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Abstract: Floods generated by rain cause significant economic and human losses. The campus of the
Escuela Superior Politécnica del Litoral (ESPOL) has a drainage system that conducts stormwater to
two discharge points outside the campus. The system works effectively at the macro-drainage level.
However, a very crowded area is deficient at the micro-drainage level, which has registered flooding
and the proliferation of vectors that affect people’s health. This work aimed to design a masterplan for
stormwater sewerage by analyzing the existing situation and applying technical criteria that allow the
establishment of solutions and strategies to control floods at the university campus. The methodology
consisted of: (i) data collection and processing for the stormwater drainage system diagnosis; (ii) a
design proposal for micro-drainage and (iii) a SWOT analysis to propose improvement strategies
in water management. The resulting flows for return periods of 5 years, 10 years, and 25 years are
9.67 m3/s, 11.85 m3/s, and 15.85 m3/s, respectively. In the latter, as the most critical area (presence of
flooding), the implementation of a trapezoidal channel 80.20 m long, with a capacity of 1.00 m3/s, for
a return period of 25 years was proposed. The stormwater masterplan will contribute to the execution
of activities within the campus and prevent accidents and the proliferation of diseases, constituting a
water-management model that can be replicated locally, regionally, and internationally.

Keywords: drainage channels; sustainability; social responsibility; resource recovery; circular economy

1. Introduction

A hydrographic watershed is an area on the earth’s surface that constitutes a natural
drainage system for water captured by precipitation towards the same exit or gauging
point [1]. These can be divided into sub-watersheds and micro-watersheds to make a more
detailed analysis of the flow that enters and leaves [2]. One of the methods to assess the
availability of water resources in a watershed is through the water balance, which analyzes
the hydrological cycle by estimating the inflow of water through precipitation and its
output process, which includes evapotranspiration, runoff, and infiltration [3].

In urban areas, the water cycle has another approach because it comprises of a series
of stages. It begins with collecting and treating water that is supplied to the population
and used in different activities that generate wastewater. Next, the generated wastewater
is collected and transported through a systems of pipes to the treatment plants, to finally
be returned to an effluent where it will have the effect of dilution by volume and does not
deteriorate in quality [4].

The evapotranspiration, runoff and infiltration parameters will depend on the per-
meability of the soil, and in an urban watershed, this is a factor to consider. By 2030,
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it is estimated that the world population will reach 9.7 billion inhabitants [5], assuming
continuous population growth. As a result, the need arises to occupy new areas in cities
that require expansion. Furthermore, this will cause changes in the water cycle since part of
urban development involves the construction of paved roads, asphalt roads, buildings, the
removal of vegetation, and so on [6,7]. All this translates into the waterproofing of the soil,
which modifies flow routes, increases runoff speed, generates higher flows and increases
the frequency of flooding [8,9].

Floods are overflows of water that generate serious economic and human losses [10–12].
Causes of these events include extreme rainfall, river flow, the appearance of groundwater,
astronomical tides, or storm surges. In addition, floods can occur due to unnatural reasons
such as hydraulic failures in dams or dikes, collapses in stormwater or sanitary sewer
systems, and soil erosion, which causes the soil to become more permeable [13].

Floods, regardless of how they originate, create ideal aquatic habitats for the develop-
ment and proliferation of vectors, which are living organisms such as mosquitoes, which
are transmitters of diseases such as dengue, malaria, Zika, and Chikungunya [14–16].

Climate change and urban growth significantly affect flood risk [17–19]. Therefore,
adequate urban planning allows for reducing these risks because it implies a set of protec-
tion strategies at the engineering level, such as dikes or sewage systems, and at the social
level through educational programs that raise awareness among the population to take
preventive measures before these events [20–23].

A stormwater sewerage system comprises a systems of pipes, channels and other
structures that drain rainwater that falls into urban areas and deposit it in bodies of wa-
ter [24]. In addition, there are sewerage systems that combine wastewater with stormwater.
However, it is currently a practice not recommended due to the pollution it generates when
discharged without being treated, as well as to reduce the demand on treatment plants [25].

Sustainable urban drainage systems are those that mitigate their influence on the
natural water cycle and incorporate some techniques that favor storage and infiltration,
such as retention watersheds, permeable surfaces, bio-retention zones, filter strips, green
ditches, seepage deposits, wetlands and others [26,27].

Due to the existing scarcity of water in some regions of the world (e.g., [28–33]), water
is a resource that must be managed responsibly. Rainwater represents an alternative source
of water that can be stored and collected for its uses, such as crop irrigation in dry seasons
and certain domestic activities [34–36]. For this reason, more and more countries are aiming
at adequate stormwater management at the urban level to avoid problems generated by
irresponsible practices while implementing drainage infrastructures (e.g., [37–46]).

Stormwater sewerage works require proper planning to avoid future problems. A
masterplan is a comprehensive set of strategies that contemplate a series of actions that
start from the analysis of the existing situation, proposal of alternatives, implementation,
and follow-up to solve a problem in the short, medium, and long term [47–50].

