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Abstract: With the rapid development of deep learning technology in recent years, convolutional
neural networks have gained remarkable progress in SAR ship detection tasks. However, noise
interference of the background and inadequate appearance features of small-scale objects still pose
challenges. To tackle these issues, we propose a small ship detection algorithm for SAR images by
means of a coordinate-aware mixed attention mechanism and spatial semantic joint context method.
First, the coordinate-aware mixed attention mechanism innovatively combines coordinate-aware
channel attention and spatial attention to achieve coordinate alignment of mixed attention features.
In this way, attention with finer spatial granularity is conducive to strengthening the focusing
ability on small-scale objects, thereby suppressing the background clutters accurately. In addition,
the spatial semantic joint context method exploits the local and global environmental information
jointly. The detailed spatial cues contained in the multi-scale local context and the generalized
semantic information encoded in the global context are used to enhance the feature expression and
distinctiveness of small-scale ship objects. Extensive experiments are conducted on the LS-SSDD-v1.0
and the HRSID dataset. The results with an average precision of 77.23% and 90.85% on the two
datasets show the effectiveness of the proposed methods.

Keywords: Synthetic Aperture Radar (SAR); ship detection; small object detection; attention mecha-
nism; context

1. Introduction

Transportation is an indispensable and important part of modern city life. With the
increasing construction and improvement of urban transportation networks, transportation
targets have shown diversity, including vehicles, bridges, ships, airports, airplanes, etc.
However, with the modernization, informatization, and intelligence development of the
transportation industry, various foreseeable and unforeseeable risks, as well as challenges,
are also constantly increasing, such as the excessive speed of cars, insufficient road capacity,
difficulty in vessel monitoring, etc. For conventional technical methods, it’s challenging
to timely obtain information from massive data and grasp the spatial distribution as well
as dynamics changes of urban traffic targets from a macro perspective. Therefore, there is
an urgent need for a transportation target processing method that adapts to the diverse
characteristics of the stereoscopic space of smart cities.

Due to the all-weather imaging characteristics, Synthetic Aperture Radar (SAR) has
been widely used in military and civil fields, such as airport reconnaissance, urban traffic
control, port vessel surveillance, and maritime emergency rescue [1]. Object detection
with accurate localization and classification is a key link in the intelligent interpretation
of remote sensing images, providing a technical basis for urban transportation planning
and promoting the orderly development of smart cities. As a basic task, SAR ship detection
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plays an important role in maritime traffic control. Traditional SAR ship detection generally
adopts the Constant False Alarm Rate (CFAR) algorithm based on the background clutter
statistical distribution [2–4] or the methods that manually extract texture features [5–7].
Nevertheless, the CFAR conducts the same statistical model for all clutters and cannot fully
utilize the feature clues of images. The texture-based methods are able to better exploit the
image features but the manual extraction of features requires a complex design and has
poor generalization ability.

Taking advantage of the rapid development of Convolutional Neural Networks (CNN)
at present, many object detectors [8–17] that are outstanding in natural scenes have emerged.
These object detection models based on CNN adaptively learn the advanced semantic
expression of images via various network structures and powerful training strategies,
becoming the mainstream algorithm for object detection. The current object detectors
can be divided into two-stage models represented by Faster R-CNN [11] and single-stage
models such as the YOLO series [8–10]. The two-stage detection framework uses a separate
Region Proposal Network (RPN) to search for candidate boxes in the first stage and it
implements the finer detection in the second stage. The single-stage models directly collect
features from the input images and use predefined anchor boxes or key points to locate
objects. As a result, two-stage detection networks require longer processing time and have
complex model architectures, while single-stage detectors with lower detection accuracy
are superior in terms of real-time performance and network lightweight design.

Owing to the unique imaging mechanism, within ship detection in SAR images exists
significant barriers compared to natural scenes or optical remote sensing images. First, SAR
images contain a lot of clutters, such as islands and waves, which seriously interfere with
the perception of object features. In comparison to optical images, ships in SAR images lack
sufficient recognizable texture information, making it difficult to distinguish the real targets
from the background. Moreover, the low resolution of SAR images results in small object
sizes. With limited visualization information and fuzzy boundaries of small-scale objects,
the detection process is fragile and sensitive. The general detectors adopt a multi-level
down-sampling paradigm to achieve high-level semantic clues. However, the small-scale
objects lose most of their salient features in this framework, which further increases the
difficulty of detection. Therefore, there is still a wide gap for these general object detectors
in SAR image tasks.

