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Abstract: In the present paper, we derive and solve the space-fractional traffic flow model which is
considered as a generalization of the transport density equation. Based on the fundamental physical
principles on finite-length highway where the number of vehicles is conserved, without entrances
or exits, we construct a fractional continuity equation. As a limitation of the classical calculus, the
continuity equation is constructed based on truncating after the first order of Taylor expansion, which
means that the change in the number of vehicles is linear over the finite-length highway. However,
in fractional calculus, we prove that nonlinear flow is a result of truncating the fractional Taylor
polynomial after the second term with zero error. Therefore, the new fractional traffic flow model
is free from being linear, and the space now is described by the fractional powers of coordinates,
provided with a single variable measure. Further, some exact solutions of the fractional model are
generated by the method of characteristics. Remarkably, these solutions have significant physical
implications to help to make the proper decisions for constructing traffic signals in a smart city.

Keywords: continuity equation; LWR model; fractional derivative; traffic flow

1. Introduction

Since the invention of the wheel, humans have dreamed of travelling smoothly with-
out interference. Indeed, in traffic flow theory, with the development of new intelligent
transportation systems humans have revealed new horizons and hope to construct a truly
smart transportation. However, planning a smart city requires a rigorous understanding
of the traffic features, particularly the traffic flow and density which are thought the fun-
damental characteristics for determining traffic congestion. Thus, various mathematical
models were proposed in order to describe and predict the traffic behavior.

Classical mathematical models for traffic flow in city road networks are based on
traditional conservation law using partial differential equations (PDEs). However, a recent
investigation within Bellcore of large sets of actual network traffic measurements in smart
cities have shown that traffic behavior has features that are more accurately described
in terms of fractional models rather than classical models [1]. Over the last few decades,
fractional-order differential equations have been considered as the most preeminent tool in
describing anomalous and scaling phenomena [2]. In fact, fractional calculus is frequently
used in diverse domains such as bioengineering [3], medicine [4], gas dynamics [5], contin-
uum mechanics [6], and finance [7]. Obviously, the major reasons behind such a concern
are due to fractional derivative, which recently showed significant results towards various
complex systems. Moreover, without using the concept of fractionality many models
remain inadequate such as viscoelastically [8] and fluid flow [9].

Generally, in classical calculus, PDEs are used to describe many traffic flow models,
namely, microscopic, mesoscopic, and macroscopic models. The major step in modelling
traffic behavior was introduced by the pioneering work of Lighthill, Whitham, and inde-
pendently Richards (LWR) [10,11]. Actually the macroscopic LWR model is a type of the
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so-called continuity equation which describes how a scalar quantity, such as number of
vehicles (NOV), are transported in space. However, using the classical LWR we implicitly
admit that the flux within the road segment (RS) is linear, which means that the change
in traffic flow is directly proportional to the change in coordinates as a result of linear
approximation [12]. Yet, because many factors affect the traffic flow such as drivers’ het-
erogeneity styles or traffic peak hours, this assumption is not accurate because traffic, in
general, exhibits irregular and complex behavior [13–16]. Therefore, the constraint of being
linear flow is considered as a limitation of LWR model and various physical phenomena.
Hence, we prove that using non-integer fractional operators can address this restriction,
so the resultant model is free from being strictly linear. At the end, we provide analytical
solutions with physical meaning of the geometrical structures for different choices of the
free parameters present in the solutions.

The present paper is motivated by the desire to validate and solve the work made
in [17–20] by deriving a vehicular fractional model so that it can be used to construct a more
general model in physics and transportation engineering. The structure of this paper is as
follows: In Section 2, we introduce two fractional operators with some required properties.
In Section 3 we discuss the fractional Taylor expansion and demonstrate the implication of
truncating the series. In Section 4, we derive and validate the fractional continuity equation.
In Section 5, solutions and simulation for the proposed fractional model are obtained by
using the characteristics method. In Section 6 an application is provided to illustrate the
fractional-order effects. Finally, we provide conclusions in Section 7.

2. Fractional Derivative

In this section, we present the main definitions and tools which are useful to derive
and solve the fractional model.