The study area corresponds to the Gustavo Galindo Campus of the Escuela Superior
Politécnica del Litoral (ESPOL), located in the southwest of the coastal region of Ecuador,
specifically in the city of Guayaquil, Guayas province. The university campus has an
approximate area of 630.16 ha, of which 49% of its extension represents environmental
protection forests called Bosque Protector Prosperina [51,52] (Figure 1). From the morpho-
logical point of view, the study area includes rugged terrain with slopes exceeding 40%
and relatively flat areas with slopes of less than 15%, which contain the most buildings.
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At the macro level, the existing drainage system works adequately; however, when
zones carry out the analysis, it can be identified that, at the micro-drainage level, one of
them works inefficiently because a civil structure (building) is in the natural drainage area.
In this area, which is very busy, significant flooding has been recorded in the winter season,
resulting in damage and impacts to the well-being of the university community. Following
this problem, components should be considered that are crucial in the masterplan of a
university campus that allow for flood and decrease the risk of vector proliferation, as
well as the proposal of short, medium, and long-term interventions, and works that will
improve the well-being of the campus community.

ESPOL constantly seeks to optimize the management of the drinking water, sanitary
sewerage and stormwater sewerage systems to guarantee safe expansion in the short,
medium and long term [53,54]. That is why, through analyzing the existing situation
and applying technical criteria, this study proposed a masterplan as a comprehensive
management model for flood control on campus, which will provide solutions that are
viable on the economic level as well as sustainable. Furthermore, adequate flood control
will mitigate the proliferation of vectors responsible for diseases and health effects.

2. Materials and Methods

ESPOL is considered the first green university in Ecuador, and according to the
UI Green Metric World University Ranking, it is among the greenest universities in the
world [55]. In addition, the campus has academic and administrative infrastructure areas
and important areas declared as environmental protection areas.

Considering the morphology of the terrain and the meteorological conditions that
condition the hydrographic system of the study area, it is important to develop stormwater-
management projects that evaluate the behavior of the existing sewage infrastructure on
campus and in populated peripheral zones. Furthermore, the hydrological analysis of
watersheds and micro-watersheds is a fundamental tool in stormwater management in
occupied areas with future expansion plans. In this case, to mitigate flooding problems
within a university campus, work phases have been contemplated that include: (i) data
collection and processing for the stormwater drainage system diagnosis; (ii) a design
proposal for micro-drainage; and (iii) a SWOT analysis to propose improvement strategies
in water management (Figure 2).
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2.1. Stage I: Data Collection and Processing for the Stormwater Drainage System Diagnosis

The study began with collecting and processing data from the area that included:
topography, population data, previous projects of the stormwater sewerage system, and
meteorology, among others. Then, computer software such as Google Earth, CivilCAD,
and ArcGIS made it possible to obtain the topography.

With the land’s topography, we proceeded to delimit the sub-watershed and micro-
watersheds through the ArcGIS software using the Flow Direction and Flow Accumulation
tools to determine the drainage areas of the micro-watersheds. The average between the
results obtained from the Kirpich (Equation (1)) [56] and California (Equation (2)) [57]
equation allowed us to determine the concentration time (t). The two methods are similar
and useful in watersheds of medium size, have considerable slope, have soils dedicated to
cultivation (mango planting in experimentation), and are widely used in the environment.
For Equation (1), Lo is the length of the channel upstream to the outlet point, and S is the
average slope of the basin; while for Equation (2), L is the length of the longest watercourse
and H is the difference between the watershed and the outlet.

t = 0.006628 · Lo0.77

S0.385 (1)

t =

(
0.871·L0.3

H

)0.385

(2)

The analysis of different factors to determine the design flow of rainwater (Q) included:
values of intensity (I), duration and frequency of average precipitation from the nearest
meteorological station (M0056) based on the data provided by the National Institute of
Meteorology and Hydrology (INAMHI, acronym in Spanish) [58] (Table 1). This analysis
aimed to determine the values of maximum precipitation intensities for a given return
period T (2 years, 5 years, 10 years, 25 years, 50 years, 100 years). Subsequently, the
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determination of the runoff coefficient (C) depended on the surface characteristics in
developed areas (e.g., asphalt, concrete, gardens, parks, among others) and undeveloped
areas (e.g., crop areas, pastures, forests), making use of the Chow matrix [59] (Table 2).

Table 1. Guayaquil airport station records (INAMHI, 2015).

Station Time Intervals
(Minutes)

Equations R R2
Code Name

M0056
Guayaquil

Airport

5 < 30 I = 135.778× T0.2169 × t−0.30063 0.9840 0.9683
30 < 120 I = 203.0259× T0.2169 × t−0.417068 0.9944 0.9889

120 < 1440 I = 1113.4537× T0.2169 × t−0.7779 0.9992 0.9984

Table 2. Runoff coefficients [59].

Surface Characteristics
Return Period (Years)

2 5 10 25 50 100 1000

Developed areas

Asphalt 0.73 0.77 0.81 0.86 0.90 0.95 1.00
Concrete/roof 0.75 0.80 0.83 0.88 0.92 0.97 1.00

Green zones (gardens, parks, etc.)