In order to alleviate the impact of complex background and noise interference, inspired
by the selective attention of human beings, some studies have proposed an attention
mechanism to guide the sight of models to the foreground regions. Researchers [18,19]
utilized channel attention to enhance the semantic category features of SAR ship objects,
thus, automatically highlighting the important regions. However, the summarization of
global features on each channel completely discards the spatial details of objects, leading to
the inaccurate localization of the focus areas. Gao et al. [20] parallelly extracted spatial and
channel attention features, and directly fused them through addition without considering
the feature alignment between the two types of attention. For this reason, the integrated
attention features cannot accurately describe the spatial and semantic characteristics. To
promote the correlation between the two types of attention, studies [21–24] leveraged the
CBAM (Convolutional Block Attention Module) mixed attention mechanism to capture
spatial attention based on the channel attention features. Nevertheless, spatial details are
lost during channel attention extraction, so the spatial attention mined on this basis cannot
guarantee the positional feature alignment either.

Another line of works tried to exploit contextual information to intensify the feature
expression of small-scale objects. Context is the relationship between objects and the en-
vironment. For instance, a rectangular object can be roughly identified as a ship rather
than a car according to its sea background. Kang et al. [25] added contextual features to
the corresponding regions of interest to enhance the distinguishability of ship features.
Zheng et al. [26] expanded the effective receptive fields with the double dilated convo-
lutions, so as to strengthen the context information of shallow-level features and enrich
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the characteristic representation. Lim et al. [27] used the additional features in different
levels as context to focus on targeted objects. Works [28,29] captured the global contextual
correlation and used the environmental inductive clues to guide the detection of small-scale
objects. However, these works mentioned above lack effective incorporation of a local and
global context and, thus, cannot fully utilize the essential correlation between spatial and
semantic clues provided by the environment, leading to sub-optimal solutions.

To this end, in this paper, we propose a coordinate-aware mixed attention mechanism
and a spatial semantic joint context method to improve the small-scale ship detection perfor-
mance in SAR images. Specifically, the coordinate-aware mixed attention mechanism solves
the problem of feature misalignment between channel and spatial attention. By capturing
channel attention in both horizontal and vertical directions, coordinate information is
automatically encoded into the channel attention. Spatial attention is then extracted based
on this. In this manner, channel attention features with coordinate perception ability can
be easily aligned with spatial attention features. With finer spatial granularity of attention
features, small-scale objects can be more precisely located and highlighted and background
clutters can be more effectively suppressed. Furthermore, the spatial semantic joint context
method simultaneously explores multi-scale local spatial clues and the global semantic con-
text of objects. As a result, the spatial details of the adjacent area of objects and the semantic
summaries of the entire scene constitute multiple environmental auxiliary information,
which can enrich the feature representation and promote the detection performance of
small-scale ships in SAR images.

The main contributions of this work are listed as follows:

1. To overcome the interference of background noise in SAR images, we first pro-
pose a coordinate-aware mixed attention mechanism. The effective combination of
coordinate-aligned channel and spatial attention features contributes to more accurate
identification of small-scale ships from the background.

2. We design a spatial semantic joint context method to construct multiple environmental
additional information by composing a local spatial and global semantic context, so
as to intensify the feature expression and distinguishability of small-scale ships.

3. Experimental results demonstrate that our proposed methods not only significantly
increase the detection performance of small-scale ship detection in SAR images but
also gain superiority over other state-of-the-art models.

