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Abstract: The smart city is an ecosystem that interconnects various devices like sensors, actuators,
mobiles, and vehicles. The intelligent and connected transportation system (ICTS) is an essential part
of this ecosystem that provides new real-time applications. The emerging applications are based on
Internet-of-Things (IoT) technologies, which bring out new challenges, such as heterogeneity and
scalability, and they require innovative communication solutions. The existing routing protocols
cannot achieve these requirements due to the surrounding knowledge supported by individual nodes
and their neighbors, displaying partial visibility of the network. However, the issue grew ever more
arduous to conceive routing protocols to satisfy the ever-changing network requirements due to
its dynamic topology and its heterogeneity. Software-Defined Networking (SDN) offers the latest
view of the entire network and the control of the network based on the application’s specifications.
Nonetheless, one of the main problems that arise when using SDN is minimizing the transmission
delay between ubiquitous nodes. In order to meet this constraint, a well-attended and realistic
alternative is to adopt the Machine Learning (ML) algorithms as prediction solutions. In this paper,
we propose a new routing protocol based on SDN and Naive Bayes solution to improve the delay.
Simulation results show that our routing scheme outperforms the comparative ones in terms of
end-to-end delay and packet delivery ratio.
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1. Introduction

IoT and 5G technologies promise a massively improved scalable and reliable connectivity.
These technologies bring various innovative applications that offer high-quality services and efficient
management of infrastructure in urban areas. The development of these technologies turns expectations
of smart cities into reality. Their vision is to provide a better life quality for citizens and to enhance city
management to react quickly to events and emergencies [1].

A smart city uses different devices, such as sensors, actuators, vehicles, and cameras for its
various operations. The devices’ deployment and operating compose a diversity of access networks
that process automating data collection, provide necessary information used to manage infrastructures
and resources efficiently, and meet applications’ advanced requirements. This collection is analyzed
and exploited in various systems, such as transportation, energy, education, and health systems [2].
With a common goal of enabling these systems to be intelligent, many applications have stringent
real-time requirements in exchanging information between apparatus and everything around them.

The smart transportation system is mainly based on delay-sensitive applications. However,
the high mobility and dynamic topology of the vehicle networks diminish data dissemination and
bring more challenges in implementing communication protocols that guarantee efficient and reliable
transmission [3], and resource management systems [4]. Moreover, the vehicle networks’ heterogeneity
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and scalability increase the complexity in designing new communication solutions and managing
multifaceted technologies. This elevates the demand of create new communication initiatives, more
specifically in developing routing protocols. Despite the significant number of existing routing
protocols in the literature, we note that current routing protocols are relatively limited and cannot
resolve a smart environment’s new issues. Furthermore, the existing routing protocols are inherently
distributed, since each node communicates with others by broadcasting information in its vicinity.
They reflect partial visibility of the network, and they cannot know the real network conditions.
There are still needs for novel approaches taken by the researchers in conceiving the original solving
and considering significant heterogeneity challenges, scalability and new application requirements.

A programmable and dynamic solution named Software-Defined Networking (SDN) was
proposed to reverse this situation, where new protocols can be implemented by software without
needing any hardware modification on networks. The SDN separates the control and data planes to
guarantee flexibility. The data plane includes the devices that forward the information. The control
plane comprises a controller that generates and maintains a database containing network-wide
knowledge such as network topology. The main aim of SDN is to improve rapid packet delivery,
low latency, and overhead communication, best bandwidth utilization and selection of best routes, as
well as to facilitate network programming.

Recent trends in smart cities reveal that SDN has been used in wired networks [5,6], making
it unusable in the general case of an intelligent environment where the devices are ubiquitous and
distributed. Therefore, SDN must be adapted to support the wireless nature of smart environment
systems [7,8]. The intelligent environment complexity and SDN centralized management make
the computation of routing solutions under various requirements of real-time applications even
more difficult. However, Machine Learning (ML) algorithms afford a new possibility in solving
such problems, which keeps computation more reasonable and manageable [9]. In this perspective,
we explore using a ML algorithm and SDN technologies in proposing a new routing protocol to
reduce end to end delay. We use the useful and practical machine learning technique to discover and
extract knowledge for predicting the routing paths calculation. The main contribution of this paper is
as follows:

• Develop a framework that uses the Naive Bayes algorithm. This supervised ML algorithm
expects a dataset as input and delivers an output result, which is useful information in routing
path construction.