Poor condition (less than 50 % grass cover of the area)
Plain, 0–2% 0.32 0.34 0.37 0.40 0.44 0.47 0.58

Average slope, 2–7% 0.37 0.40 0.43 0.46 0.49 0.53 0.61
Slope over 7% 0.40 0.43 0.45 0.49 0.52 0.55 0.62

Average condition (50% to 75% grass cover of area)
Plain, 0–2% 0.25 0.28 0.30 0.34 0.37 0.41 0.53

Average slope, 2–7% 0.33 0.36 0.38 0.42 0.45 0.49 0.58
Slope over 7% 0.37 0.40 0.42 0.46 0.49 0.53 0.60

Good condition (greater than 75% of the area covered with grass)
Plain, 0–2% 0.21 0.23 0.25 0.29 0.32 0.36 0.49

Average slope, 2–7% 0.29 0.32 0.35 0.39 0.42 0.46 0.56
Slope over 7% 0.34 0.37 0.40 0.44 0.47 0.51 0.58

Andeveloped areas

Crop areas
Plain, 0–2% 0.31 0.34 0.36 0.40 0.43 0.47 0.57

Average slope, 2–7% 0.35 0.38 0.41 0.44 0.48 0.511 0.60
Slope over 7% 0.39 0.42 0.44 0.48 0.51 0.54 0.61

Grasslands
Plain, 0–2% 0.25 0.38 0.30 0.34 0.37 0.41 0.53

Average slope, 2–7% 0.33 0.36 0.38 0.42 0.45 0.49 0.58
Slope over 7% 0.37 0.40 0.42 0.46 0.49 0.53 0.60

Forests
Plain, 0–2% 0.22 0.25 0.28 0.31 0.35 0.39 0.48

Average slope, 2–7% 0.31 0.34 0.36 0.40 0.43 0.47 0.56
Slope over 7% 0.35 0.39 0.41 0.45 0.48 0.52 0.58

On the other hand, with the data on runoff coefficient (C), rainfall intensity (I), and
estimated areas of the micro-watersheds (A), the calculation of the maximum runoff flows
was carried out using the rational method (Equation (3)) [60], for different return times for
micro-drainage (5 years, 10 years, and 15 years).

Q = CIA (3)

Finally, the diagnosis of the existing system included the identification of the sewers
and channels that the university campus has for the transport of rainwater, with the
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respective information on diameters, sections, dimensions, and current conditions. For
this, based on the measurements made, in the case of channels, the depth was estimated
(Equation (4)), where H is the total height of the channel, which is the sum of the deep (y)
and the free edge (FE), the FE being between 5% and 30% of the tightness [59,61]. Therefore,
it was considered that pipes work at 75% of their capacity [62].

H = y + FE (4)

The study determined the capacity of the existing channel and pipe, using the depth
of the water flow through the formula developed by Robert Manning [63], in which the
estimated flow depends on parameters such as roughness coefficient (n), the hydraulic
radius (Rh), longitudinal slope (S), and cross-sectional area (A) of the existing systems
analyzed (Equation (5)). The value of n was taken from [63] and as the specialized literature
on this subject indicates, this value depends on the type of material in which the channel or
pipe is constructed (e.g., closed conduit, lined channel, natural flow, excavated) and the
lining material.

Q =
1
n
· A · R2/3

h · S1/2 (5)

2.2. Stage II: Design Proposal for Micro-Drainage
2.2.1. Analysis Zones

Based on the flows that each of the micro-watersheds generates, the study evaluated
the capacity of the existing channels, defining four main discharge sites (SD) (two that
correspond to the macro drainage and two based on the problems identified in the site). For
the proposed SDs, the capacity evaluation considered a return period of 50 years, which
made it possible to define the venting areas that present flooding problems and the increase
in infrastructure capacity and propose the respective solutions based on conditions in
each site.

2.2.2. Constraint Analysis

The approach of alternatives that solve the problems identified in the area considered
the already established constructions and the environmental conservation areas (protective
forest and green areas). Similarly, it is important to consider technical criteria such as
location, slope, and sector of influence. Therefore, the alternatives considered technical
criteria (natural slope, location, area, previous studies, connection points) to guarantee the
operation of the gravity system and avoid high operation and maintenance costs due to
energy expenses when installing pumping stations. Additionally, the analysis considered
sustainability criteria, including social (e.g., population growth, health emergency, road
development), economic (e.g., construction costs, machinery costs, maintenance costs) and
environmental (e.g., impact on forests, green areas) criteria.

Finally, these criteria take on values through an adaptation of the Likert scale [64], a
semiquantitative methodology in which the assigned score depends on the opinion of the
evaluators and the level of compliance with the parameter in the alternatives analyzed. The
scores within this methodology include evaluations between 1 to 5 considering: (i) one is
“totally unfavorable”, (ii) two is “certainly unfavorable”, (iii) three is “neutral or indifferent”,
(iv) four is “certainly favorable”, and (v) five is “totally favorable” (Table 3). In addition,
this study will analyze the alternative that obtains a higher score.
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Table 3. Criteria, parameters, and scores used for the evaluation through Likert scale.