Definition 1. The Caputo fractional derivative of a function f : [a, ∞)→ R of order α is
defined as,

Dα
a+ f (t) =

1
Γ(1− α)

t∫
a

(t− τ)−α ∂ f (t)
∂t

dτ, t > τ (1)

Regarding the fractional integral, we adopt the Riemann–Liouville integral as,

Iα
a+ f (t) =

1
Γ(α)

t∫
a

(t− τ)α−1 f (t)dτ (2)

In [21], it is proved that based on the fundamental theorem of fractional calculus, it is
widely accepted to combine the Caputo fractional derivative with the Riemann–Liouville
fractional integral since these operators are one-sided inverses of each other as,

Dα
a+ Iα

a+ f (t) = f (t) (3)

Important properties of Caputo fractional derivative are as follows,

Dα
a+tλ =

Γ(1 + λ)

Γ(1 + λ− α)
tλ−α (4)

Dα
a+(C) = 0, ∀C ∈ R (5)

For more details, please see [22].
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Definition 2. For a function f : [0, ∞)→ R . Then, the generalized fractional derivative
GFD of f of order 0 < α ≤ 1, is defined by,

∂α f (x)
∂xα

= lim
ε→0

f
(

x + Γ(β)
Γ(β+1−α)

εx1−α
)
− f (x)

ε

for all x ∈ R+ and β ∈ (−1, 0) ∪ (0,+∞).

The following properties are well-known and used in this work. Assume f and g are
α− differentiable functions at a point x > 0, then one has the following,

1.
∂α

∂xα
(a f + g)(x) = a

∂α

∂xα
f (x) +

∂α

∂xα
g(x), ∀a ∈ R (6)

2.
∂α

∂xα
( f · g)(x) = g(x)

∂α

∂xα
f (x) + f (x)

∂α

∂xα
g(x) (7)

3.
∂α

∂xα
xβ =

Γ(β + 1)
Γ(β + 1− α)

xβ−α (8)

4.
∂α

∂xα
λ = 0, ∀λ ∈ R (9)

5.
∂α

∂xα
f (x) =

Γ(β)

Γ(β + 1− α)
x1−α d f

dx
(x) (10)

For more details and proofs, see [23,24].

Remark. It is verified that the GFD operator is compatible with the Caputo operator.

3. Truncating Series

Taylor theorem relies on the fact that the true function value would be equal to the
Taylor polynomial approximation plus some reminder which also can be considered as the
error between the actual function value and the Taylor polynomial. However, truncating
after k-th order with zero error we implicitly admit that the origin function is of the k-th
order. Therefore, if we obtain the exact value by considering the k-th order truncation with
zero error that means the origin function is of k-th degree, because the (k + 1)-th order is
zero. For example, truncating after the 2nd order derivative with zero error means the
origin function is quadratic as depicted in Figure 1.
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Theorem 1. Let Q(x) a continuous function in [0, x2],α ∈ (0, 1] and n ∈ N satisfies,

1. Dmα
0 Q ∈ C[0, x2], ∀m = 1, . . . , n.

2. D(n+1)α
0 Q(x) is continuous on [0, x2].

Then for each x ∈ [0, x2] and x1 ∈ (0, x2], the power series formula about x1 in
Caputo sense is defined as,

Q(x) =
n

∑
m=0

Dmα
0 Q(x1)

Γ(1 + mα)
∆m + Rn(x, x1, 0) (11)

where Rn(x, x1, 0) is the remainder term and Dnα
0 means the application of the fractional

derivative n times. To clarify we take n = 3 and substitute in Equation (11) to obtain,

Q(x) = Q(x1) + Dα
0 Q(x1)

∆1
Γ(1+α)

+ Dα
0
(

Dα
0 Q(x1)

) ∆2
Γ(1+2α)

+Dα
0
(

Dα
0
(

Dα
0 Q(x1)

)) ∆3
Γ(1+3α)

+ R3(x, x1, 0),
(12)

where
∆1 = xα − x1

α

∆2 = x2α − x1
2α − Γ(1+2α)

Γ2(1+α)
x1

α∆1

∆3 = x3α − x1
3α − Γ(1+3α)

Γ(1+α)Γ(1+2α)
x1

α∆2 − Γ(1+3α)
Γ(1+α)Γ(1+2α)

x1
2α∆1.