• Create a large dataset based on the Montreal city open data website and using the Simulation
of Urban MObility (SUMO) simulator and the calibrator framework. Then, process the
transformation and label of the different features used in the Naive Bayes framework to predict
nodes’ information.

• Design and develop a routing protocol as an application in the SDN controller ’RYU’ with
integrating ML framework.

• Implement and evaluate the performance of our solution, then compare it to the literature routing
solutions, Optimized Link State Routing Protocol (OSLR), SDN multipath routing and SDN
Q-learning routing.

The remainder of the paper is organized as follows. Section 2 introduces the background
knowledge of SDN and an overview of the related work. Section 3 gives a brief explanation of
ML techniques and describes the generation and processing of the created dataset. Sections 4 and 5
present our network model and operation of our Naive Bayes based routing protocol. Performance
evaluation is carried out in Section 6. The last section concludes.

2. Background and Related Work

In this section, we first introduce a brief background knowledge of SDN; secondly, we investigate
recent work done about routing on SDN; and thirdly, we expose the Machine Learning-based
routing solutions.
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2.1. Background Knowledge of SDN

Despite the new technological progress achieved during the last decade, the SDN paradigm is still
flourishing. It attracts more and more attention from the academic community to promote innovation
works and improve the network communication protocols. We give a brief explanation of this emerged
concept bellow. Mainly, SDN’s idea is to decouple network control functions from forwarding data
functions, which corresponds to the new network architecture [10,11]. The SDN architecture consists
of three planes: the application plane, the control plane, and the data plane [12], as shown in Figure 1.
There are SDN control protocols between every two planes, i.e., ones between application plane and
control plane named Northbound protocols and others between data plane and control plane called
Southbound protocols. The northbound side provides a program that manages the network from the
application plane. Besides the northbound protocols, the southbound interfaces enable communication
from the control plane to the data plane, which of these we cite the popular ones, including OpenFlow,
OVSDB, NETCONF, etc. Nevertheless, the control plane is based on its operation on central equipment
called a controller representing the brain of the network [13]. The controller enables the dynamically
programming of the net to ensure efficient and flexible service of the physical and virtual hardware in
the data plan. Moreover, the controller addresses the essential functionalities of the network used by
data plane components. It provides rules from the application plane, such as routing, load balance
of resources usage, network topology monitoring, and device configuration [14]. Several types of
controllers are developed in the industry to ensure better network management with more flexibility
and agile. We quote as an example Ryu controller, Onos controller, Opendaylight controller, etc. [13].

Figure 1. SDN architecture in Smart City Environment.

2.2. SDN-Based Routing Algorithms

Since routing is the fundamental key in any communication network, several prior works have
been designed for a wide selection of systems and applications with various challenges, such as
minimizing delay transmission, maximizing packets delivery, enhancing reliability, etc. According
to the listed works below, the structure of SDN provides a global view of the network, which eases
computing optimal routing paths and guarantee efficient transmission. Besides, this section highlights
the new routing contributions using the SDN paradigm.

Venkatraman et al. [15] proposed an SDN-enabled connectivity-aware geographic-aware routing
protocol (SCGRP), in which the SDN controller calculates routing measurements in real-time using
cellular networks. SCGRP performance scores an enhancement in link deterioration, transmission
delay, and packet delivery ratio. Moreover, SCGRP optimizes the transmission of data packets using an
extended SDN architecture to vehicular networks in urban areas. The proposed solution aims to take
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advantage of a global view of the network topology and heterogeneous traffic conditions maintained
by SDN.

Sudheera et al. [16] suggested a new routing protocol for Software-Defined Vehicular Networking
(SDVN) that optimizes the routing scheme with a source routing based flow instantiation (FI) operation.
The routing protocol analyzes the link quality fluctuations due to dynamic topology that causes short
lifetime links and then packet losses. Based on an incremental packet allocation scheme, the solution
solves the routing problem in a less time complexity by finding multiple shortest paths. The built
routes are collectively stable, which guarantees delivery of packets without any loss.

Singh et al. [17] designed a new approach by combining the SDN with the small-cell deployments.
They implemented the Multipath TCP connections to establish link reliability between vehicles, increase
throughput, and reduce packet loss. Similarly, Zhu et al. [18] considered using SDN in a Vehicular
Ad hoc NETwork (VANET) setting as the best key to ensure a routing solution’s efficiency. The SDN
controller builds better paths based on a global view over the network. They used a new metric
named “minimum optimistic time” to switch between multi-hop forwarding and carry-and-forward
models according to the network density. The routing protocol aims to decrease delivery delay time
and overhead.