2. Related Work
2.1. Object Detection

In recent years, with the vigorous development of deep learning, intelligent image
interpretation algorithms have also emerged. Due to its powerful feature extraction and de-
scription capabilities, as well as its robustness and adaptability to different scenarios, deep
learning methods can not only avoid complex manual work but also possess high accuracy
and generalization. With the help of natural bionics characteristics, deep-learning-based
CNN has become the mainstream algorithm in the field of object detection. Currently, object
detection networks can be primarily divided into two-stage and single-stage frameworks.
The two-stage detectors typically exhibit good performance and stability by generating
accurate bounding boxes, where region proposals are generated in the first stage while
bounding box location regression and classification are completed in the second stage, such
as R-CNN [14], Fast R-CNN [15], Faster R-CNN [11], and Cascade R-CNN [16]. In contrast,
the single-stage networks adopt a dense sampling method to directly extract features from
the input images and use predefined anchor boxes or key points with multiple scales
and aspect ratios to locate targets. Representative frameworks include SSD [17], YOLO
series [8–10], FCOS [13], etc. Although the single-stage framework has a slightly lower
detection accuracy, it leads the two-stage detectors in terms of real-time performance and
network simplification design. Despite the remarkable results achieved, general object
detection networks cannot be directly applied to ship detection in SAR images. First, in
comparison to optical images, SAR images can only reflect the electromagnetic scattering
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intensity of objects, and hence, only the grayscale information can be represented. However,
in SAR images there are plenty of background clutters such as ports, islands, waves, etc.,
which exhibit a similar scattering intensity and appearance characteristics with targets.
These noises can seriously interfere with ship detection, resulting in a large number of
false alarms. In addition, due to resolution limits, the object pixel area in SAR images
is extremely small. Insufficient appearance features such as texture and contour make it
difficult for detectors to extract recognizable information. The general paradigm of the
current mainstream object detection framework is to down sample images several times to
obtain semantic-rich deep feature maps. Small-scale ship objects with less information will
further lose useful information in this process, leading to miss detection. Therefore, special
network structures are necessary for the task of small-scale ship detection in SAR images.

2.2. Ship Detection under Complex Background in SAR Images

Complex background objects and clutter interference bring massive false alarms
and, thus, affect detection accuracy. In response to this issue, many experts and scholars
have conducted in-depth research based on the idea of CNN and achieved significant
results. Yue et al. [30] designed a feature extraction network on the basis of VGG and
dilated convolution, evidently improving inference speed and precision. In order to
alleviate the problem of noise interference in a complex environment, Zhang et al. [31]
proposed a SAR ship detection network by means of a Fully Convolutional Network (FCN),
which transforms the object detection task into an image pixel classification problem.
The experimental results show that this algorithm can not only effectively reduce false
alarms, but also enhance the network robustness. Aiming at the issue of confusion between
ships and onshore objects in SAR images, Fu et al. [32] introduced a nearshore SAR ship
detection algorithm based on scene classification. This method can achieve better detection
results with more land scenes. To further improve the performance of nearshore ship
detection, Liu et al. [33] designed a novel sea–land segmentation method based on FCN
which fully integrates global and local information of SAR images and has a high detection
accuracy. Works [18–24] are the most relevant research to this paper, which adopted channel
attention or a channel-spatial mixed attention mechanism to automatically intensify the
object features and suppress background noise. Nevertheless, these attention modules used
either completely abandon the spatial information or fail to consider the feature alignment
between channel and spatial attention. Hence, the fused features cannot provide an accurate
spatial and semantic description of objects, resulting in low efficiency of the attention
mechanism. In this paper, we propose a coordinate-aware mixed attention mechanism
that solves the problem and, thus, achieves a more refined attention effect granularity. In
addition, via precision positioning and the highlighting of objects, background noise can
be effectively filtered.

2.3. Small-Scale Ship Detection in SAR Images

In order to enhance the detection performance of small-scale ship objects, the key is to
ensure that small targets will not lose information in high-level features. In the computer
vision field, the common solution is feature fusion, which strengthens the feature expression
by fully integrating the position information of low-level features and the semantic clues in
high-level features. Research [34] adopted a feature pyramid fusion method to improve
the detection accuracy of small-scale ships. Hu et al. [35] introduced the feature pyramid
structure and balance factor on the basis of YOLOv3, effectively optimizing the weight
of small objects in the loss function. Cui et al. [24] proposed a dense attention pyramid
network that utilizes a CBAM module to fully connect the top and bottom features. This
method extracts rich features including spatial clues and semantic information and solves
the problem of multi-scale ship detection. The experimental results demonstrate that
this algorithm has a high detection accuracy but poor adaptability to different scenarios.
For the sake of further improving the detection performance of small-scale objects, other
works [25–29] attempted to mine the contextual information and use auxiliary cues from the
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environment to enrich the object’s features. Compared to the simple feature fusion method
that can only combine existing features, contextual approaches are able to capture more
additional information. However, due to the lack of effective aggregation of local and global
contexts, this solution cannot fully associate the spatial clues and semantic relationship
provided by the scene, limiting the performance gains. In contrast, our proposed spatial
semantic joint context method not only explores the multi-scale spatial information and
global semantic cues of environments but also organically assembles these two types of
contexts. The multiple spatial and semantic auxiliary information is fully utilized to boost
the detection performance of small-scale ships.