Criteria Parameters Score

Technical considerations
Natural slope

Location and area
Preliminary studies

1–5

Social considerations Sanitary emergency
Population growth

Economic considerations
Building costs

Machinery and equipment costs
Maintenance costs

Environmental considerations
Impact on flora and fauna

Affectation of protection areas
Changing the natural course of water

The hydraulic design of the pipes and channels took into account the considerations
established in the Ecuadorian Code of Practice of the Ecuadorian Standards Institute (CPE
INEN) 5:9:1 [65].

2.3. Stage III: SWOT Analysis

The study ended with an analysis of the main strengths, weaknesses, opportunities,
and threats (SWOT) [66] of the campus storm sewer system, which allows the proposal of
improvement strategies that guarantee the management of rainwater in the short, medium,
and long term. This analysis contemplated a comprehensive approach that involved the
participation of ESPOL campus authorities related to sustainable water management, civil
engineers, and authors of the work.

3. Results and Discussion
3.1. Study Area Diagnosis

The campus has an irregular morphology that includes elevations between 25 and
450 m above sea level (Figure 3) and maximum slopes of 45◦. This condition allows the
formation of a series of natural drainages that preserve the protective forest and flow
through a storm drainage system that avoids flooding problems on campus. The main
buildings, where most of the university’s activities occur, are mainly in the light-green zone.

According to the topographic data of the study area and the hydrological analysis per-
formed in ArcGIS software, two sub-watersheds of 401.90 ha and 228.26 ha were delimited
for sub-watershed one and two, respectively (Figure 4). Sub-watershed 1 encompasses 90%
of the campus infrastructure (target area for flood event analysis) and protective forest.
On the other hand, sub-watershed two comprises an area designated for economic and
sustainable development that includes experimental farms and part of the protective forest.

In the specific analysis, ten drainage micro-watersheds were determined (Figure 5),
with micro-watershed four occupying the largest area, with maximum slopes; on the other
hand, micro-watershed two is the smallest area and has the lowest slopes (Table 4). The
drainage system obtained from the elevation and slope data reflects main and secondary
channels that converge at two main water dump points (WDP) or outflow points to the
north of the study area (Figure 5). WDP1 collects the flow generated by sub-watershed one,
while WDP2 collects the discharge from sub-watershed two.
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Table 4. Values taken from ArcGIS modeling.

Micro-Watershed Area (ha) Length (km) Max. Elevation (m) Min. Elevation (m) Slope (S) Height (m)

1 35.15 0.76 87 80 0.01 7
2 8.60 0.26 81 79 0.01 2
3 12.26 0.36 90 81 0.03 9
4 138.80 2.11 350 70 0.13 280
5 56.13 0.80 79 66 0.02 13
6 110.29 1.57 70 35 0.02 35
7 49.86 1.16 190 92.5 0.08 97.5
8 27.94 0.69 120 87 0.05 33
9 118.35 2.01 90 40 0.02 50
10 72.78 0.97 210 90 0.12 120

Total Area 630.16 0 0 0 0

The water flow coming from WDP1 goes through an unlined channel that conveys
the water to the outside of the campus (Figure 6a), to the sector called “Socio-Vivienda”
(Figure 6b), passing through two pipes of Ø500 and Ø800 mm (Figure 6c). The flow of
WDP2 discharges to the drainage system of a perimeter road (first-order highway).
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pipes that allow the flow of water between the university and the sector called Socio-Vivienda.

3.2. Hydrological Study

The average values obtained from the Kirpich and California equations show a max-
imum concentration time (t) of 28.29 min corresponding to micro-watershed nine and a
minimum of 7.40 min corresponding to micro-watershed three (Table 5).

Table 5. Concentration time by Kirpich and California equations.

Micro-Watershed Kirpich
(min)

California
(min)

Average
Kirpich/California (min)

1 19.44 19.47 19.46
2 9.25 9.26 9.26
3 7.39 7.40 7.40
4 15.39 15.41 15.40
5 16.46 16.48 16.47
6 24.42 24.44 24.43
7 11.53 11.55 11.54
8 9.61 9.63 9.62
9 28.28 28.31 28.29
10 8.69 8.71 8.70

According to the times of concentration (Table 5), the rainfall intensity values reflect
maximum values of 171.84 mm/hour in the return period T of 50 years for micro-watershed
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three. On the other hand, micro-watershed nine with an intensity of 69.15 mm/hour for a T
of five years corresponds to the minimum intensity value in the study (Table 6).

Table 6. Rainfall intensity values (mm/hour) for the different return periods (T).