Other work introduced a new approach to resolve the routing problem [19]. Abbas et al. [19] put
forward the routing solution that used a road-aware approach by selecting paths using road segment
id to ensure path durable. The SDN controller computes path estimation model using speed, position,
and road id information for finding the shortest routes. The data is gathered by a dedicated controller,
i.e., the edge controller, which processes the real-time data coming from the vehicles. The usage of this
controller aims to reduce the response time and packet overhead. The cellular network is employed to
transmit packets between the SDN controller and vehicles with less bandwidth and low latency.

Abugabah et al. [20] proposed a new method to build multiple paths and to simplify the traffic
construction procedure. The protocol used a new criterion based on average path channel load, channel
loading, path length, and channel length to select a path from the available routes. The solution employs
a modified channel state wave algorithm in path selection that allows a more uniform capacity of
information transmission. The protocol manages the shortest paths between the intermediate and final
nodes to weed out the recalculation of new routes in the transmission process.

Consequently, the solutions presented in this section are based on the broadcasting approach to
discover the destination if the controller did not know it beforehand. This target discovery will generate
an additional delay in building routes and data transmission. As well, The roads’ construction uses
information collected by dedicated equipment, which presents extra processing time to accomplish
the routing task. Besides, the suggested protocols used the cellular network in exchanging the
packets between the data plane and the control plane, which represents a limited option given the
exponential growth of the equipment deployed in future cities, particularly with the scope of the
IoT. The wireless devices spread will lead to a scarcity of resources in terms of medium allocation.
As well, the arrival of 5G will overthrow the current cellular networks, with the deployment of
innovative decentralized architectures based on hybrid clouds and supporting IoT applications. Such
advancement will revolutionize existing solutions by requiring their update to provide a high quality of
service (QoS) for users, and high quality of experience (QoE) [21]. In contrast, our protocol anticipates
the destination discovery step and avoid it by using a prediction mechanism to reduce the transmission
delay. Besides, we are adopting the WiFi 802.11P technology in network communication, as this type
of technology is most suitable in high mobility communications.

2.3. Machine Learning-Based Routing Algorithms

Currently, Machine Learning is a widely used Artificial Intelligence (AI) method for a broad
assortment of tasks, like classification, in a variety of application spheres such as computer vision,
security and network communications. In this section, we present the relevant research works designed
for routing strategies using ML algorithms.
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Tang et al. [22] proposed a mobility prediction-based routing scheme to ensure reliable and timely
data dissemination in VANETs. The SDN controller predicts the vehicle arrivals and connections
using the artificial neural network. Road Side Unit (RSU)/Base Station (BS) uses the prediction to
integrate a stochastic urban traffic model for estimating the successful transmission and average delay.
Depending on the location of the source vehicle and destination vehicle, the controller or the RSU/BS
built routing paths with minimum delay. Vehicle-to-Infrastructure (V2I), as well as Vehicle-to-Vehicle
(V2V) channels, can transmit simultaneously via different spectrum access technologies. On the
other hand, Azzouni et al. [23] suggested a new routing solution called neural network-based routing
(NeuRoute). The routing protocol uses Deep Feed Forward Neural Network (DFFNN) to learn and
build routes. It inputs collected path decisions history, the network state, and the predicted traffic
matrix to train step of neural routing network. The network state consists of all links costs and their
available capacities. After training the model, the protocol can route new arriving flows based on the
traffic matrix and the network state as an input.

Chen and Zheng [24] suggested a new routing solution entitled A Machine Learning-based
routing preplan for SDN. This solution works on three phases: flow feature extraction, user
requirement prediction, and route selection. As indicated in the solution’s name, the process considers
planning routing based on relevant features extracted from users’ history data and clustered using a
semisupervised clustering algorithm. The core idea is to predict the user’s requirements, then plan
frontwards routing policies that ensure reducing delay. The solution employs the extreme learning
method to optimize the network structure and discards old data post the training. Li et al. [25]
incorporated a Naive Bayes classifier in the Least Loaded (LL) routing algorithm. The ML algorithm
provides extra information obtained from record historical network state information and the link traffic
load information to LL routing that decides the best candidate route. Another usage case was proposed
by Baz [26], which integrated the Bayesian Machine Learning algorithm in Flow Prediction in SDN
Switches. The algorithm allows switches to predict the traffic to reduce unnecessary communications
between switches and the controller. Therefore, the switches determine processes generating flows
and use them to assign a packet with the unknown flow to match it with the appropriate one.