For the proof and details, we refer the reader to [25,26].

4. Derivation and Validation

In this work, we assume that the flow Q is a function with a fractional index α and can
be expanded as a series following the Theorem 1. To set up the mathematical statement of
the fractional transport density equation, the traffic flow into and out of the RS = [x1, x2]
in the highway is considered in Eulerian description. We are interested in the density of
vehicles which flow in at point x1 and out at point x2 as shown in Figure 2.
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Figure 2. Schematic diagram for fixed road segment RS in a moving traffic.

Starting from the classical calculus for unsteady flow we define the density as [27],

ρ(x, t) =
NOV f rom x1 to x2

dx

and the flow as,

Q(x, t) =
NOV f rom t1 to t2

dt
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During this study vehicles are neither created (entrance) nor destroyed (exit). There-
fore, we follow the same methodology used in the fluid mechanic in derivation of the
continuity equation. So based on the hydrodynamic relationship we have,

Q(x1) = ρv (13)

where ρ and v are the density and velocity, respectively. Q(x1) represents the flow into
the RS. Though, the flow out of the RS is estimated according to Taylor expansion around
x1 as,

Q(x2) = ρv +
∂(ρv)

∂x
dx +

1
2!

∂2(ρv)
∂x2 (dx)2 + . . . (14)

So,

Q(x2)−Q(x1) =
∂(ρv)

∂x
dx +

1
2!

∂2(ρv)
∂x2 (dx)2 + . . . (15)

In classical calculus, particularly in fluid dynamic, it is widely confirmed that we
truncate this series so we ignore terms higher than order dx, so Equation (15) becomes,

Q(x1)−Q(x2) = −
∂(ρv)

∂x
dx (16)

However, this truncation indicates that the change in flux is linear which is not only
considered as a limitation for the traffic flow theory, but also for various areas of science
and engineering.

On the other side, in fractional calculus, it was proven that the mass (NOV) obeys the
power law with respect to length scale of the spatial coordinate as [28,29],

NOV(x, α) ∼ xα

where α ∈ (0, 1] is the fractal parameter describing the order of space-derivative; therefore,
we assume that the traffic flow is following the real-order power-laws as,

Q(x) = xλ (17)

where λ ∈ R. Substituting Equation (17) into Equation (4) yields,

Dα
0 xλ =

Γ(1 + λ)

Γ(1 + λ− α)
· xλ−α (18)

Now, based on Equation (17) we define,

Q(x2)−Q(x1) = xλ
2 − xλ

1 (19)

or,
Q(x2) = Q(x1) +

(
xλ

2 − xλ
1

)
(20)

Expanding Q(x2) about x1 using fractional Taylor power series defined in Theorem 1,
one can obtain,

Q(x2) = Q(x1) +
Dα

0
(

xλ
1
)

Γ(1 + α)
(xα

2 − xα
1) +

Dα
0 Dα

0
(
xλ

1
)

Γ(1 + 2α)
xα

1(xα
2 − xα

1) + . . . (21)

As long as the flow in Equation (21) is represented as polynomial with non-negative
real power, the fractional Taylor expansion is exact if the fractional α− order equals the
λ− degree polynomial as we explained in Section 3.

