
known or unknown changes to the environment through a holistic implementation of risk management,
contingency, and continuity planning” [94]. Furthermore, to evaluate CPS resilience, several areas of
CPS resilience were studied including policy [95], correlation of resilience on probability and impact of
performance under adverse conditions [96] and risk and resilience correlation [93].

The nature of CPSs is multi-dimensional, converging physical and cyber domains in a highly
complex ecosystem integrating systems, software, people and services. In our approach to establishing
how CPSs in smart cities support cyber resilience, we were able to investigate the primary studies
according to specific layers within the TCP/IP model—a standard model used in computer networks,
based on modern DFIR general-purpose frameworks—based on adversary type and by the smart
sector covered by each study.

Layers were identified with reference to the TCP/IP model described in RFC 1122 [97]. The TCP/IP
model consists of four layers which, from the lowest to the highest, are the link layer, the internet layer
(network), the transport layer, and the application layer. The primary studies can be categorised into
three layers: physical, communication (aligns to the Internet and transport layers of the TCP/IP model)
and application. A similar categorization approach was taken by authors [92] to define CPS resilience.
For example, the physical layer includes physical faults, component failure and the delivery of the
attacks through access within the security perimeter including attacks on CPS controllers, sensors and
actuators. The communication category includes communication-environment-based disruptions and
attacks like denial of service (DoS), man-in-the-middle (MiM), the user to root type buffer overflow or
remote to user ftp write. The application category included false data injection (FDI), malware and
other services and cloud storage and web application-based attacks. Some incidents can fit into more
than one category [98].

DFIR Support was investigated concerning the phases that form the basic foundation of an IR
plan accordingly to general-purpose DFIR frameworks and standards such as the Digital Forensic
Research Workshop (DFRWS), Abstract Digital Forensic Model (ADFM), NIST800-61 and ISO/IEC27050,
from preparation to post-incident activities to identify how the primary studies address this process.

Adversary Type was identified within each layer, where the threat can be caused by external
or internal factors. We consider an internal threat to be a threat by an adversary initiated inside
the security perimeter. Such an entity is authorised to access the systems or resources within the
security perimeter but acts in a way that is not authorised. Examples include malicious or disgruntled
employees or contractors who have direct access and sufficient knowledge of the system or the resource.
In contrast, an external threat is initiated by an adversary from outside the security perimeter. Such an
entity is not authorised to access or use the systems or resources and gains access through unauthorised
or illegitimate attack vectors. We investigate how the primary studies address this aspect; a similar
emphasis on this approach was followed by reference [92].

Smart Sectors will leverage CPS performance and resilience differently. CPSs operate across
different smart sectors, therefore we identify the smart sectors as reported in the primary studies.

Several studies specifically focus on the applicability of resilience in terms of the CPS’s ability
to withstand disruptions, recover from and adapt to known and unknown threats, as shown in
Table 5. For example, in their approach, reference [40] argued that optimisation between smartness
and cyber resilience in a CPS is required for a balance between functionality and cybersecurity without
compromising the systems’ resilience. In this study, the percolation theory was used as the basis of
evaluating the stress caused by disruptions. The authors in reference [99] argued that the absence of
common security standards and flexible methods to assess IoT security requires dedicated testbeds
to systematically evaluate the devices’ resilience under various conditions. The study developed a
security testbed framework for the IoT. The testbed consists of standard security testing predominantly
based on well-established vulnerability scans and penetration testing methodologies including port
scanning, process enumeration, fuzzing and fingerprinting. The advanced testing capabilities of the
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testbed are based on techniques and tools including machine learning (ML), traffic-based IoT device
type identification, automatic anomaly detection and environment simulations. The number of test
scenarios demonstrated the effectiveness of the testbed in detecting the IoT devices’ resilience against
attacks including denial of service (DoS). Another study [100] focused on CPS resilience mechanisms
that can be applied during runtime to sustain resilience utilising self-healing structural adaptation.
In the following study [101], the authors argued the importance of an interdisciplinary integrated
approach between the cyber and physical layers. They asserted that cyber resilience-by-design must
address two scopes to achieve overall resilience, the security controls, communication scope and
the power engineers’ scope to reinforce the weak points during the design. The study proposed an
integrated cyber–physical sustainability metric framework to assess CPS cyber resilience.

Table 5. Primary studies focusing on aspects of cyber resilience(-by-design).

Year Primary Study Smart Sector

2011 [102] Infrastructure
2012
2013
2014 [52] Energy
2015 [103] Mobility—Automotive
2016
2017 [104] Infrastructure
2018 [101,105] Energy, Mobility—Aviation

Q1 2019 [40,99,100] Security, Mobility—Aviation

Further analysis investigating possible correlations with the emerging key themes discussed in
this paper shows no clear geographical correlation. The studies, categorised in Table 5, except for [101],
acknowledged grant funding. Time correlation was observed with a continued trend in the increase of
primary studies focusing on cyber resilience in 2018 and Q1 2019. This trend could indicate a response
to the emergence of new and diverse types of security-related incidents that have the potential to be
damaging and disruptive.