To resolve the Routing and Wavelength Assignment (RWA) problem in the context of optical
Wavelength-Division Multiplexing (WDM) networks, Martin et al. [27] transformed this issue into an
ML-based classification problem where ML classifier provides RWA solution based on an input traffic
matrix. Moreover, Sun et al. [28] introduced the TIme-relevant DEep reinforcement learning (TIDE)
protocol as an optimized routing strategy on SDN modified architecture that contained three logic
planes: data plane, control plane, and AI plane. In the AI plane, an RNN-based deep reinforcement
learning method operates to output a near-optimal routing strategy according to the varying traffic
distribution. However, a smart agent can output a near-optimal routing solution for the underlying
network without any prior knowledge. Yao et al. [29] proposed a load balancing routing scheme
boosted by ML. The protocol uses network state information (NSI) in the form of queue length to
train the neural network and to make route predictions. In another type of networks, Liu et al. [30]
introduced a Q-learning based multi-objective Unmanned Aerial Vehicles (UAV) routing algorithm to
reduce energy consumption and delay. Moreover, Zhang et al. [31] presented a range of Deep Learning
algorithms used in routing solutions.

However, the “No Free Lunch” theorem [32] states that there is not just one ML algorithm that
can solve any problem, and that always performs better than all other algorithms because it depended
on many factors. Furthermore, several factors are involved in choosing the ML algorithm that provides
a given situation’s proper learning model. We mention the main ones which are the dataset dimension
and structure, the type and complexity of the problems, the prediction speed, the precision of the
forecasts, the duration of the training step, the size of trained data, the straightforward implementation,
and the storage space of training data. Indeed, the works presented in this section opt for various ML
solutions, except that these solutions do not meet the real-time requirements of the routing problem
in the intelligent environment. Because they take a long time to compute the prediction, and they
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require massive storage resources due to the network’s dynamic scalability. Whereas The Naive Bayes
algorithm provides fast training and prediction speed, which meets real-time operating, it performs
well with small and big instances; it can handle lots of features and easy to implement. Moreover,
it can provide high accuracy predictions using different types of datasets [33,34]. Thus, this candidate
algorithm is a suitable approach that fulfills our expectations to resolve the smart cities’ routing issue.

3. Machine Learning Algorithms

The scalability of the network and the heterogeneity of equipment and the full range applications
deployed in smart cities make the SDN controller tasks complicated and tedious. Therefore, network
management and data routing mechanisms produce a large number of overhead packets and long
transmission delays, thus disrupting the systems’ functionalities based on real-time applications.

ML algorithms are introduced in SDN to overcome these challenges [35]. This provides
robust computation and optimized processing to predict essential information in the routing paths
construction or the network topology discovery either in the allocation resources. Mainly, the advantage
of using Machine Learning techniques consists of reducing transmission delay and control packets
significantly in routing applications. ML algorithms rely on real-time and historical network data to
operate. They analyze them and then estimate and predict a future situation or outcome that can bring
intelligence to the SDN controller. The controller will be able to optimize network configuration and
automatically deliver new network services in real-time.

ML techniques are divided into four approaches: supervised, unsupervised, semi-supervised, and
reinforcement learning. Supervised learning is based on pairs of input–output observations to learn a
function explaining the relationship between them by looking for patterns in the value labels assigned
to the data points [36]. This algorithm predicts an outcome variable given a set of input variables, and
it creates a system model that matches inputs to target outputs. Once the training process has reached
the level of precision, the model can be used to achieve the desired result. There are various models of
supervised learning, such as neural networks, regression, decision tree, nearest k-neighbor, logistic
regression, support vector machine, and Naive Bayes, etc. However, our work focuses on the Naive
Bayes supervised learning approach that we investigate in this section.

The concept of Bayesian machine learning depends on the conditional probability of calculating
the probability that an instance will occur given a particular set of attributes corresponding to previous
knowledge, which might be related to it. This learning method classifies a new event or incident into a
set of possible outcomes provided by previous training data. The classifier Naive Bayes tries to find
the most likely value for a current instance given its known attributes. Bayesian learning uses the most
probable result, often called the maximum a posteriori to classify the hypothesis. It is based on the
Bayesian theorem defined in Equation (1) as follows [37]:

P(C|X) =
P(X|C)P(C)

P(X)
(1)

where P(C) is the prior probability of hypothesis C, P(X) is the prior probability of training data X,
P(X|C) probability of X given C, and P(C|X) probability of C given X.

In the next section, we explain the creation and transformation of the dataset used in our ML
framework, and we introduce the proposed model and formulation problem.