Thus, setting α = λ and substituting in Equation (18) results,

Dα
0 xλ = Γ(1 + α). (22)
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Equation (22) indicates that the Caputo derivative of the proposed flux is constant. So
by using zero derivative property introduced in Equation (5) and combining Equation (21)
and Equation (22) we obtain,

Q(x2) = Q(x1) + (xα
2 − xα

1) + 0 + . . . (23)

As a result, setting the fractional α− order equals the λ− degree is exactly similar to
the concept of truncating the Taylor polynomial after the second term with zero error in
order to obtain the exact estimate. Furthermore, setting α = λ we implicitly admit that the
flux is nonlinear since Dα

0 xλ = Γ(1 + α) is a constant. Because unlike classical derivative,
when fractional derivative is constant then the origin function is nonlinear. Let us rewrite
Equation (21) as,

Q(x2)−Q(x1) =
Dα

0 Q(x1)

Γ(1 + α)
(xα

2 − xα
1). (24)

On the other side, in traffic flow theory, since the RS = [x1, x2] is fixed in space, one
can conclude easily,

NOV = ρ ·
x2∫

x1

dx = ρ · (x2 − x1) veh. (25)

Further, based on the control volume analysis in fluid dynamics, the time rate of
change in NOV in the fixed RS in a differential form is defined as,

dNOV
dt

=
dρ

dt
·

x2∫
x1

dx. (26)

The above equation represents the accumulation. In fact, the length-space in
Equation (26) was measured by usual metric dx as the Euclidean distance. Neverthe-
less, this argument is valid for the standard measure in metric space dx, but not for the
fractional space. Hence, we need to adopt a fractional measure, namely dMα(x). Now,
based on the fractal geometry, this relation between the fractional and classical measures
takes the form as concluded in [30,31],

dMα(x) = ψ(α, x)dx. (27)

Clearly, the fractional transformation ψ(α, x) between the two spaces, must be written
in power law to reflect fractality [32,33], which means spatial scale dependence of space.
Notably, the transformation ψ(α, x) can take many forms based on what type of fractional
integral we adopt. Here, in this study, we consider the Riemann–Liouville fractional
integral. It is stated in [34,35] that the fractional variable measure is defined as,

dMα(x) =
xα−1

Γ(α)
dx (28)

Now, we define the fractional measure for the region RS of 1-dimentional space as [36],

Mα(SR) =
∫

RS
dMα(x) = 1

Γ(α)

∫
RS

xα−1dx < +∞

for any RS ⊆ R+
(29)

Notice that when α = 1, we recover to the Euclidean distance in R+ as,

M1(SR = [x1, x2]) =
1

Γ(1)

∫
RS

x1−1dx = (x2 − x1)
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For a fractional generalization for the Equation (26), we apply the fractional variable
measure dMα(x) as,

∂NOV
∂t

=
∂ρ

∂t

x2∫
x1

dMα(x) =
∂ρ

∂t
· 1

Γ(α)
xα

α

∣∣∣∣x2

x1

=
∂ρ

∂t
·

xα
2 − xα

1
Γ(1 + α)

. (30)

Intuitively, analogous to derivation of the balance law in continuum mechanics that
mass (NOV) is conserved, accordingly for the fixed RS the sum of the accumulation inside
the RS and fluid that is flowing out of the RS must be equal to the amount of fluid flowing
into the RS. That is,

∂NOV
∂t

+ Q(x2) = Q(x1), (31)

so,

∆Q(x) = −∂NOV
∂t

. (32)

Combining Equations (24), (30), and (32) yields,

Dα
0 Q(x1)

Γ(1 + α)
(xα

2 − xα
1) = −

∂ρ

∂t
·

xα
2 − xα

1
Γ(1 + α)

, (33)

by simple calculation and using the differential symbol,

∂ρ(x, t)
∂t

+
∂αQ(x, t)

∂xα
= 0. (34)

This is a differential statement of conserved NOV which is referred to as the space-
fractional transport density equation or simply the space-fractional LWR model (F-LWR).

Regarding the units, the conventional space operator ∂
∂x has dimensions of inverse

kilometers km−1, while the fractional space derivative operator ∂α

∂xα has, km−α. Thus, in
order to be consistent with the space dimensionality we introduce the new parameter σ in
the following way,

1
σ1−α · ∂α

∂xα = 1
km

for α ∈ (0, 1].

In this manner, the model is dimensionally consistent if the new parameter σ has
dimension of space as, [σ] = km. Then, replacing ∂

∂x in classical LWR by 1
σ1−α · ∂α

∂xα , we
obtain a consistent model. However, for simplicity we take σ = 1 in this work, accordingly
Equation (34) is dimensionally consistent.