The author in reference [102] argued that the key difference between control and information
technology (IT) systems is the control systems’ interaction with the physical world and concludes
that to withstand cyberattacks, systems should be resilient by design. The author asserts that the
risk to control systems is higher due to the exposure and availability of vulnerabilities combined
with the increasing motivations and capabilities of the attackers. The paper focuses on sensor attacks
and addresses ways of prioritising sensors. Attack types were studied using the Tennessee-Eastman
process control system (TE_PCS) model [106]. An automatic response mechanism was introduced
based on various system states taking into consideration a false alarm response. The author’s main
conclusion was the strength of the TE-PCS’s design resilience. Although the proposed principles and
techniques could be applied to other physical processes and the false positive rate at 1000 simulation
cycles was 0%, the automated response may not be appropriate for all control systems. The author
cautions of a likely lack of resilience-by-design in large scale control systems which could remain
vulnerable to several attack vectors. Further, the author in reference [104] defined a trustworthy service
as one which secures against cyberattacks and operates normally despite faults or attacks. The authors
proposed an IoT framework to integrate smart water systems (SWSs) with the IoT using a multilayer
architecture trustworthy service and proposed that security issues should be addressed systematically
by developers during the design and development of each IoT layer. Anomaly behaviour analysis
(ABA) intrusion detection system (IDS) methodology was applied to protect the secure gateway from
attacks utilising the Smart Water System Testbed. The secure gateway is part of the communication
layer. The general detection rate of the ABA-IDS approach was over 90% for 600 packets/second
intensity, with less than 3.5% recorded false alarm rate, with the fastest detection of 1 s and the slowest
detection of a 4 s interval.
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Other studies [52,101] focused on CNI such as power grids whilst urban systems were investigated
by reference [40]. In reference [52], the resilience of five classical routing protocols applied in
distributed large-scale networks was studied through simulation. Resilient techniques using route
diversification were introduced to enhance the protocols’ resilience against cyberattacks. The resilience
was evaluated based on metrics consisting of five performance parameters which showed promising
results. The communication layer was also the focus of [101] study, which proposed a new metric
system framework to assess the reliability of large-scale distributed power systems. The author asserts
the importance of combining the communication layer’s cyber vulnerabilities with the physical layers’
resilience for a meaningful assessment of the system sustainability. The following study [40] developed
a network efficiency and resilience evaluation method for intelligent transportation systems (ITSs)
in response to random and targeted attacks in urban areas. The author maintains that although the
use of sensors is beneficial for automation, the infrastructure through their use becomes complex
and liable to unknown and little understood vulnerabilities. The article concludes that the system’s
relative resilience was not sensitive to the levels of disruption. Integrity attacks were investigated by
reference [105] proposing a global attack detection system for resilience against attacks on the railway
traction systems. Resilience mechanisms that can be applied during runtime and are adaptable to
the changing environment were studied by reference [99]. It is argued by reference [40] that the rate
of integration of smartness in many systems proliferates at a greater rate than the ability to develop
resilience whilst reference [100] identified resilience in the IoT as a significant challenge with research
often focused only on one aspect or on a single attribute of resilience. Our results, as shown in Table 6,
support this notion, for example, 46% of the primary studies considered the communication layer,
whilst only 5% considered all three layers. We found that the communication layer had the most
significant incremental trend in 2018, as presented in Figure 5, generally with an utmost focus across
the smart industry and smart mobility sectors, Figure 6.

Table 6. Primary studies categorisation by the reference model layers.

Threat Layers Primary Studies

Physical, Communication and Application [48,105,107]
Physical and Communication [2,38,39,51,63,65,101,103,104,108–114]

Physical [36,37,67,84,85]
Communication [33,37,40,52,99,100,115–131]

Application [36,49,132–135]
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When investigating the adversary type, the results show that 19% of the primary studies considered
internal and external threats in their research, as presented in Table 7. In 45% of the studies, the threat
type was not sufficiently clarified. However, we observed a continued increase in studies focused on
a combination of external and internal threats, as presented in Figure 7, generally with the greatest
aggregation of studies in the smart infrastructure and smart mobility sectors (Figure 8).
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Some studies [52] addressed insider threats on smart devices such as smart meters, which can be
compromised by an active attacker to disrupt the network communication. The study in addition to
considering the compromise of the physical nodes addresses the ability of the protocol to absorb the
degradation following an insider attack. In [111], the focus of the study are large-scale distributed
CPSs proposing a quantitative cyber-physical security assessment methodology, Ref. [136] provides
and overview and discusses related risk assessment methods. Another study [99] investigated external
threats and articulated that the challenges of the IoT devices provide means for hackers to access such
devices. Therefore, the proposed testbed aimed to facilitate the analysis of various types of IoT devices
either by using the conventional penetration testing methodology or advanced security testing utilising
a machine learning approach. Internal and external faults including malicious activity were addressed
by other studies [14,100,129]. In reference [14], the focus of the paper is on a multiple characteristic
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association (MCA) approach to address cyberattacks and faults in electrical cyber–physical systems
and reference [129] utilised an attribute-based time-sensitive and location-centric access control model
consisting of an administrative and an operational component with applicability to remote and
local operations.
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3.3.3. DFIR Analysis