3.1. Problem Formulation and Proposed Modeling

Our routing application tends to reduce transmission delay and overhead packets in an intelligent
transport environment using SDN to manage vehicle communication in smart cities efficiently.
We integrate the supervised approach given by the Naive Bayes classifier in the routing solution. We use
the Naive Bayes classifier giving consideration to its simple implementation with low computational
complexity and a real-time prediction process. This ML algorithm predicts locating a vehicle in a
specific area of the road network assigned to a particular RSU assuming the role of a virtual switch in



Smart Cities 2020, 3 1010

SDN. Therefore, the controller will not broadcast packets-out to discover the vehicle’s location, which
will reduce the control packets exchanged between the controller and the various switches/RSU in the
network. Localization of the node allows establishing a particular candidate route between a pair of
nodes, depending on the current link delay. Based on the least current delay on each candidate route,
we select the one with the best value, i.e., the lowest delay.

X [x1,. . . , xn] vector indicates a problem instance where x1,. . . , xn are n characteristics related to
the vehicle information defined and discussed in the next section. We assume that there is k class,
C1,. . . , Ck corresponding to areas including RSU/ Switch Sj with j = 1..k. Applying the Naive Bayes
theorem defined in Equation (1) to our problem, allows us to define the conditional probability of
our model, represented by P (Ck | X), which denotes the instance probability of Ck given X, in the
Equation (2) as follows:

P (Ck |X)=P (Ck | x1, . . . , xn)=
P (Ck) · P (x1, . . . , xn |Ck)

P (x1, . . . , xn)

(2)

According to the conditional independence hypothesis of the theorem, i.e., the features are
mutually conditionally independent, then the posterior probability for each class becomes:

P (Ck |X) =
P (Ck) ·∏n

j=1 P
(

xj |Ck
)

∏n
j=1 P

(
xj
) (3)

Before executing the proposed approach in a real-time process, it should perform a training step
in an offline manner by examining the set of data in the learning stage. In the first step, the model
clams a dataset to learn the function that maps the future events with past knowledge occurrences.
The creation and implementation of such a dataset are developed in the following section.

3.2. DataSet Generation and Processing

To collect the vehicle data, we simulate the traffic in a real-life scenario on a testbed built
using the SUMO simulator and a real map of downtown Montreal extracted via the OpenStreetMap
framework [38–40].

The most important information that helps us in the creation of the dataset is the configuration of
the road network with the identification of roads and trails, traffic infrastructure (e.g., traffic lights) and
traffic demand discussed in [39], which provides the number of vehicles present at each intersection
of the road network, as shown in Figure 2. We simulate the scenario several times and calculate the
statistical data using the Traci and Calibrator package provided by SUMO [41].
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Calibrator

Figure 2. Montreal Real Scenario Testbed built using Sumo and OpenStreetMap.

As indicated in [41], we count the number of vehicles passed over a road segment by implementing
a calibrator object at each intersection. The calibrator controls and calculates crossing vehicles at
the junction. If the computed value reaches a specified amount by Montreal’s openData portal,
the calibrator framework removes the fleet exceeding the specified target level. Besides, if the traffic
request does not match the specified value, the calibrator inserts new vehicles.

We save the data simulation in CSV file to clean and process the dataset, as shown in Figure 3,
then we extract the necessary features used in our solution. We label each column of the CSV file, and
we remove non-valid values, then we erase columns to reduce unnecessary data. We label the columns
to identify the features by: node_id: Vehicle_id, TT: travel_time, RSTh: historical road segment travel,
CT: current time, RT: trajectory time on the segment of road, TD: trajectory direction, ST: speed travel,
XP: X-axis position, YP: Y-axis position, AN: Area number and RSU-Addr: roadside unit address.
It should be noted that the Naive Bayes algorithm is based on strong (naive) independence assumptions
among the various features. For this reason, we review and assess each feature pair’s correlation
matrix, including Pearson’s correlation coefficients, as illustrated in Figure 4. The matrix correlation
shows the level of dependency between the attributes to keep only the most independent.

Data Collection

Pre-Processing

 

Naive Bayes 

Machine 

learning

Validation Outcome

Data cleaning

Data filtring

Data Labeling

Data k-means 

clustering

Data 

Normalization

Train set

Test set

Figure 3. Dataset processing and Model testing stages [42].
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Figure 4. Matrix correlation reporting Pearson’s correlation coefficients of each pairs of
Features Dataset.