3. Materials and Methods

In this section, we first illustrate the overall architecture of our model. Then, based
on the analysis of various common attention mechanisms, the proposed coordinate-aware
mixed attention mechanism is introduced. Last, we present the spatial semantic joint
context method.

3.1. Overall Architecture of Network

As shown in Figure 1, the proposed network takes YOLOX [10] as the basic framework.
The original YOLOX utilizes four Cross Stage Partial blocks (CSP) to implement the feature
extraction. Our proposal embeds the Coordinate-aware Mixed Attention module (CMA)
into the feature extraction block to form the CMA-CSP. The deepest two of the three
extracted feature layers are then fed into the Spatial Semantic Joint Context module (SSJC)
to capture the local spatial and global semantic contextual cues. Next, the top-down and
bottom-up pathways are used to fully interact with the location-rich features in the lower
layers and the semantic-rich features in the deeper layers. Last, we output the predicted
results with the bounding box heads of YOLOX.

3.2. Coordinate-Aware Mixed Attention Mechanism

An attention mechanism is generally used to emphasize important features, so as to
lead models to focus on targeted regions. As such, irrelevant information or background
interference can be suppressed. Three common attention modules are shown in Figure 2.
The SE (Squeeze-and-Excitation) channel attention mechanism [36] compresses features on
each channel into an inductive neuron via Global Average Pooling (GAP) and builds the
global associations among all semantic channels through non-linear connections. However,
this method using GAP ignores the position distribution information, and cannot satisfy the
high positioning requirements of remote sensing small-scale objects. In order to introduce
spatial information, the CBAM mixed attention mechanism [37] adds a spatial attention
module behind the channel attention extraction process. Nevertheless, the Global Max
Pooling (GMP) and GAP adopted in the channel attention module still summarize channel
features in a rough form, resulting in an insufficient spatial refinement of channel attention
features. This makes it difficult for the subsequent spatial attention to align with the
channel attention features. To bring the spatial information into channel attention, the CA
(Coordinate Attention) mechanism [38] compresses channel features in both horizontal
and vertical directions, enabling channel attention to possess a spatial guidance capability.
However, the spatial guidance is still inadequate for the accurate positioning of small-scale
objects. In order to further refine the granularity of the attention mechanism, we propose
the CMA, as shown in Figure 1.
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Figure 1. Network architecture of our methods. The whole frame is based on YOLOX. The CMA is
embedded into feature extraction block CMA-CSP to enhance the focusing ability on small objects.
The SSJC is designed to exploit environmental information to enrich the feature expression.

Similar to the CA module, CMA embeds spatial information into channel attention
to preserve the position correlation of channel attention features. Specifically, the CMA
firstly implements a one-dimensional average pooling on input features in the x- and
y-axis, respectively. The produced two two-dimensional feature maps, which represent
the coordinate-aware summarized features in horizontal and vertical directions, are then
independently fed into two Conv-1 × 1 layers and a sigmoid function. In this way, fea-
tures across channels interact and global dependency of features in the two directions is
established. Next, we multiplicatively integrate the two attention features as the coordinate-
aware channel attention and use it to strengthen the input features. For spatial attention, we
use the one-dimensional max and average pooling to extract the important spatial cues on
the coordinate-aware channel-enhanced features. Through channel-wise concatenation, the
two resulting spatial feature maps are incorporated. The spatial attention is then calculated
by means of two consecutive Conv-1 × 1 layers with a sigmoid function, and mixed with
the channel attention features to construct the coordinate-aware mixed attention. Since we
excavate the spatial attention based on the channel attention features that retain coordinate
information, the spatial distribution of channel and spatial attention features can be cor-
rectly aligned when mixing, thus, reducing the information loss and making the effect of
the granularity of the attention mechanism more fine-grained.
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Figure 2. Module structures of different attention mechanisms.