Digital forensics forms a substantial part of IR in the cybersecurity sector; it is a recognised
scientific methodology with a key focus on the process and verifiable conclusions. Although several
published digital investigation models outline the steps for investigation by the forensic teams, there
is no single uniform IR model. The simplest lifecycle for an investigation model consists of three
stages, “acquisition”, “analysis” and “reporting”. However, with the increased penetration of digital
technologies into modern lives, there were several revisions to the investigation stages. The U.S.
Department of Justice (DoJ) proposed four-stage process consisting of “acquisition”, “identification”,
“evaluation” and “admission as evidence” [138]; the DFRWS model consists of six phases namely
“identification”, “preservation”, “collection”, “examination”, “analysis” and “presentation” [139].
The ADFM has expanded the process by three more stages: “preparation”, “approach strategy” and
“returning evidence” [140]. Due to the evolving sources of digital evidence, the digital and physical
environments are closely converged where physical artefacts contain the digital evidence, which is
reflected in the Integrated Digital Investigation Process (IDIP) consisting of five stages defined as
“readiness”, “deployment”, “physical crime scene”, “digital crime scene” and “review” [141]. Similar
to the DFRWS model, the ISO/IEC 27050-3:2017, a general-purpose framework for electronically stored
information (ESI) was developed for digital investigations containing seven stages: “identification”,
“preservation”, “collection”, “processing”, “analysis”, “review” and “production”. The National
Institute for Standards and Technology published an IR procedure NIST 800-61 in response to the
frequency of emerging incidents consisting of four stages: “preparation”, “detection and analysis”,
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“containment, eradication and recovery” and finally “post-incident activity”. In CPSs, IR is a complex,
multifaceted problem crossing the physical and cybersecurity boundaries.

The primary studies were classified by their key themes into groups according to the NIST 800-61
IR stages [98]. The studies were determined to have focused predominantly on the detection and
analysis stage, as shown in Table 8.

Table 8. DFIR key stages categorisation of primary studies.

Key Stage Primary Studies

Preparation [13,48,100,111]

Detection and Analysis [2,33,36–40,51,63–65,67,99–105,107–111,113,115–120,122–126,
128,129,131–133,137,142]

Containment, Eradication and Recovery [40,49,52,100,103,104,107,114,121,127,129,130,133,135]
Post-Incident Activities none

Preparation is an important part of the IR. Apart from compiling assets, creating a communication
plan, setting metrics or creating an incident plan for each type of incident, security event simulation
is also a valuable part of this stage. Simulation or modelling helps identify gaps, determine and
optimise which security events and at what trigger should be investigated; therefore, they provide a
controlled opportunity to strengthen weaker areas and improve cyber resilience, which we discussed
in the previous section. For example, the author in reference [13] proposed a novel framework using
Fuzzy Analytic Hierarchy Process to evaluate and rank the cybersecurity challenges in smart cities.
Amongst the 9 identified smart sectors (factors) and 32 sub-factors, smart security was rated highest
for being influenced by cybersecurity challenges in smart cities. The results of the study placed
the sub-factors identified as part of the smart security in the highest priority areas influenced by
cybersecurity challenges which were identified as the “surveillance and biometrics” followed by
“simulation and modeling” and “intelligent threat detection”. Our results show that smart security
sector studies do not have a specific focus on cyber resilience aspects, see Table 5. and research
focus relates predominantly to the communication layer threats, see Figure 6. A security-by-design
(SbD) approach was proposed by reference [48] articulated as a framework to develop a highly secure
and trustworthy smart car service and protect them from cyberattacks. The authors argue ABA is
a more suitable approach because of the sensors’ low computational power and therefore a lack of
encryption techniques applicability. The sensor profiling was accomplished by using the discrete
wavelet transform (DWT) coefficients and the Euclidean distance was utilised for sensor classification.
The presented results demonstrated an up to 95% accuracy for unknown and 98% for known attacks
with a low false-positive rate.

Incident Detection and Analysis (IDA) is a key phase in IR because the response cannot be
manifested without accurate detection. Although incident detection is considered a reactive approach,
there are detectable events that precede an incident. The results from the primary studies show that the
highest distribution in the detection and analysis stage of the IR model is in the smart infrastructure
sector as shown in Figure 9, and overall 67% of the sampled primary studies focus exclusively on
cyberattacks detection, as shown in Figure 10. The author in reference [107] presents a framework
for smart homes and smart buildings addressing multiple layers and threat types. The study utilised
ABA-IDS to continuously monitor, detect and classify cyberattacks against sensors with high accuracy.
The study aimed to extend the methodology to other IoT security frameworks, such as smart water
systems [104] and smart grid systems [108]. Both studies rely on ABA-IDS utilising JRip classification
algorithm achieving up to 99.8% and 97.18% accuracy on their respective datasets. The ABA-IDS
detection and the classification results for reference [107] were similar and in some instances exceeded
the results of other state-of-the-art protection systems for smart grids. Different approaches were
proposed to enhance the detection of cyberattacks in industrial control systems. For example, a secure
water treatment plant often consists of distributed cyber infrastructures that control physical processes.
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The author in reference [118] proposed a time automata (TA) approach, whilst another study [64]
focused on a hybrid of machine learning combined with a specification-based detection. An orthogonal
defence mechanism consisting of several intelligent checkers was used by the author in reference [51].
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Containment, Eradication and Recovery (CER) is the part of the process where models and
standards differ. Whilst NIST views the CER as a single step, SANS (SysAdmin, Audit, Network,
and Security), DFRWS and ISO/IEC 27050-3:2017 view them as separate segments. Furthermore,
the terminology used by different frameworks and standards to identify similar steps can vary.
The terminology used by NIST 800-61 refers to containment as an aim to stop the attack or threat,
eradication removes it stopping cross-systems proliferation and recovery aims to get the system
operation returning to business as usual.