Later, in similar fashion, one can extend this model to space and time-fractional LWR
model as [17–19],

∂βρ(x, t)
∂tβ

+
∂αQ(x, t)

∂xα
= 0 (35)

5. Characteristics Method

Many attempts have been made to address the fractional transport equation using
different fractional operators aligned with different methods. Wang et al. [17] studied
the F-LWR model using local fractional conservation laws based on the fractional vector
integrals. Meanwhile, Li et al. [37] used the fractional Laplace variational iteration method
in Hausdorff fractional derivative sense. Wu [38] used modified Riemann–Liouville opera-
tor and the fractional Jumarie–Taylor’s series of multivariate functions. Dubey et al. [39]
approached the F-LWR using the homotopy analysis method along with the Mittag-Leffler
function in fractal space.

However, in this study, we implemented the characteristics method aligned with the
GFD fractional derivative, then traffic simulation to detect the effects of the fractional order
was provided.
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In fact, it is proven that smooth or classical solutions of the continuity equation does
not exist. Yet, this model arises in physics so some solutions exist. Thus, any suggested
solutions can only be formed within a space of nondifferentiable functions at some points(

xNon−di f f , tNon−di f f

)
, namely the weak solutions [40–42].

Consider the Cauchy problem of the fractional LWR model as,

∂

∂t
ρ(x, t) +

∂α

∂xα
Q(x, t) = 0, 0 < α ≤ 1 (36)

ρ(x, 0) = ρ0(x).

Before constructing a weak solution, however, we provide some preliminary relations.
Under uninterrupted flow conditions, speed, density, and flow are all related by the
fundamental relation,

Q = v · ρ

Moreover, the speed and density are linked by the Greenshields relation [43],

v = vm

(
1− ρ

ρm

)
where vm, ρm are the maximum speed and density allowed on a road, respectively. So, one
can find,

Q =

(
vmρ− vm

ρm
ρ2
)

, (37)

substituting Equation (37) into Equation (36) to obtain,

∂

∂t
ρ(x, t) +

∂α

∂xα

(
vm ρ− vm

ρm
ρ2
)
= 0, (38)

using properties (6)–(10) yields,

∂

∂t
ρ(x, t) +

(
vm −

2 vm

ρm
ρ

)
Γ(β)

Γ(β + 1− α)
x1−α ∂

∂x
ρ(x, t) = 0, (39)

therefore, the characteristic equations are provided by,

xα−1 dx
ds = Γ(β)

Γ(β+1−α)

(
vm − 2 vm

ρm
ρ
)

dt
ds = 1
dρ
ds = 0.

(40)

Subject to the initial conditions,
t(r, 0) = 0
x(r, 0) = (αr)1/α

ρ(r, 0) = ψ(r),
(41)

integrating system (40), we obtain,
x = α

√
α

Γ(β)
Γ(β+1−α)

(
vm − 2 vm

ρm
ρ
)

s + αc1(r)

t = s + c2(r)
ρ = ψ(r).

(42)
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To determine the r-dependence, c1(r) and c2(r) we use the initial conditions (41),
x = α

√
α
(

vm − 2 vm
ρm

ρ
)

Γ(β)
Γ(β+1−α)

t + r

t = s
ρ = ψ(r).

(43)

So,

r = xα − α
Γ(β)

Γ(β + 1− α)

(
vm −

2 vm

ρm
ρ

)
t. (44)

Therefore, the solution of the initial value problem can be written as,

ρ(x, t) = ψ

(
xα − α

Γ(β)

Γ(β + 1− α)

(
vm −

2 vm

ρm
ρ

)
t
)

, (45)

where ψ(x, t) is an arbitrary function. For simplicity, we take ψ(θ) = θ and substitute in
Equation (45) to obtain,

ρ =
ρm(Γ(β + 1− α)xα − α Γ(β) vmt)

ρmΓ(β + 1− α)− 2α Γ(β)vmt
. (46)