Pearson’s correlation coefficients show mainly that the features are closer to zero, which means
that no linear relationship is present in the data. Besides, the negative values indicate that one variable
tends to decrease as the other increases. On the other hand, the positive coefficients highlight that as
one feature value increases, the other tends to increase. By the end of dataset processing that contains
more than 1,000,000 instances, we test the ML model to evaluate its accuracy by varying the number of
occurrences fed to the train part and validation part. The obtained results in Table 1 help us choosing
the percentage of splitting the dataset. We observe that the accuracy of the model is advantageous
and is over 90% for all dataset size variation. The efficiency for 70%–30% splitting and 80%–20% are
close, but the third column is suitable for the choice of dividing the dataset while it shows the best
accuracy results.

Table 1. Accuracy evaluation and splitting dataset ratio selection.

Dataset Size 50% Train Stage 60% Train Stage 70% Train Stage 80% Train Stage
50% Validation Stage 40% Validation Stage 30% Validation Stage 20% Validation Stage

10,000 0.9164 0.9102 0.9056 0.901

50,000 0.9077 0.9083 0.9092 0.9078

150,000 0.9142 0.9147 0.9164 0.9179

250,000 0.9162 0.9171 0.9181 0.9170

500,000 0.9147 0.9137 0.9136 0.9128

1,000,000 0.9298 0.9296 0.9301 0.9303

The ML algorithm works is a very dynamic environment, which induces a high variance of
the data, and herby, after some time, the model’s performance may deteriorate. Therefore, the ML
algorithm must be retrained. Still, excessive retraining generates more computation time and adds
complexity to the model implementation by including new modules such as that monitors the
performance of the system. While, at each time a new routing request is received, the controller
retrained the Naive Bayes method to maintain its efficiency; thus, it must use fewer resources.

4. Network Model

This section describes the proposed network model used to design the SDN-Naive Bayes-based
routing protocol in a smart city environment. Mainly, our work focuses on intelligent transportation
systems that represent the lifeblood of smart cities. The network and their operation components
take advantage of the SDN paradigm and ML to offer efficient communication and aid to bring more
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flexibility and agile to the system. Our network is composed of three types of equipment. The following
components are required for deploying the system.

• Controller. It plays a central role in the network as the heart and concretize the control plane.
The controller has the global intelligence provided by the overview of the whole system and
knowledge of all devices in the network. This equipment controls all the network devices. In this
paper, we choose the Ryu controller for its suitability to integrate a large selection of applications.
Ryu controller development matches very well with ML programming API, since they use the
same language, i.e., Python.

• Roadside units (RSU) considered virtual switches. This material is the relay between the controller
and the host nodes. They transmit all the rules and modifications in the network.

• Vehicles. They are the fundamental part of the network and represent SDN Wireless Nodes.
The cars communicate actively with their neighbourhood and act as the end-users and forwarding
element. They are the first source of data in smart transportation systems. The big challenge with
these devices is their high mobility, frequent arrival and departure in the network.

The RSU and vehicles constitute the data plane. They operate with the OpenFlow protocol to
communicate with the controller. The proposed network model works in a heterogeneous network
environment in which the forwarding infrastructure uses wireless and wired technologies to deliver
information; the WiFi 802.11P to connect a vehicle to RSU infrastructure (V2I), and the optical
technology to connect the RSU to the controller. Figure 5 highlights the network components and
used communication technologies. As displayed, the communication V2V and V2I employ wireless
connection. Each vehicle is equipped with the WiFi 802.11P interface to exchange messages with RSU
in mesh connection. However, the RSU is equipped with two interfaces, one dedicated to wireless
communication to transmit information to vehicles. The second interface used to communicate
with the controller to forward the rules to the hosts. In the next section, we describe the suggested
routing algorithm assisted by the supervised Naive Bayes classifier to reduce delay transmission and
network overhead.

WiFi interface

SDN interface

Ryu Controller

RSU

Vehicle

Figure 5. Network Model.

5. SDN-Naive Bayes-Based Routing Protocol Working

Considering the previously depicted network model, in this section, we elaborate on the evoked
solution’s operation steps. The controller performs all the work, from discovering the elements and
their needs in the network until the control and maintenance of the communication, to ensure the
system’s optimized operation. To understand the working of the new routing protocol, we explain
how to achieve a communication attempt between two vehicles, as shown in Figure 6.