Our figures show that only 13% of the primary studies investigate the CER segment of the IR
procedure, as shown in Figure 10. For example, the focus of the following study [40] is on increasing
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the resilience rather than lowering risks to demonstrate system recovery from disruption. The author
argues that smart development over resilience may benefit some smart systems to achieve recovery
through automation by redistributing the traffic by using alternative routes. This is part of the
investigated model’s algorithm. However, the limitation of the study is its consideration of large and
very large urban areas; therefore, the model’s applicability was not tested on smaller urban areas.
Furthermore, the modelled scenario captured only a limited set of ITS disruptions, therefore, the effect
of disruptions from different cyberattacks compared to those which were tested, and their method of
recovery may vary. The author in reference [52] presents an interesting notion of extending the concept
of resilience in networking to survivability, fault tolerance and security, however, acknowledges
difficulties in defining quantitative metrics. Focusing on the internal threat, the reliance is on the
protocol’s capacity to absorb the attack under some failure behaviour and the resilient technique
provides dynamicity to improve the self-healing capabilities of smart meters. Another study with a
focus on resilience mechanisms [100] proposes achieving self-healing through a structural adaptation
approach by substituting failed components as a method of recovery for compromised CPSs. The author
asserts that this is achievable provided the compromised component is redundant and can be isolated.
The author in reference [107] proposed an IoT security framework and based on the detection of
abnormal behaviour, recovery actions can be taken. Other studies acknowledge the elapsed period
before IR starts after the attack occurs. For example, the study in reference [135] presents a hybrid
solution of distributed and centralised continuously evolving trust-based intrusion detection model
aggregating multiple trust data sources to enable an effective in-flight network defence. The study
claims, that following an abnormal patterns emergence, trust-value triggered IR with active defence
is possible. Comparable to the results in Section 2, the results from the primary studies show that
research often focused on one aspect of DFIR, see Figure 10.

Post-Incident Activity (PIA) is one of the most important phases of the IR process, but it is most
often omitted [143]. This phase provides an opportunity to contribute to continuous learning, an
evidence-based body-of-knowledge and to form a robust CTI. The IR can be accelerated by having
an effective and specific CTI context around an initial indicator [144]. Therefore, a review of what
occurred and defining actionable advice that can be used to inform decisions in the IR’s preparation
phase are important to achieve a closure of the IR process. The PIA has not been addressed by the
primary studies.

3.3.4. Data Source Analysis

Through this research, a lack of available real datasets from CPS systems was identified.
Although experimentation was carried out, predominantly this was limited to software-based
simulations (46%) and simulation infrastructure (42%) by the primary studies, as shown in Figure 11.
The infrastructure-based simulations typically relied on testbeds to replicate real-life CPS device
settings such as a secure water treatment (SWaT) or water treatment plant (WTreat) testbeds [109,119].
However, in 12% of the studies published between 2018 and early 2019, public scientific datasets
like BATADAL [110] or CAIDA [125] were used either solely or in conjunction with software-based
simulation. Carrying out experimentation in an isolated environment limits the testing in a number
of ways. For example, the unavailability of a current real dataset limits the reflection of the current
threat types and limits the full contextualisation of the actual CPS devices’ constraining factors such as
resources or connectivity disruptions.

3.3.5. Analysis of Primary Studies Cross-Sector Proposals or Applications to Improve Digital Forensics

The purpose of analysing the cross-sector proposals or applications in smart cities is to explore
transferable solutions that emerge from individual smart sectors to investigate possible trends and
attempts to improve digital forensic investigations. To achieve this, the primary studies were organised
accordingly to the smart sector’s distribution according to the scope of our research, as shown
in Figure 12.



Smart Cities 2020, 3 914

Smart Cities 2020, 3 FOR PEER REVIEW  20 

software-based simulation. Carrying out experimentation in an isolated environment limits the 
testing in a number of ways. For example, the unavailability of a current real dataset limits the 
reflection of the current threat types and limits the full contextualisation of the actual CPS devices’ 
constraining factors such as resources or connectivity disruptions. 

 
Figure 11. Data source referenced by the primary studies. 

3.3.5. Analysis of Primary Studies Cross-Sector Proposals or Applications to Improve Digital 
Forensics 

The purpose of analysing the cross-sector proposals or applications in smart cities is to explore 
transferable solutions that emerge from individual smart sectors to investigate possible trends and 
attempts to improve digital forensic investigations. To achieve this, the primary studies were 
organised accordingly to the smart sector’s distribution according to the scope of our research, as 
shown in Figure 12. 