We leverage the CMA to construct the coordinate-aware mixed attention feature
extraction block, i.e., the CMA-CSP. Inspired by the CSP structure, the CMA-CSP separates
the features into two parts, which are fed into different processing pathways and merged
to obtain richer gradient combination information. Given an input feature map, CMA-CSP
first adjusts the channels and scale of the feature map via a Conv-3 × 3 with stride 2. Next,
the obtained features are sent to two processing paths, one consisting of a Conv-1 × 1 and
N residual blocks with CMA, and the other only including a Conv-1 × 1. In the residual
block, a 1 × 1 convolution is first executed to reduce the channel number, so as to reduce
the computational complexity. After the 1 × 1 depth-wise convolution, features are then
sent into the CMA to generate the coordinate-aware mixed attention features. Recovering
the channels via a Conv-1 × 1, the feature map is additively fused with the input features
of the residual block. Last, we stack the features with the output on another CSP path
and then smooth the concatenated feature map using a 1×1 convolution. The feature
extraction module with coordinate-aware mixed attention learns to pay more attention
to important regions during feature extraction and increases the positioning accuracy
of small-scale objects with finer attention granularity. As a result, when suppressing
background interference in SAR images, the detection performance of small-scale ships can
also be improved.

3.3. Spatial Semantic Joint Context Method

Limited by the number of pixels, small-scale objects carry inadequate information and,
thus, lack crucial appearance characteristics apart from the background or similar objects.
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Therefore, it is difficult for general detectors to identify small ships. Contextual information
brings the environment around the objects to assist in inferring the location and category
of the targets. The SSJC proposed in this paper on the one hand extracts multi-scale local
spatial features to obtain the spatial clues of the adjacent areas of objects. On the other hand,
it captures global semantic features and establishes a semantic correlation between objects
and the entire scene. By integrating the two types of contextual information, multiple
environmental auxiliary clues composed of local positioning and global semantics can be
mined to intensify the feature expressiveness and recognition of small objects.

The structure of the SSJC is illustrated in Figure 1. Concretely, input features are
first fed into three parallel depth-wise dilated convolution workflows to attain the spatial
features. The depth-wise convolution not only contributes to reducing the computation
cost but also to using the channel independency to lead the focus of the model on the
spatial context. Owing to the different kernel sizes (3 × 3, 3 × 3, 5 × 5) and dilation
rates (1, 3, 3) implemented, multi-scale receptive fields are produced. Then, the three
contextual feature maps are concatenated according to the corresponding channels, where
everythree adjacent slices is integrated into one through a 1 × 1 group convolution with
a sigmoid function to reinforce the correlation among the multi-scale spatial context in
the same channel. Meanwhile, we capture the semantic contextual information of the
input features through a global average pooling and two Conv-1 × 1 layers with sigmoid
activation. Through multiplicative fusion, the semantic context is generated and then
added to the multi-scale spatial context to form the SSJC-enhanced features. The multi-
scale spatial context represents the adjacent environmental information in different spatial
ranges around objects, while the semantic context refers to the global semantic association
between objects and the entire scene. Through their effective combination, features exhibit
a more detailed expression and, thus, small-sized objects are more recognizable.

4. Experiments and Results

In this section, we conduct extensive experiments on the LS-SSDD-v1.0 [39] and the
HRSID [40] dataset. First, we provide a brief introduction to the two datasets, experimental
settings, and evaluation metrics. Then, a series of ablation studies are implemented to verify
the effectiveness of our proposed CMA and SSJC. Last, we demonstrate the advantages of
our methods compared to other state-of-the-art models through quantitative analysis and
visualization results.