According to Malaysian Institute of Road Safety Research (MIRO) the speed limit is
vm = 80 km/h and suppose that the average length of a car is about 5 m, thus the maximum
density is ρm = 200 veh/km. For the sake of simplicity, we also set β = 1. Therefore,

ρ =
5(Γ(2− α)xα − 80α t)

5Γ(2− α)− 4α t
. (47)

Taking the Riemann problem as piecewise constant initial data which represent a red
signal light as,

ρ(x, t) =
{

ρl = 110 ; x < s · t + ε0
ρr = 200 ; x > s · t + ε0,

(48)

where ε0 ∈ R+ and ρl , ρr represent the values of the density on the RS at the left and at the
right, respectively. Moreover, s is the propagation speed which can be found from the jump
condition,

s =
1

ρr − ρl

ρr∫
ρl

Γ(β)

Γ(β + 1− α)

(
vm −

2 vm

ρm
ρ

)
x1−αdρ =

−44Γ(β)

Γ(β + 1− α)
x1−α. (49)

So, system (48) can be expressed as,

ρ(x, t) =

 ρl = 110 ; x < −44Γ(β)
Γ(β+1−α)

x1−α · t + ε0

ρr = 200 ; x > −44Γ(β)
Γ(β+1−α)

x1−α · t + ε0.
(50)

Clearly, system (50) is a discontinuous solution for Equation (39). In fact, it represents
a red-light traffic where the density increases dramatically from ρl = 110 to ρr = 200 and
forms a shock wave at x = ε0 in finite time. This jam wave propagates against the stream
to form a queue in front of the traffic signal, and it moves with negative speed, s satisfying
the Rankine–Hugoniot jump condition,

s =
−44Γ(β)

Γ(β + 1− α)
x1−α

as shown in Figure 3. Unlike the classical calculus, the jam speed now depends on the
fractional order α. Moreover, the most important part is that each traffic signal has its own
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character based on the value of the fractional order α. Therefore, using the fractional model,
the traffic engineers can predict various locations and speeds of the shock wave for each
traffic signal.

It turns out that, according to Table 1, by increasing the value of α the shock wave
speed decreases, as a result the shock location increases.
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Table 1. Shock location and speed for various fractional-order values.

Time (h) Fractional Order Shock Location (km) Shock Speed (km/h)

t = 0.06
α = 0.1 x = 4.459 s = −175.67
α = 0.3 x = 5.462 s = −158.93
α = 0.7 x = 9.263 s = −95.600

However, in general, when the traffic signal light turns red the drivers reduce their
speeds gradually, not sharply. Thus, we are interested in constructing a continuous solution
corresponds to Riemann problem. Hence, we look for a solution which continuously
connects the density from left ρl with the density from right ρr, namely, the weak solution.

To perform this we set,

110 <
5(Γ(2− α)xα − 80α t)

5Γ(2− α)− 4α t
< 200. (51)

Therefore, the solution takes the form as,

ρ(x, t) =


ρl = 110 ; x < α

√
110Γ(2−α)−8α t

Γ(2−α)

ρsync =
5(Γ(2−α)xα−80α t)

5Γ(2−α)−4α t ; α

√
110Γ(2−α)−8α t

Γ(2−α)
≤ x ≤

ρr = 200 ; x < α

√
200Γ(2−α)−80α t

Γ(2−α)
,

α

√
200Γ(2− α)− 80α t

Γ(2− α)
(52)

where ρsync is the synchronized density phase, so the drivers inside this phase adjust their
speeds according to the jam ahead.
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Now, to illustrate the effects of the non-integer fractional order on the proposed model
we vary the value of fractional order in Equation (52) with α = 0.8, 0.9 and 1, in which the
last value belongs to classical calculus. We denote the drivers who follow α = 0.8 character
by 0.8 drivers. Mathematically speaking, as the value of the fractional order increases, the
density profile tends to be more linear, as shown in Figure 4. Yet, the significance of the
current work lies in the physical interpretation of varying the fractional order. Evidently, the
space interval of the synchronized density phase for the 0.8 drivers is longer than 0.9 drivers,
which indicates that the latter drivers decrease their speeds sharper than 0.8 drivers. Put
differently, the larger the α− value, the more aggressive driving style due to the fact that
the 0.8 drivers have sufficiently enough space to reduce their speeds gradually in reference
to the jam ahead. Meanwhile, in the classical calculus mode when α = 1 the synchronized
density recovers to a linear function in space.