 
Figure 12. Smart sectors addressed by the primary studies. 

The scientific community focused the research on smart infrastructure, followed by smart 
mobility and smart security sectors whilst smart healthcare and smart citizen were addressed only 
by a small number of studies, see Figure 12. Some of the studies address more than one themes, which 
is taken into consideration. This trend could be explained by the influences of key events such as 
Industry 4.0 and the maturity of the research of the design principles and enabling technologies in 
these areas [1] whereas the lack of research within the smart healthcare and smart citizen sector could 
be impacted by regulatory restrictions, ethical challenges, lack of relevant usable datasets and the 
current health care models or pathways [145]. 

The results show that some studies address more than one smart sector [104,120,124,126,133,145] 
or aim to diversify their future research [39,51,63–65,100,102,111,131,134]. For example, reference 
[145] explores smart support for independent living of the elderly within the community to maximise 
their independence whilst maintaining the ability to deal with their complex medical needs across 

Figure 11. Data source referenced by the primary studies.

Smart Cities 2020, 3 FOR PEER REVIEW  20 

software-based simulation. Carrying out experimentation in an isolated environment limits the 
testing in a number of ways. For example, the unavailability of a current real dataset limits the 
reflection of the current threat types and limits the full contextualisation of the actual CPS devices’ 
constraining factors such as resources or connectivity disruptions. 

 
Figure 11. Data source referenced by the primary studies. 

3.3.5. Analysis of Primary Studies Cross-Sector Proposals or Applications to Improve Digital 
Forensics 

The purpose of analysing the cross-sector proposals or applications in smart cities is to explore 
transferable solutions that emerge from individual smart sectors to investigate possible trends and 
attempts to improve digital forensic investigations. To achieve this, the primary studies were 
organised accordingly to the smart sector’s distribution according to the scope of our research, as 
shown in Figure 12. 

 
Figure 12. Smart sectors addressed by the primary studies. 

The scientific community focused the research on smart infrastructure, followed by smart 
mobility and smart security sectors whilst smart healthcare and smart citizen were addressed only 
by a small number of studies, see Figure 12. Some of the studies address more than one themes, which 
is taken into consideration. This trend could be explained by the influences of key events such as 
Industry 4.0 and the maturity of the research of the design principles and enabling technologies in 
these areas [1] whereas the lack of research within the smart healthcare and smart citizen sector could 
be impacted by regulatory restrictions, ethical challenges, lack of relevant usable datasets and the 
current health care models or pathways [145]. 

The results show that some studies address more than one smart sector [104,120,124,126,133,145] 
or aim to diversify their future research [39,51,63–65,100,102,111,131,134]. For example, reference 
[145] explores smart support for independent living of the elderly within the community to maximise 
their independence whilst maintaining the ability to deal with their complex medical needs across 

Figure 12. Smart sectors addressed by the primary studies.

The scientific community focused the research on smart infrastructure, followed by smart mobility
and smart security sectors whilst smart healthcare and smart citizen were addressed only by a small
number of studies, see Figure 12. Some of the studies address more than one themes, which is taken
into consideration. This trend could be explained by the influences of key events such as Industry 4.0
and the maturity of the research of the design principles and enabling technologies in these areas [1]
whereas the lack of research within the smart healthcare and smart citizen sector could be impacted by
regulatory restrictions, ethical challenges, lack of relevant usable datasets and the current health care
models or pathways [145].

The results show that some studies address more than one smart sector [104,120,124,126,133,145]
or aim to diversify their future research [39,51,63–65,100,102,111,131,134]. For example, reference [145]
explores smart support for independent living of the elderly within the community to maximise
their independence whilst maintaining the ability to deal with their complex medical needs across
multiple smart sectors including healthcare, homes and infrastructure. Furthermore, several studies
consider developing their research to generalise applicability to other smart sectors and acknowledge
the need for framework adaptability as a result of complexity and constant change of interconnected
devices [133]. For example, the principles and techniques applied by reference [102] could be applied
to other physical processes than the one covered by the study, whilst reference [131] suggest their
methods can be applied in a number of CPS domains such as power networks, transportation, oil and
natural gas systems.

Although the cyber threat landscape is changing from hobby-hacking to organised cyber-crime,
the cyberattacks are becoming more sophisticated, organised and targeted; there is little scientific
evidence of attempts for supporting modern digital forensics, cross-organisational information security
sharing or coordination [28]. Security practices remain in silos lacking collaborative cyber defences to
deal with the increased sophistication and coordination of cyberattacks including advanced persistent
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threats [4,27]. This assertion is supported by our analysis of primary studies thus far. The transition
from more traditional to IoT enabled CPS creates highly complex ecosystems, however, the focus of
research is often limited to the boundary of the individual organisation or smart sector.

3.3.6. Typology Analysis

The purpose of the typology analysis is to separate the non-empirical and the empirical studies
and to examine their chronological distribution. This analysis helps to better understand if the CPS
frameworks and systems supporting cyber resilience or modern DFIR are predominantly academic
ideas built on theory or do they emerge based on identified needs or as a result of relevant events.