4.1. Dataset Description

LS-SSDD-v1.0 and HRSID are both high-resolution SAR ship detection datasets. LS-
SSDD-v1.0 contains 15 large-scale SAR images of size 24,000 × 16,000, which are split into
9000 sub-images of size 800 × 800 for network training and inference. There are 6015 ship
objects in total, and each object box covers an average area of 381 pixels. HRSID includes
5604 images of size 800 × 800, with 16,951 ship objects and an average pixel amount of
1808. Figure 3 shows the distribution of object scales in both datasets. It can be seen that the
objects in the LS-SSDD-v1.0 dataset exhibit a concentrated distribution in the area of both a
width < 100 pixels and height < 100 pixels, while objects in the HRSID dataset are provided
with multi-scale characteristics. In order to gain a more intuitive understanding of these
two datasets, we use the definition standard from the COCO dataset regulation [41] to
determine the small objects, medium objects, and large objects. According to the definition,
targets with rectangular box areas <0.37% proportion among the total image pixels (i.e.,
640,000 owing to 800 × 800 image size) are regarded as small ones; a 0.37% to 3.29%
proportion among the total pixels are medium ones; and areas >3.29% proportion among
the total pixels are large ones. On this basis, 99.8%, 0.2%, and 0% of all ship objects in
the LS-SSDD-v1.0 dataset are made up of small, medium, and large objects, while 91.42%,
7.9%, and 0.65% of all ship targets in the HRSID dataset are small, medium, and large
sizes, respectively. Due to the overwhelming proportion of small object quantities, the
LS-SSDD-v1.0 is used to verify the detection performance of the proposed methods for
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small-scale ships in SAR images. The HRSID is leveraged to test the generalization ability
of multi-scale ship objects. Table 1 shows the details of the two different datasets, including
collecting satellite, location, resolution, etc.
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Table 1. Descriptions of LS-SSDD-v1.0 and HRSID.

Parameters LS-SSDD-v1.0 HRSID

Satellite Sentinel-1 Sentinel-1, TerraSAR-X
Band C C, X

Location Tokyo, Adriatic Sea, etc. Houston, Sao Paulo, etc.
Resolution (m) 5 × 20 0.5, 1, 3

Polarization VV, VH HH, HV, VV
Image size (pixel) 800 × 800 800 × 800

Object Quantity - -
Total 6015 16,951
Small 6003 (99.8%) 15,510 (91.42%)

Medium 12 (0.2%) 1344 (7.9%)
Large 0 (0%) 111 (0.65%)

Object Area (pixel) - -
Smallest 6 3
Largest 5822 522,400
Average 381 1808

In addition, with the prior knowledge that the background in inshore-waters is much
more complex than that in offshore-waters, the validation set of LS-SSDD-v1.0 is marked
with entire scenes, inshore scenes and offshore scenes, to verify the adaptability of the
algorithm in different background complexities.

4.2. Experiment Settings

In this article, all experiments were performed with the Linux operating system
equipped with an Intel Xeon Gold 5218 CPU (Intel Corporation) and NVIDIA TITAN
RTX GPU (Nvidia Corporation). Pytorch 1.7 was used for training, and CUDA 10.2 was
leveraged to speed up the calculations. Experiments used a multi-scale training strategy
with a scaling factor range of 0.8 to 1.2. To avoid overfitting, random rotation and flipping
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were used to augment the training data. The batch size was set to 16, and the final network
was obtained after 300 training epochs.

4.3. Evaluation Metrics

For a quantitative evaluation of the performance of object detectors, the evaluation
metrics such as Intersection over Union (IoU), Precision (P), Recall (R), and Average Preci-
sion (AP) are the normative means. During positioning, the overlap rate of the predicted
result and ground truth is the measurement of the correlation between the two; a higher
degree of overlap indicates a better correlation and a more precise prediction. As shown in
formula (1), the bounding box IoU is defined by the overlap rate of the predicted bounding
box as the ground truth bounding box:

IoU =
Bboxpd ∩ Bboxgt

Bboxpd ∪ Bboxgt
(1)

During classification, objects may be misjudged by the background. There are four
classification results: True Position (TP), True Negative (TN), False Negative (FN), and
False Positive (FP). TP denotes the amount of correctly classified positive samples; TN
refers to the amount of correctly classified negative samples; FN represents the amount of
missed positive samples; FP indicates the number of false alarms in the background. The
precision and recall are defined by these criteria, as shown in Equations (2) and (3).