Smart Cities 2020, 3 1014

Let’s assume that the car noted Source Host wants to send a data to the vehicle named Destination
Host. Therefore, the Source Host looks for the Destination Host in its flow table. If the node did
not find the wanted entry, it sends a request, represented by arrow 1 in Figure 6, to the RSU relied
on the area of node’s location. In our case, the vehicle asks RSU1 that covered the Area_1. Since
there is no previously installed rule for this flow, the RSU1 forwards the request to the controller by
sending a packet-in (arrow 2) using OpenFlow protocol. Ones the packet arrived at the Ryu controller,
the controller identifies the origin of the message by extracting source address and check, if there is a
previous request of this node, which means its presence in the table of flows. Next, RYU responds by
packet modification to update the node’s flow table (arrow 3).

Northbound 
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Packet-in
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Figure 6. SDN-Naive Bayes-based Routing Protocol Operation.

Otherwise, the controller discovers that it does not have any previous knowledge of the source.
Then, it adds it to its flow table and launches the process for finding the destination host attachment
points. Nevertheless, if the destination is known, the controller sends a packet-out (arrow 3) to the
source host with the routing path as rules for including them in the source’s flow table. That is an
optimistic assumption that the controller recognizes the destination. Generally, that is not the case,
thus in other routing solutions, the controller floods the network with a request packet until reaching
the target. However, our solution avoids this practice because it costs in packet overhead and increases
the transmission delay.

Our protocol uses the Naive Bayes model to predict the area where the destination node rests.
The RYU furnishes the feature’s value needed in the working of the ML algorithm that computes the
corresponding RSU associated with the destination node online. When it identifies the corresponded
RSU of the destination location zone, the prediction model provides the outcome to the controller.
The controller sends a packet-out comprising the routing rules between the source and destination
to nodes for installing the appropriate controls. However, the controller constructs the routing paths
based on the delay cost of links that constitute constructed routing paths. The controller applies the
shortest path routing algorithm to select the best route. As the delay is the primary information upon
which our suggested solution depends, our protocol retrieves the network’s statistics to provide link
delay in real-time for the system’s whole links. The controller performs statistics periodically based
on frequency time, offering newer delay values and a detailed network overview. Immediately the
routing paths constructed and sent to the RSUs, which in turn transmit them to the vehicles included
in this routing (arrow 4). Each vehicle establishes a connection with the gateway vehicle to initiate the
transfer of packets between a source and destination cars (arrow 5).
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6. Performance Evaluation

To assess the performance of the SDN-Naive Bayes-based routing protocol, we developed a
simulation testbed, a virtual network created through virtual machines configured with ubuntu 18.10
Operating system, Mininet-WiFi 2.7 a wireless SDN emulator [43], SUMO 1.4.0 mobility simulator
and OpenFlow 1.3 SDN protocol. The vehicles move on road network size 1500 × 2000 m2 of
Montreal downtown. In such topology, we consider all the nodes connected constitute a mesh
network. Moreover, to generate traffic, we install the Iperf and ping applications to carry out the
data transmission between vehicles. Table 2 summarizes the remaining emulation parameters of our
experimentation; we repeat the evaluation of the performance ten times with a confidence interval
of 95%.

Table 2. Emulation Parameters.

Parameter Value

Network size 10–130 vehicles, 10 RSU and one controller

Simulation area 1500 × 2000 m2

Propagation loss Two-Rays Ground

Mobility SUMO real scenario

Simulation time 500 s

Packet size 512 bytes

transmission range 250 m, 500 m

Transport protocol UDP

Mac protocol 802.11p

To analyze the performance of the proposed routing protocol, we compare it to three routing
protocols of the literature, multipath routing protocol [44], Q-learning protocol [45], and OLSR
protocol [46]. The multipath routing protocol and Q-learning protocol are SDN routing protocols,
except that OLSR is a Mobile Ad-Hoc Network (MANET) routing protocol. We decide to consider
OLSR as comparative routing, since the main operation of this MANET routing is close to SDN working
paradigm. OLSR apply centralized routing management executed on multipoint relays nodes that are
the responsible nodes in control packet transmission. The following performance metrics measure the
efficiency of the evaluated protocols [47]:

• PDR (Packet Delivery Ratio): the rate of data packets successfully delivered to data packets sent;
• Throughput describes an amount of data transfer by time unit. The compute is the ratio of packets

size to the time difference between its sent and its reception;
• Packet Jitter Derivation (Jitter): is a variation in delay between packets. It defines the consistency

and stability of the proposed wireless network. Components in the communication path introduce
jitter in the system;

• Loss Ratio is the number of packets lost divided by the packets sent during simulation time;
• End to end delay: average time is taken by a data packet to reach the destination.