Cyberattacks are a natural progression of physical attacks; they are more economical, reduce the
risk for the attacker and have fewer geographical constraints. Studies from the sample recognised the
cybersecurity risk factors that the integration of connected devices, sensors and automation helped
by artificial intelligence have on smart ecosystems. In 2011, the focus of an [102] empirical study
was attacks on sensor networks and their impact on the process control system. The research study
referred to the example of the targeted ICS-based attacks such as the Maroochy Shire Council sewage
attacks in Queensland, Australia in 2000; Ohio’s 2003 Davis-Besse Slammer worm private network
attack and the 2007 Iranian nuclear plant Stuxnet worm attack. The control systems’ vulnerability such
as Stuxnet and urban migration are also referred to by reference [107]. In 2007, the disruption and
economic consequences of a large-scale cyberattack on the USA power grid were studied [108]. Several
non-empirical studies investigated the theoretical concepts or potential challenges to be addressed for
different aspects of the cyber defences against targeted attacks related to the increased interconnectivity
and heterogeneity of the physical and cyber convergence. In 2014, the following study [21] investigated
a federated building information system as a method of preventing hostile reconnaissance, managing
intellectual property and enabling operational security. The study refers to a 2013 incident in Hackney,
London in which a piling rig penetrated the roof of a Network Rail tunnel.

Therefore, the proliferation of digital technologies and the integration of IoT with physical systems
expands the scope of forensic science creating a need for new specialised forensic techniques to reduce
the backlog, workload and the cost of the forensic investigation process [146]. Digital forensics (DF)
has developed as a branch of forensic science alongside the conventional forensic disciplines covering
diverse digital technologies that can be exploited by the criminals.

The results presented in Figure 13 demonstrate the chronological trend between surveys,
non-empirical and empirical studies. The focus of this SLR is on primary empirical studies. The total
of the studies shows that non-empirical studies including the survey-type studies amounted to 64%
compared with 36% of the empirical studies of the reviewed samples. Although the number of survey
studies consistently increased, a sharp increase of the empirical research is observed during 2017
and a similar surge of the non-empirical studies is observed in 2018. Depending on this evidence, it
is possible to argue that this dynamic could be influenced by the key events discussed in Section 1.
Furthermore, from the empirical studies, it emerges that the focus of the research was informed by the
threats of specific events, driven by the need for defence-in-depth mechanisms and influenced by the
implementation of technological innovation and application within smart sectors.

3.3.7. Geographic Analysis

The purpose of the geographic analysis is to support our analysis in previous sections and
gain a better understanding of where the research is concentrated, which geographical sectors have
interest and opportunities for research addressing CPS-related cyber resilience and DFIR in smart
cities. To achieve this, from the primary studies’ authorship list, each unique country was recorded
and assigned to the continent, as demonstrated in Figure 14. The colour hue represents the frequency
of research carried out within the geographic region. The geographic analysis shows that the USA with
23% has the highest number of contributions of reviewed studies, followed by Singapore with 10%, the
UK with 8% and Australia with 7% of contributions in the reviewed studies. In terms of continents,



Smart Cities 2020, 3 916

Figure 15 shows that Asia is the continent with the highest concentration of the relevant CPS research
at 37%, closely followed by Europe at 30% and North America at 26%. Central and South Americas,
Australia and Africa are the continents with the lowest number of published studies within the scope
of our research.
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4. Discussion

Our analysis revealed that in the last decade, CPSs have emerged as a new paradigm and as
a result of the increased growth, complexity and heterogeneity of these infrastructures [14,82], the
volume and the variety of vulnerabilities and attacks have evolved highlighting the need for defence
mechanisms [147], need for cyber resilience and capability to support DFIR [26,29,30,33]. In this paper,
the analysis of the primary studies supports our assertion that CPS-related cyber resilience and DFIR are
active research domains. As has been noted in our results analysis, several empirical research studies
have focused on CPS-related cyber resilience and DFIR. For example, Table 5 summarises primary
studies which focused on aspects of cyber resilience across a number of different smart sectors, whilst a
summary of primary studies with focus on DFIR’s key stages in smart cities is shown in Table 8. In fact,
several empirical research papers studied presented ways to solve real problems [37,122,135,148].
However, despite the importance of cyber resilience and support for DFIR in smart cities, these aspects
have not been extensively considered by researchers in the context of CPSs. As we already noted,
Figure 7 demonstrates a different level of scientific interest in adversary type research whilst Figure 8
further analyses the phenomena and presents the gaps across specific smart sectors. Furthermore,
summarised in Figures 9 and 10, the analysis revealed differences in scientific interest in the DFIR stages
with further variations across smart sectors. This poses an important question as to the reason for those
differences. However, it is not the aim of this paper to provide the answer but to identify the gaps and
present some open challenges and findings that can be used as future research directions [107,149].

The initial keyword searches highlighted that although there is an active research interest in the
security of CPSs, frameworks addressing CPS cyber resilience, support for DFIR and their applications
for developing cross-smart sector opportunities for collaborative cyber-defence practices are still
emerging. Plans for cross-sector applications and diversifying the research to other areas of smart city
sectors is often part of the future research direction [99,114,134].