Smart Cities 2022, 5, FOR PEER REVIEW  12 
 

order. Evidently, the space interval of the synchronized density phase for the 0.8 drivers 

is longer than 0.9 drivers, which indicates that the latter drivers decrease their speeds 

sharper than 0.8 drivers. Put differently, the larger the value − , the more aggressive 

driving style due to the fact that the 0.8 drivers have sufficiently enough space to reduce 

their speeds gradually in reference to the jam ahead. Meanwhile, in the classical calculus 

mode when 1 =  the synchronized density recovers to a linear function in space. 

 

Figure 4. Density in the space. Exact solution at time 0.2t =  hours for different fractional-order 

values, 0.8 = , 0.9 = , and 1 = . 

The fractional-order value can be empirically set using traffic detector data for a long 

period of time for each signal. However, we recommend data collected based on the 

Global Positioning System (GPS) where the mean difference between two densities is not 

significant at less than 5% error. 

So far, however, all previous studies have introduced only numerical solutions with 

no traffic simulation while the current study provides exact analytical solutions and ve-

hicular simulation associated to successive signalized intersections. As some research has 

been carried out on a fractional LWR model, only two studies have attempted to deal with 

linear speed–density relationship. Singh et al. [44] solved various F-LWR models numer-

ically using a constant, linear, and non-linear speed–density relation and obtained non-

differentiable solutions, while this works uses exact solutions through Equation (52) 

which are considered differentiable almost everywhere. Wang et al. [17], derived the F-

LWR model based on the fractional vector integrals and used a linear velocity to introduce 

the Cauchy problem of the nonlinear F-LWR model; however, the authors did not solve 

the model. On the other side, concerning the constant velocity, Li et al. [37] applied the 

fractional Laplace transform to solve the model, nevertheless the authors assumed that 

the vehicles’ speed is 1 km/h and gained nondifferentiable solutions. Similarly, both Jas-

sim [19] and Kumar et al. [18] used the hyperbolic boundary condition along with constant 

velocity to obtain nondifferential solutions. Finally, in contrast to the abovementioned 

works, the results of this study are exact and analytic; therefore, there are less computa-

tions with guaranteed accuracy. 

6. Discussion 

In designing smart transportation infrastructure, traffic engineers are highly recom-

mended to determine the proper value of the fractional order that can fit each specific 

traffic signal on the road which can be found by using various hardware, such as cameras 

and sensors or software such as GPS applications. Knowing the   value is of great 

Figure 4. Density in the space. Exact solution at time t = 0.2 hours for different fractional-order
values, α = 0.8, α = 0.9, and α = 1.

The fractional-order value can be empirically set using traffic detector data for a long
period of time for each signal. However, we recommend data collected based on the
Global Positioning System (GPS) where the mean difference between two densities is not
significant at less than 5% error.

So far, however, all previous studies have introduced only numerical solutions with no
traffic simulation while the current study provides exact analytical solutions and vehicular
simulation associated to successive signalized intersections. As some research has been
carried out on a fractional LWR model, only two studies have attempted to deal with linear
speed–density relationship. Singh et al. [44] solved various F-LWR models numerically
using a constant, linear, and non-linear speed–density relation and obtained nondifferen-
tiable solutions, while this works uses exact solutions through Equation (52) which are
considered differentiable almost everywhere. Wang et al. [17], derived the F-LWR model
based on the fractional vector integrals and used a linear velocity to introduce the Cauchy
problem of the nonlinear F-LWR model; however, the authors did not solve the model. On
the other side, concerning the constant velocity, Li et al. [37] applied the fractional Laplace
transform to solve the model, nevertheless the authors assumed that the vehicles’ speed
is 1 km/h and gained nondifferentiable solutions. Similarly, both Jassim [19] and Kumar
et al. [18] used the hyperbolic boundary condition along with constant velocity to obtain
nondifferential solutions. Finally, in contrast to the abovementioned works, the results of
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this study are exact and analytic; therefore, there are less computations with guaranteed
accuracy.