Micro-Watershed 5 Years 10 Years 15 Years 20 Years 25 Years 30 Years 50 Years

1 77.55 90.13 98.42 104.75 109.95 114.38 127.79
2 97.36 113.16 123.56 131.52 138.04 143.61 160.43
3 104.28 121.20 132.34 140.87 147.85 153.81 171.84
4 83.31 96.83 105.73 112.54 118.12 122.88 137.28
5 81.61 94.85 103.57 110.24 115.71 120.37 134.48
6 72.33 84.06 91.79 97.70 102.54 106.68 119.18
7 91.00 105.77 115.49 122.92 129.02 134.22 149.95
8 96.23 111.84 122.12 129.98 136.43 141.93 158.56
9 69.15 80.37 87.75 93.40 98.04 101.99 113.94
10 99.23 115.33 125.93 134.04 140.69 146.36 163.51

According to the classifications proposed by [59] and the slopes calculated for each
micro-watershed, 70% of the area analyzed corresponds to pitches between 0 and 7% with
maximum runoff coefficients of 0.92 at a T of 50 years. In contrast, 30% of the zone (micro-
watersheds 4, 7, and 10) with slopes greater than 7% reflect maximum runoff coefficients of
0.48 for a 50-year (T).

Although the ESPOL campus has many green surfaces that allow water filtration,
micro-watersheds two and three have the highest runoff coefficient; this is because both
areas contain most of the campus infrastructure, and due to the presence of concrete,
the soil is less permeable, so rainwater runs off more easily (Table 7). Similarly, when
reviewing other case studies, it can be seen how the runoff coefficient is higher in urbanized
areas [67–69].

Table 7. Application of runoff coefficients in micro-watershed for the different return periods (T).

Micro-Watershed 5 Years 10 Years 15 Years 20 Years 25 Years 30 Years 50 Years

1 0.40 0.43 0.44 0.45 0.46 0.47 0.49
2 0.80 0.83 0.85 0.86 0.88 0.90 0.92
3 0.80 0.83 0.85 0.86 0.88 0.90 0.92
4 0.39 0.41 0.42 0.44 0.45 0.47 0.48
5 0.36 0.38 0.39 0.41 0.42 0.44 0.45
6 0.34 0.36 0.37 0.39 0.40 0.42 0.43
7 0.34 0.36 0.37 0.39 0.40 0.42 0.43
8 0.36 0.38 0.39 0.41 0.42 0.44 0.45
9 0.39 0.41 0.42 0.43 0.45 0.47 0.48
10 0.39 0.41 0.42 0.43 0.45 0.47 0.48

For a return period of 50 years, the micro-watershed presents a maximum flow equal
to 4.30 m3/s (Table 8). The rational method allowed for estimating the average flow of the
micro-watersheds with areas smaller than 139 Ha, which according to [70] the application
of this method is ideal for watersheds smaller than 25 Km2 (2500 Ha), demonstrated its
efficiency in different studies [71–73].
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Table 8. Runoff Flow Values for the different return periods (T).

WDP * Micro-Watershed 5 Years 10 Years 15 Years 20 Years 25 Years 30 Years 50 Years

WDP1

1 0.51 0.64 0.72 0.78 0.84 0.89 1.03
2 0.32 0.38 0.42 0.46 0.49 0.52 0.60
3 0.48 0.58 0.65 0.70 0.75 0.80 0.91
4 2.12 2.59 2.9 3.23 3.47 3.77 4.30
5 0.78 0.95 1.07 1.19 1.28 1.40 1.60
7 0.73 0.89 1.00 1.12 1.21 1.32 1.51
8 0.46 0.56 0.63 0.70 0.75 0.82 0.94
10 1.33 1.62 1.81 1.97 2.17 2.36 2.69

Subtotal 1 6.73 8.21 9.20 10.15 10.96 11.88 13.58

WDP2
6 1.46 1.80 2.02 2.26 2.44 2.66 3.04
9 1.5 1.83 2.05 2.24 2.46 2.67 3.04

Subtotal 2 2.96 3.63 4.07 4.5 4.9 5.33 6.08
Total 9.69 11.84 13.27 14.65 15.86 17.21 19.66

* WDP: Water Dump Points.

3.3. Existing System Evaluation

The study considered four analysis points: (i) point A, where a large part of the flows
generated by the different areas where many of the campus activities take place to converge;
(ii) points B and C, which are the outlets for the entire ESPOL storm drainage system; and
(iii) point D, characterized by being the busiest zone on campus, locating a cafeteria and
other classroom buildings are located; the latter has local flooding problems. Figure 7
shows the location and slope value corresponding to the sections of each point.
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In point D, there are infrastructures where concrete covers a large part of the soil.
Unlike the natural ground, concrete does not allow water loss by infiltration, favoring
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the flow transit [74], making the area vulnerable to flooding due to the abovementioned
conditions [75,76].

Point A currently has a trapezoidal section channel, while in point B and C, there is a
natural channel with a rectangular section. Finally, the drainage system in point D consists
of a Ø500 mm diameter pipe (Figure 8). The capacity evaluation used Equation (5).
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Initially, the study considered a FE of 30% of the depth for the capacity analysis of the
channels of points A, B and C. However, for point D, as it is a pipeline, it was considered
that it works at 70% of its capacity, as indicated in the standard. Therefore, for point A, the
analyzes carried out considered a depth of 1.60 m and a roughness coefficient (n) equal
to 0.017 to calculate the existing system capacity. The results indicate that for a return
period of 50 years, the canal works at 10% of its capacity, with the canal’s capacity equal to
55.25 m3/s, compared to a runoff flow of 5.41 m3/s (Table 9).

Table 9. Current vs. future capacity ratio—Point A.