The search criteria identified several non-empirical studies which provide concepts or theoretical
bases to problem solutions and survey type studies that focused on consolidating the body of research
related to our research scope aspects [21,55–59,61,150]. Whilst survey type studies are important,
enable knowledge consolidation and identify areas of future research directions, several of the selected
primary studies were empirical and provided practical solutions to a range of challenges related to
cyber resilience and support for DFIR using innovative techniques.

The validation of the proposed solutions of the primary studies within the scope of our research
inevitably always depends on carrying out cyberattacks or otherwise adversely impacting the
infrastructure. Therefore, any validation must be carried out in a strictly controlled environment to
avoid accidental disruption to CNI or compromise to data privacy. Validation can be economically
challenging and requires funding to facilitate validations using a realistic simulation environment
often involving physical infrastructure [47,51,64,109,119,131,137,142]. Almost three-quarters of the
primary studies reported funding supported by research grants, defence or governmental sectors.
Notable exceptions included only two primary studies which did not report funding and validated
their proposal using infrastructure-based simulation utilising a smart home [129] and smart water
system [116] infrastructures. In their current states, mainstream systems may not be equipped with
infrastructure to facilitate such testing and would require significant change. Therefore, funding could
be a contributing factor to empirical research in this field of study.

In addition to challenges accessing infrastructure-based simulators or testing in a production
environment, there is a lack of publicly accessible datasets (Figure 11). The following study [18] stressed
the need for access to public data to enable the successful adoption of technological innovations.
To validate Industry-4.0-based proposals, the following study [2] relied on a combination of datasets.
The limitation of the dataset used by reference [125] covering malicious IoT devices is the use of
the CAIDA darknet datasets which predominantly contain malicious material. Based on the results,
the research community appears to lean on software-based simulation using established platforms,
predominantly Matlab [39,101,117,118,132], but researchers also utilise UPPAAL [118] and ProModel
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Process [39] simulators. Therefore, software-based simulations are a frequent choice to test experimental
concepts. However, using software-based simulations may not be most suitable in some cases, for
example, in smart mobility scenarios involving driving where reactions could be very different in a
simulated environment knowing that a simulator can be restarted in a click of a button compared to
a non-simulated experiment. This may have profound consequences to the required acceleration of
research of cyber defence of CPSs within smart cities since there is reliance on simulators for sufficient
presentation of threats compared to reliable decision making in a real-world environment.

Concerning RQ1, during the primary studies’ selection process, the researchers observed the
availability of studies related to CPS applications. Within those studies, aspects of security may
have been mentioned but they were not the focus of the study and often cyber defence was omitted
altogether [18]. Moreover, although CPSs proliferate many aspects of modern lives and the demand and
need for resilience in CPSs increases [151], the analysis revealed a distinct lack of available empirical
research focused on the cyber resilience in the smart healthcare and smart citizen sectors (Figure 6).
Possible reasons include the maturity of the Industry 4.0 technology compared with the smart sectors
summarised in Figure 4 [84,85]. Moreover, the scale of media coverage of attacks on CNI like the
cyberattack on the Ukrainian power grid [35] or Stuxnet [34] could also contribute to the prominence
of the research in those sectors. Likewise, smart-healthcare- and smart-citizen-related research has
complex and diverse ethical challenges including privacy and confidentiality concerns [145].

Infrastructure in smart cities consists of a growing number of highly integrated CPSs including
traditional devices or entire cities retrofitted with new technologies to facilitate IoT connectivity [4,7,9].
Concerning RQ2, these devices contribute very little to support a systematic DFIR process in smart
cities. Therefore, there is a need to develop a process-driven DFIR to deal with the evolving cyber threat
landscape, the expanded attack surface and attack vector introduced through IoT connectivity [17,28].
Furthermore, as the sources of evidence evolve, digital evidence is contained within the physical
artefacts [44]. For example, image-based evidence can be gained through closed-circuit television
(CCTV) surveillance or from social media. Behavioural anomaly detection can be used to detect
unauthorised vehicle use through driver profiling [152], detect attacks on smart water systems [104] or
unauthorised access within smart workplaces [24].

Digital evidence, similar to physical evidence, seized at a crime scene or following a security
incident, is relevant during digital forensic investigations [67]. The majority of the primary studies
have researched a subset of an IR process, predominantly focusing on the “detection and analysis”
phase (Figure 10) of an incident utilising different approaches including profile detection, behavioural
anomaly, system monitoring or audit analysis [47,48,65,99,100,103,104,108,120,123,124,127]. Whilst
incidents’ detection is a reactive activity by nature, it is a key enabler for subsequent digital forensic
processes, which cannot occur without detection and identification of an incident. However, leaning
on Locard’s theory, contact between items cause an exchange. Without CPS-specific support for
modern DFIR, a forensic investigation from a complex interconnected cyber–physical environment
may not extract digital evidence appropriately. Therefore, the important artefacts gathered during
the acquisition stage may not be admissible in the court of law because the validity and integrity
of the digital evidence is not appropriately maintained. Best practice guides are published—within
UK jurisdiction, the Association of Chief Police Officers (ACPO) [153] and, in the US, with the Best
Practices for Seizing Electronic Evidence [154]—to support incident practitioners.