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

Based on the quantities of precision and recall, AP is defined. In the Cartesian coor-
dinate system, if the horizontal coordinate is a recall value and the vertical coordinate is
a precision value, the area under the recall–precision curve is an AP value, as shown in
formula (4):

AP =
∫ 1

0
P(R)dR, (4)

4.4. Ablation Study

To verify the effectiveness of the proposed CMA and SSJC, we conducted ablation
studies on the LS-SSDD-v1.0 dataset using YOLOX as the baseline network. The results are
shown in Table 2.

Table 2. Ablation study results on the LS-SSDD-v1.0 dataset.

Methods
Entire Scenes Inshore Scenes Offshore Scenes

P R AP P R AP P R AP

YOLOX 66.00 77.38 73.96 42.00 52.89 46.15 81.92 91.84 89.25

YOLOX + SE 63.65 77.54 74.29 38.16 54.36 47.59 83.22 91.24 88.91
YOLOX + CBAM 71.70 77.04 73.64 51.38 52.77 45.12 82.79 91.37 89.04

YOLOX + CA 68.01 79.65 75.71 47.07 59.12 50.82 81.86 91.77 88.98
YOLOX + CMA 75.32 79.31 76.41 57.53 57.08 51.50 84.89 92.44 90.26

YOLOX + SSJC 69.91 78.64 75.25 49.45 55.83 48.94 82.06 92.11 89.65

YOLOX + CMA + SSJC 70.44 80.36 77.23 50.29 58.66 52.26 82.77 93.18 90.94

Firstly, in order to prove the advantages of CMA, we compare it with three other
commonly used attention mechanisms; namely SE, CBAM, and CA. SE is a pure channel
attention mechanism that completely discards spatial information. CBAM excavates spatial
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attention based on pure channel attention features. CA encodes spatial cues into channel
attention. Our proposed CMA extracts coordinate-aligned spatial attention based on the
coordinate-aware channel attention features.

As we can see in the results, the utilization of almost all attention methods has
improved the detection performance. For example, in entire scenes, SE, CA, and CMA have
brought AP gains of 0.33%, 1.75%, and 2.45%, respectively, proving the positive effect of the
attention mechanism in SAR small-scale object detection. Comparing the baseline model,
although SE in entire scenes has a slight recall increase of 0.16%, it shows a significant
precision drop of 2.35%. This indicates that the introduction of SE does highlight more
areas with real targets but the complete abandonment of spatial cues makes the positioning
of interest regions inaccurate. Therefore, it also brings more false alarms, resulting in a
decrease in precision. Comparing CA and SE, it can be found that in entire inshore and
offshore scenes, the AP of CA is 1.43%, 3.23%, and 0.07% higher than SE, and the recall is
2.11%, 4.76%, and 0.53% higher, and precision is 4.36%, 8.91%, and 1.67% higher, separately.
This implies that encoding spatial information into pure channel attention effectively gains
the positioning accuracy of regions of interest. Hence, the model can not only find more
true samples but also accurately identify foreground objects out of the background noise. It
is worth noting that in all three scenes CBAM results in a slight performance decrease with
0.32%, 1.03%, and 0.21% in AP. It shows that the incorrect feature alignment of channel and
spatial attention indeed causes the problem of information loss and performance decline.
This issue may not be reflected in natural scenes but it is particularly prominent in SAR
small-scale ship detection, which is sensitive to spatial position. Our proposed CMA has
fixed this defect. In all three scenes, the AP of CMA is 2.27%, 6.38%, and 1.22% higher
than that of CBAM, indicating that the mixed attention mechanism with spatial coordinate
alignment is pivotal for small-scale ship detection. In comparison with CA, our CMA has
an AP superiority of 0.7%, 0.68%, and 1.28% in three scenes, respectively. In entire scenes,
the recall of CMA and CA is almost the same, while the precision of CMA is 7.31% higher.
It proves that the extraction of spatial attention based on the channel attention features
embedded with coordinate information can indeed further refine the spatial granularity of
attention. In this way, the model can achieve a more accurate localization of interest regions
and distinguish them from a complex background.