Trapezoidal Channel Analysis Point A

Return Period
(Years)

Runoff
(m3/s)

Capacity Current Q
(m3/s)

Capacity Ratio
(%)

5 2.69 55.25 5%
10 3.28 55.25 6%
15 3.67 55.25 7%
20 4.03 55.25 7%
25 4.37 55.25 8%
50 5.41 55.25 10%

In point B, for a discharge of 1.20 m and a n = 0.03, the calculated flow was 12.33 m3/s,
so the channel would work at 110% for a return period of 50 years, representing problems
in its hydraulic operation (Table 10).
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Table 10. Current vs. future capacity ratio—Point B.

Rectangular Channel Analysis Point B

Return Period
(Years)

Runoff
(m3/s)

Capacity Current Q
(m3/s)

Capacity Ratio
(%)

5 6.71 12.33 54%
10 8.21 12.33 67%
15 9.20 12.33 75%
20 10.15 12.33 82%
25 10.96 12.33 89%
50 13.58 12.33 110%

However, considering a free edge of 15% of the depth, the channel can drain 15.47 m3/s;
therefore, for a return period of 50 years, the canal would be working at 87% of its capacity
without overflow problems.

For the channel in point C, with n = 0.03, the depth obtained was 1.50 m. Therefore,
for a return period of 50 years, the flow would work at 35% of its capacity, so it would not
present any problems in its operation either (Table 11).

Table 11. Current vs. future capacity ratio—Point C.

Rectangular Channel Analysis Point C

Return Period
(Years)

Runoff
(m3/s)

Capacity Current Q
(m3/s)

Capacity Ratio
(%)

5 2.96 17.44 17%
10 3.63 17.44 21%
15 4.07 17.44 23%
20 4.50 17.44 26%
25 4.90 17.44 28%
50 6.08 17.44 35%

In point D, with n = 0.014 for a minimum return period of five years, the corresponding
flow would be 0.64 m3/s, which represents a problem because the pipe capacity is only
0.17 m3/s (Table 12).

Table 12. Current vs. future capacity ratio—Point D.

Pipeline Analysis Point D

Return Period
(Years)

Runoff
(m3/s)

Capacity Current Q
(m3/s)

Capacity Ratio
(%)

5 0.64 0.17 376%
10 0.77 0.17 453%
15 0.86 0.17 506%
20 0.93 0.17 547%
25 1.00 0.17 588%

Finally, the map in Figure 9 shows the drainage system implemented on the campus,
which consists of a canals system and pipes that transport rainwater to the natural drainage
systems. The piping that presents capacity problems and would cause flooding during
rainy seasons can be seen (Figure 10).
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(c) route of the stormwater collector.

3.4. Evaluation of Alternatives Using a Likert Scale

Based on the problems encountered in Point D, the alternatives for the solution are as
follows:

• Alternative 1: Implementation of new channels and change of diameters in receiving
pipes;
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• Alternative 2: Implementation of green and blue solutions, creation of flood zones,
green roofs, and use of permeable concrete.

The selected alternative that best fits the evaluated conditions considered the results
obtained from the Likert scale, in which alternative one obtained a score of 36. For example,
in the case of the slope, a value of one was considered for pitches against the direction of
flow, two for slopes equal to zero, three for slopes between 0% and 2%, four for slopes
between 2% and 7%, and five for slopes between 7% and 15%. Similarly, the assessment of
the other conditions was carried out (Table 13). The Likert scale assessment method allows
the measurement of the conditions presented by different scenarios in a qualitative or semi-
quantitative manner. Therefore, this study assessed two alternatives regarding technical,
social, economic and environmental factors, as has been done in other studies [12,77,78].

Table 13. Evaluation of alternatives by Likert scale.

Pluvial System
Scores

Alternative 1 Alternative 2

Technical considerations
Natural Slope 4 4

Location and area 4 3
Preliminary studies 4 3

Social considerations
Health Emergency 3 3
Population Growth 4 4

Economic considerations
Construction costs 4 3

Equipment and machinery costs 3 3
Maintenance costs 3 3

Environmental considerations
Impact on flora and fauna 4 4
Impact on protected areas 4 5

Change of natural watercourse 3 3
Total 36 35

3.5. Desing of Selected Proposal

The hydraulic performance of the selected alternatives contemplated a maximum
return period of 25 years. The flow velocity for the proposed trapezoidal channel fluctuates
between 1.50 m/s to 1.65 m/s, within the permissible range (Table 14). The results indicate
that the existing pipe needs to be replaced by another one with a diameter equal to Ø1.10 m,
resulting in a flow velocity of 1.65 m/s, complying with the minimum diameter and velocity
requirements (Table 15). For the design of both solutions, the slope is equal to 0.003 m/m,
which allows for obtaining a flow velocity within the range established by local regulations.

Table 14. Analysis of the proposed channel for different runoff flows.