In fact, the authors of the following study [37] argue that in some smart sectors such as smart
homes, the application of digital forensics is an emerging field of study and asserts that there is a distinct
lack of formal methodologies addressing the application of digital forensics in incident responses.
Furthermore, recent studies show that the integration of CPSs in smart cities would significantly
benefit from a specific forensic methodology as part of forensic preparedness to deal with security
incidents [37,66]. However, a lack of consensus and formal process models in the digital forensics field
that can be used to determine the reliability of digital evidence in courts is argued by reference [155].
Despite recognition of the importance of SbD by some researchers, our findings show an absence of
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references to a digital forensic process in response to incidents. Finally, the increasing integration of
technology into modern lives and the breadth of digital technologies exploitable by criminals requires
extensive research to develop appropriate frameworks.

Concerning RQ3, the significance of the primary studies investigated is that despite the transition
from traditional to IoT-enabled environments, our research findings show limited evidence of
cross-sector proposals or applications for improving digital forensics. The authors of [28] claim that
there is little evidence of cross-organisational information security sharing, structure and coordination.
Considering this assertion within the context of CPSs, although researchers recognise the lack of
shared practice, efforts are made to expand and improve cyber defence often as part of their future
research direction. However, the various attempts to improve the ability to withstand targeted
attacks [102] remain within a smart sector; for example, discussions are initiated between groups like
the control and security practitioners but very few studies exploit the idea of cross-sector efforts to
improve digital forensics. For example, authors of [64] consider their underlying idea applicable to
multiple smart sectors which indicates recognition of more integrated approaches. The proposal of
authors of [51,133] was to increase the flexibility and application of their system in several different
environments. Generally, the explored research focused on developing and improving cyber defences
within a single smart sector.

In summary, we draw on the results of the extensive SLR process, present and discuss the outcomes
of our findings. Our extensive review showed number of gaps which could provide the basis and
create opportunities for future research.

5. Conclusions

Smart cities are complex networks of connected devices including CPSs which utilise automation
and AI to control several key functions. The initial keyword searches for this study highlighted CPSs as
an emerging technology that creates an enormous range of possible applications across several smart
sectors. It is clear from our SLR that there is an increasing interest in theoretical research and empirical
implementations of CPS cyber resilience and support for modern DFIR within smart cities. The key
influencing factors include the Industry 4.0 concept, government-led support and initiatives such as
the National Cyber Security Strategy in UK [5] or national infrastructure plans [85,88], innovative
ideas [36] and incidents [34,156].

Some smart sectors including smart healthcare and smart citizen were addressed only by a
small number of studies, see Figure 12; it is critical that future research recognises this limitation.
It is also evident that interest is growing in cross-sector proposals and an interdisciplinary approach
to solve real-life problems including cybercrime [39,51,63–65,100–102,111,131,134]. Going forward,
an interdisciplinary approach across smart sectors and aggregated sharing of CTI from multiple
sources could increase situational awareness and provide a detailed, real-time and measurable
body-of-knowledge to deal with the increased sophistication and coordination of cyberattacks.

We outlined and discussed the cyber threats landscape, particularly asserting that cyberattacks
are increasingly more sophisticated, coordinated and targeted including advanced persistent threats
(APTs). For example, the primary studies report on attacks that can originate from both within and
from outside of the organisation. Having identified that there are limitations of the current IR methods
in dealing with APT, we argue that existing efforts are insufficient to address emerging threats and
there is a need for a CTI-driven mitigation approach [31]. Therefore, there is much work to be done to
prepare for a dynamic threat landscape, strengthen the CPS cyber resilience to have the ability to adapt
and operate under adverse conditions and to recover from incidents. For example, future research
could focus on applying CTI to modelling attacks on entities’ critical functions and underlying systems
including its people, processes and technologies. This could help an entity to assess its protection,
detection and response capabilities. Therefore, lessons can be gained from the IR lifecycle to minimise
disruption and reduce the attack surface. The challenges need to be addressed through innovative
solutions to support a modern defence-in-depth strategy.
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Additionally, the increasing integration of CPS into modern lives diversifies the scope of forensic
science and forensic investigations. Thus, alongside the conventional forensic disciplines, digital
forensics has developed as a branch of forensic science covering diverse digital technologies including
CPSs which can be exploited by criminals. The majority of the primary studies reported on the detection
and analysis phase of the IR process. Therefore, more research is required to investigate the other
phases of the IR process. This creates opportunities to reduce the backlog, the workload and the cost of
the digital forensic investigation processes. Implementing an evidence-based body-of-knowledge by
forming a robust CTI could solve real-life problems. Future work on addressing CPS in smart cities to
support modern DFIR should consider integrating CTI into the IR. Such integration could enable faster
threat detection, digital forensic investigation, repelling of attacks minimising disruption and escalated
response time to prevent adversaries from successfully compromising their target.

Further, we identified a lack of available current publicly accessible real CPS-generated datasets
that limit the ability of comparative experiments by other researchers, for example, to test and
validate the accuracy of results robustly. Future works could consider addressing this limitation to
create a pool of scientific resources. Publicly accessible datasets could accelerate the development
of countermeasures against cybersecurity threats strengthening the cyber defence in smart cities to
continue to function effectively under adverse conditions [43].
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