6. Discussion

In designing smart transportation infrastructure, traffic engineers are highly recom-
mended to determine the proper value of the fractional order that can fit each specific traffic
signal on the road which can be found by using various hardware, such as cameras and
sensors or software such as GPS applications. Knowing the α value is of great importance
so that the traffic engineers can predict various speeds of the jam for a particular traffic
signal on road so as to construct the best locations of some successive signals. As a further
advantage of using the fractional model, the traffic engineers can set the best waiting time
at a red-light traffic in order to prevent the jam wave from reaching the next signal.

Example. In this simulation we adopt the Riemann problem Equation (50), so a comparison between
two different scenarios when α1 = 0.90 and α2 = 0.95 is conducted with the purpose of describing
the implications and benefits of the fractional model in constructing successive signalized junctions.
Now, let us assume a traffic signal is sited at the location x = 15 km, mentioned as Ω-signal, where
a traffic engineer plans to set another traffic signal on the left and has only three choices, location
A = 14 , B = 14.2 or C = 14.3 as shown in Figure 5. Taking into account that the jam wave
results from the red-light of the Ω-signal is not allowed to reach the proposed locations A, B or C,
given that the Ω-signal shows a red light for 50 s, a green light for 50 s, and a yellow light for 2 s.
Thus, it is of fundamental importance that the Ω-signal turns green before the jam wave reaches the
proposed locations.
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Figure 5. Schematic diagram describes the formation of travelling jam moves towards three different
locations A, B, and C.

As the Ω-signal light turns red, traffic starts backing up to the left, and the speed of
the backward propagation of a queue is provided as Equation (49). Hence, the jam wave
location is,

x |Shock location =
−44Γ(β)

Γ(β + 1− α)
x1−α · t + 15. (53)

Substituting x = 14, 14.2 and 14.3 km in Equation (53) yields the expected durations
of jam wave to reach the given locations as shown in Table 2.

Table 2. Durations in seconds of the shock wave to reach various locations A, B, and C using different
values of the fractional order.

A B C

α1 = 0.90 59.78 47.75 41.75
α2 = 0.95 69.80 55.80 48.81
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Based on Table 2, the traffic engineer has two different scenarios. First, if the Ω-signal
behaves under the α1 − order effect, then locations B and C are definitely rejected as the
traffic jam arrives to them before the Ω-signal turns green, meanwhile, as the queue reaches
location A, the Ω-signal already turned green about 7 s ago considering 2 s for the yellow
light. Hence, location A is the only reasonable option. Second, if α2 controls the Ω-signal
behavior, then location C is out of the scope because its expected duration is less than 50 s.
In fact, locations A and B are clearly accepted. So, the proper decision depends on the value
of the fractional order which is considered the crucial component of the jam wave speed
and location.

7. Conclusions

In this study, we established and solved a new fractional generalization for the conti-
nuity equation, particularly the F-LWR model. As a pursuit of these we herein match the
degree and the order for the Caputo fractional Taylor expansion, consequently we obtain
zero error and the exact value. Then, we link the fractional measure with Riemann–Liouville
fractional integral on space scale to obtain a relation between the single variable measure
of fractional space and the measure of integer space. Advantageously, this extension from
classical to fractional space eliminated the linear restriction of the flux in the road segment;
therefore, various nonlinear and complex behaviors of the traffic flow can be predicted,
such as nonhomogeneous driving style. Verifying nonlinearity for the fractional transport
equation is of paramount importance not only for the traffic flow theory, but also for several
fields of physics such as hydrodynamics, electromagnetism, and quantum mechanics. In
the last part, two different solutions are obtained by using the characteristics method in line
with the generalized fractional derivative. Consequently, the effects of the fractional-order
derivative are simulated in regard to traffic signals. As a future scope of the work, we
suggest extending this model to a space and time fractional LWR model in order to analyze
the impact of the time dependent variable order.
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