Proposal 1: Trapezoidal Channel Design

Return
Period
(Years)

Flow
Point D
Q (m3/s)

Sill
(m)

Estimated
Flow

Depth (m)

Hydraulic
Area
(m2)

Perimeter
(m)

Water
Surface

(m)

Velocity
(m/s)

Range of
Permissible
Velocities

(m/s)

5 0.64 0.50 0.62 0.43 1.80 0.87 1.50
10 0.77 0.50 0.70 0.49 1.95 0.92 1.56
15 0.86 0.50 0.74 0.54 2.05 0.95 1.60 0.60–4.00
20 0.93 0.50 0.78 0.57 2.13 0.97 1.63
25 1.00 0.50 0.81 0.60 2.20 0.99 1.65
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Table 15. Diameter of the concrete pipe for the different return period (T).

Proposal 2: Concrete Pipe Design

Return
Period
(Years)

Runoff Flow
(m3/s)

Diameter
Required

(m)

Velocity
(m/s)

Minimum
Diameter

(m)

Range of
Permissible
Velocities

(m/s)

5 0.64 0.88 1.50
10 0.77 0.97 1.50
15 0.86 1.03 1.50 0.25 0.75–5.00
20 0.93 1.06 1.50
25 1.00 1.10 1.50

The proposed channel and the pipe contemplate a length of 80.20 m, and because point
D is a busy sector, the channel must be closed in certain sections. Therefore, the design of
the proposed pipe considered that it should work at 80% of its capacity. The lining material
of the channel, as well as that of the piping, is concrete (Figure 11).
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The flooding in point D is a consequence of inadequate planning, as it needs to consider
the flow generated for a return period of 25 years following local regulations. In addition,
the diameter of the existing pipe, despite being greater than the minimum recommended,
needs more capacity to drain the water generated in this micro-watershed.

These floods generated cause material and health problems; therefore, implementing
an adequate drainage system will prevent the stagnation of water, which is the means that
allow organisms carrying diseases such as dengue or malaria, characteristic of tropical
climates such as Ecuador, to proliferate [79].

Although the material damage present in the area does not reflect a significant severity,
inefficient planning can lead to more serious consequences; such as the case of what
happened on 31 January 2022 in the city of Quito, Ecuador, in the sector known as La Gasca,
where a landslide, which consists of a flow of abundant water that drags with it loose
material from a hillside or stream [80], occurred which left a total of 170 people affected,
28 dead, 41 houses affected, and seven houses destroyed. In addition to morphological
conditions such as the presence of hillsides and ravines [81], inadequate management of the
city’s natural drainage, and poor territorial planning coupled with detonating events such
as heavy rains or earthquakes, can increase vulnerability to flooding [82,83]. These events,
under similar conditions, have also occurred in other areas of the world (e.g., [84–86])
affecting infrastructure and the safety of inhabitants.

3.6. SWOT Analysis

The strategies proposed in the SWOT analysis focus on optimizing the campus rain-
water drainage system to avoid health problems and flooding. The analysis of external and
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internal aspects established strategies that promote the integral participation of authorities,
teachers, students and ESPOL staff, as well as the application of sustainable techniques
that allow the reuse and use of rainwater for different purposes and activities on campus
(Table 16).

Table 16. Strengths, weaknesses, opportunities, and threats (SWOT) matrix analysis of current and
proposed sewer system. The SWOT combining internal environment (strengths and weaknesses)
identified by numbers 1 to 4 and the external environment (opportunities and threats) identified by
letters (a) to (d).

External
Environment

Internal
Environment

Strengths Weaknesses

1. Green areas for rainwater filtration.
2. Academic and logistical support for
the improvement and implementation
of solutions.
3. Independent pluvial and sanitary
system.
4. Drainage plans and delimited basins
with sufficient capacity.
5. As-built plans of the storm sewer
system.

1. Lack of maintenance of the campus
drainage system.
2. Natural habitat for vector
proliferation.
3. Limited budget.
4. Lack of sufficient and trained
personnel

Opportunities Strategies: Strengths + Opportunities Strategies: Weaknesses + Opportunities

a. Reuse rainwater for cleaning work on
campus.
b. Student learning in the development of
degree thesis.
c. Water sowing and harvesting through
detention ponds (albarradas in Spanish).
d. Recharge and replacement of water in
ESPOL lakes.

2.3.b. Development of grade and
postgrad studies for the evaluating the
pluvial system considering climatic and
infrastructure variations.
2.c. Permanent training for grade and
postgrad students oriented to WS&H as
NBS for the using rainwater.
3.4.d. Stormwater conduction system
implementation that guarantees the
water recharge from artificial lakes
considering infiltration problems.
2.a.d. Conduct periodic studies of the
quality and quantity of lake water for
conservation and management.

1.4.a. Train personnel to maintain the
pluvial system that guarantees the
cleanliness and reuse of water.
2.a.b. Stormwater sewerage masterplan
execution that solves flooding problems
in the study area.
3.c.d. Design and implement WS&H
techniques for storing and reusing
stormwater as an ecological and
economic solution.
3.b.c. Circular economy water project
development with public and private
interinstitutional collaboration for
fundraising and NBS execution.