Figure 7 illustrates the packet delivery ratio transmitted by vehicles to a destination. The overall
appearance of curves (a) or (b) shows a decrement in the delivery rate. Therefore, the more the number
of vehicles in the network increases, the more the delivery rate decreases. This situation is the result of
using a single controller to handle all network requests, leading to controller overload.

Overall, the Naive Bayes-based protocol shows better results than OLSR, multipath and Q-learning
protocols. The following figures confirm the degradation of communication in the presence of a dense
network. However, Figure 8 shows a loss ratio of more than 50% of the packets sent when the number
of nodes exceeds 50 vehicles. Nevertheless, beware of our solution’s objective, which brings an
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improvement compared to other comparative solutions. Our protocol performs better than others with
less packet loss, because it uses prediction based on the area where the destination is located, which
provides enough coverage to ensure a routing path between the source-destination pair. On the other
hand, the Multipath, Q-learning, and Naive Bayes protocol’s throughput are very similar and better
than OLSR. This result proves the efficiency of SDN solutions, except that the consumption of the
bandwidth is not optimal and does not even arrive at half level, as shown in Figure 9. The efficiency of
a routing protocol lies in the network’s stability in terms of communications with the least possible
interruption. Jitter is the performance metric that allows us to distinguish the most reliable routing
solutions with the most stable routes. In Figure 10, the protocols using ML algorithms, i.e., Q-learning
and Naive Bayes, show good results compared to OLSR and multipath, especially in low densities.
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Figure 7. Packet Delivery Ratio vs. number of vehicles (a) range 250 m, (b) range 500 m.
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Figure 8. Loss Ratio vs. number of vehicles (a) range 250 m, (b) range 500 m.
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Figure 9. Throughput vs. number of vehicles (a) range 250 m, (b) range 500 m.
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Figure 10. Packet Jitter Derivation (Jitter) vs. number of vehicles (a) range 250 m, (b) range 500 m.

Figures 11 and 12 show the end-to-end delay of the four protocols. Mainly our solution presents
the shortest end-to-end delay, whether for 250 m or 500 m transmission range. Moreover, when we vary
the size of the transmitted packets, we notice that always our protocol presents the best end-to-end
delay compared to Q-learning, multipath, and OLSR protocols.

Except that for the case of 500 m transmission range, the Q-learning learning solution shows
the best performance in term of the end to end delay. We explain this to the fact that the supervised
learning analyzes a massive amount of data to form a system and produces a generalized formula.
The quality of the training data influences this ML method’s prediction results, so the results
obtained are approximated. Whereas in Q-learning solution which uses reinforcement learning
model, the reinforcement core is defined in the Markov model decision process. Reinforcement
learning is trained as a learning agent where it functions as a reward and action system. The learning
system itself creates data by interacting with the environment to observe its basic behaviour in
discrete steps. The approach investigates every time the background and receives a reward for each
observation. Finally, the goal is to collect as many bonuses as possible for doing more observations.
Furthermore, this type of learning machine uses the Markov decision process that provides a
mathematical framework for modeling. Sequential decision-making occurs, and the next entry depends
on the learner’s decision or the system. Based on the mathematical formulation, the reinforcement
learning model generates an exact result available from the initial state. Moreover, in this scenario,
our system’s size is relatively small, which allows Q-learning to make several observations in a short
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time, which improves its performance. In contrast, if the network becomes large enough and complex,
the Q-learning response time will become tedious, influencing, and deteriorating the end to end delay.
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Figure 11. End to End delay vs. Packet size.
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7. Conclusions

In this article, we proposed a new routing protocol based on the SDN and Naive Bayes solution
to improve the delay. Combining the SDN’s flexibility with Naive Bayes prediction makes this
routing protocol more reliable and optimal. The controller executes the Naive Bayes framework to
predict the destination node location, avoiding the flooding process to discover the destination in
the network. For building routing paths, our solution collects statistics of each node in the network
periodically. It retrieves the links’ delay information to use it as a routing metric to choose intermediate
nodes included in the constructed route. The controller is responsible for providing a stable path
with low delay by minimizing the path duration between the source and destination. The Naive
Bayes framework uses a realistic dataset that we created based on Montreal traffic information using
the SUMO simulator. Simulation results show the enhanced performance of Naive Bayes-based
routing protocol in end-to-end delay, packet delivery ratio than the Q-learning, Multipath, and
OLSR routing protocols. As part of future work, we intend to address the issue of using a single
controller by proposing a new architecture based on cooperation between multi-controllers and
LoraWan IoT technology.
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