Threats Strategies: Strengths–Threats Strategies: Weaknesses–Threats

a. Health effects.
b. Affectations to tangible goods and services.
c. Climate emergency.
d. Blockage of the drainage system due to the
solid waste content

1.a. Stormwater distribution systems
implementation to infiltrate green areas
that prevent flooding and proliferation
of vectors.
4.b. Strategic planning for the
construction of future buildings
considering drainage areas.
2.3.c. Research projects execution for
effective water reuse in the
conservation of endangered species
located in the environmental protection
zone of the campus.

1.2.a.b.d. Execute periodic maintenance
and cleaning labours that prevent
blocking of the pluvial system.
2.3.a.c. Environmental impact studies
develop for future expansion projects.
3.c. Manage funds related to the climate
emergency to strengthen the budget for
sustainable water management.

In general, from the analysis, the importance of raising awareness among the pop-
ulation regarding water care through the application of nature-based solutions (NBS) is
rescued. Among these, for flood control, there are green-blue infrastructures such as green
roofs, retention, and detention ponds (albarradas in spanish), renaturalized rivers without
sewers, ditches and ‘bioswales’, or rain gardens, generating a positive impact on social
and environmental well-being [87–89]. However, the NBS should only sometimes be im-
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plemented as a solution since this will depend on the conditions of the problem and the
environment where it develops, as has been done in other studies [90,91].

From the SWOT analysis, the recommendations mainly focused on the rescue of
ancestral knowledge arise through the construction of albarradas for the natural storage of
water, an NBS alternative that has little impact on the environment and whose effect on the
hydrological cycle of water is minimal [92–94]. However, it is important to highlight that
poor management would promote the proliferation of vector organisms such as rats, ticks,
or mosquitoes [95].

Usually, the investment allocated for implementing these infrastructures is minimal
due to a lack of knowledge or economic limitations, which translate into a cognitive
bias [96,97]. Due to this, in the study area and general in the country, it is necessary
to implement water policies that involve and promote NBS as efficient alternatives to
technological solutions.

ESPOL has large extensions of green areas within the campus, in which implementing
NBS would favor the ecosystem. However, point D represents a specific problem of
strangulation of the drainage system due to the lack of capacity of the existing system.
Therefore, as an immediate solution, it was proposed to increase the system’s capacity
using a trapezoidal channel or the replacement of the pipe with one with a larger diameter.

The proposed solution for the area with the flooding problems complements the
study carried out [98], in which the implementation of NBS on the university campus was
analyzed, such as rain gardens, infiltration fields, cisterns and permeable stone paving
blocks. In his study, he considered the implementation of permeable stone paving blocks
in an area containing point D. It was concluded that this solution has an efficiency of
only 6.59% because it is a low point where other sub-watersheds are located. Therefore,
implementing a technical solution through a trapezoidal channel or pipe replacement
responds more effectively to adequate water transport and flood mitigation.

This study complements the masterplans proposed for the sanitary sewerage and
drinking water systems [53,54], strengthening the management of water and sanitation on
the ESPOL campus through technical, social, environmental, and economic criteria through
specific technical solutions in areas with flooding problems. In addition, the masterplan
contemplates NBS components that could be applied in the medium and long term in
environmental protection, avoiding the disturbance of ecosystems by engineering works.
Furthermore, implementing the designed proposals promotes and creates awareness in
the ESPOL community about the circular economy of water and offers the appropriate
environment for the different geotourism and geoeducation activities, considering the
geological and biodiverse wealth of the campus [52].

The integration of technical solutions and NBS on the university campus represents a
responsible and preventive water-management model before future scenarios, which can be
replicated at the regional level as an alternative to mitigate climate change’s effects [99,100]
and contribute to fulfilling the fulfillment of Sustainable Development Goals (SDGs) of
UNESCO [101,102].

4. Conclusions

The masterplan allowed for the global drainage evaluation, determining that the
system does not present problems at the macro level. Three essential aspects stand out
from the results obtained:

• The integration of technical-academic knowledge in the development of a stormwater
masterplan for a university campus demonstrated the importance of water manage-
ment in areas where, despite not being considered, poor planning generates damage
to infrastructures and put the health of inhabitants at risk;

• The development of SWOT analysis in decision-making for managing water resources
allows for the proposal of holistic strategies from the social, academic, and govern-
mental points of view, which guarantee the functionality of sewerage systems and
water reuse in the short, medium, and long term;
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• Ancestral (traditional) knowledge is important through NBS for collecting and man-
aging water, as 3E (Ecological, Economic, Effective) alternatives, and are replicable
locally and regionally.

At the micro-drainage level, a punctual flooding problem exists in point D. This
study allowed for the design of a solution in which technical, environmental, social, and
economic criteria were considered through the implementation of a trapezoidal channel,
with a capacity of 1.00 m3, or a Ø1100 mm pipe diameter, adequate for a return period of
25 years.

Additionally, the authors recommend that, in the future, it will be important during
the execution of study to evaluate of the capacity of the external sewage system in which
the flow is managed on the campus and discharged. This will help to avoid flooding
problems in peripheral areas (populated with little infrastructure).

Finally, this study raises the possibility of further research needed to evaluate the
efficiency and implementation of NBS in different areas of the university campus in order
to use the rainwater and avoid alterations in the water cycle.
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