In addition, relative to the baseline model, the use of SSJC also promotes the AP by
0.82%, 2.47%, and 0.18% in entire inshore and offshore scenes, separately. To be specific,
in the three scenes, precision increases by 3.91%, 7.45%, and 0.14%, while recall raises
by 1.26%, 2.94%, and 0.27%. The local spatial context and global semantic correlation in
SSJC aggregate the environmental clues of the adjacent areas around objects and the entire
image. As we can see from the results, the multiple environmental auxiliary information
does enrich the feature expression of small-scale objects and facilitate the saliency and
distinguishability of small objects in the complex background. Therefore, the detector
based on SSJC can not only detect more real targets with a higher recall but also correctly
recognize small-scale ships from a large number of false alarms with higher precision.

By merging the two methods, we boost more significant performance gains. The AP
in entire inshore and offshore scenes with 77.23%, 52,26%, and 90.94% achieves 3.27%,
6.11%, and 1.69% improvements, showing the effective combination of CMA and SSJC.
It can also be seen that the performance increase in inshore scenes is obviously higher
than that in offshore scenes, which can be explained by the complexity of the scenes. The
simple background in offshore scenes limits the further growth of performance, while the
complex inshore scenes with the land, waves, or reef bring more possibilities for algorithm
optimization. Our proposed methods with remarkable performance benefits in inshore
scenes prove the robustness against complex backgrounds and noise.

4.5. Comparative Experiments

To verify the advantages of the proposal, we conduct the comparative experiments
on the LS-SSDD-v1.0 and HRSID dataset with other state-of-the-art methods, i.e., Faster
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R-CNN [11], CenterNet [12], FCOS [13], YOLOv3 [8], YOLOv5 [9], and YOLOX [10]. Faster
R-CNN is a typical two-stage detection network. CenterNet and FCOS are representative
of an anchor-free strategy. YOLOv3, YOLOv5, and YOLOX are excellent models in the
YOLO series of single-stage frameworks. The results are in Tables 3 and 4.

Table 3. Comparative experiment results on the LS-SSDD-v1.0 dataset. Bold indicates the
best performance.

Methods
Entire Scenes Inshore Scenes Offshore Scenes

P R AP P R AP P R AP

Faster R-CNN 67.17 74.18 69.47 49.31 48.70 39.90 76.05 89.23 85.53
CenterNet 61.52 76.83 72.56 40.77 51.76 43.22 74.09 91.64 88.47

FCOS 53.06 75.95 69.45 31.67 49.72 34.86 67.74 91.44 87.30
YOLOv3 58.98 77.92 72.58 42.04 56.51 45.42 69.26 90.57 87.11
YOLOv5 58.76 77.88 72.90 39.40 55.15 45.43 71.24 91.30 87.76
YOLOX 66.00 77.38 73.96 42.00 52.89 46.15 81.92 91.84 89.25

Ours 70.44 80.36 77.23 50.29 58.66 52.26 82.77 93.18 90.94

Table 4. Comparative experiment results on HRSID dataset. Bold indicates the best performance.

Methods P R AP

Faster R-CNN 66.87 83.43 80.46
CenterNet 66.33 86.76 83.82

FCOS 76.21 85.07 82.06
YOLOv3 83.01 90.66 89.11
YOLOv5 83.13 91.30 89.52
YOLOX 82.61 90.39 88.91

Ours 83.24 91.72 90.85

Results of LS-SSDD-v1.0

As shown in Table 3, our method outperforms all other state-of-the-art models. Con-
cretely, in entire scenes, our proposal is 7.78% in AP higher than FCOS with the worst
results in this experiment, and 3.27% higher than YOLOX with the second-best perfor-
mance. Compared to YOLOv3, YOLOv5, and YOLOX, the proposed algorithm not only
has a nearly 3% advantage in recall but also shows a superiority of 11.68% over YOLOv5
in precision. This implies that the proposal can, on the one hand, locate more targets and,
on the other hand, effectively reduce the negative impact of a complex background and
noise interference in SAR images, so as to achieve more accurate identification. In inshore
scenes, the AP of our network is 12.36%, 9.04%, and 17.4% higher than Faster R-CNN,
CenterNet, and FCOS, separately. Compared to the YOLO series, the AP is also 6–7% higher.
It demonstrates that in inshore scenes with more complex backgrounds, our method has
better robustness than other models. In offshore scenes, the proposal has an advantage of
1.69%AP and 5.41%AP over the second and the worst performing model, i.e., YOLOX and
Faster R-CNN. This shows that our network has good adaptability in different scenes.

In order to demonstrate the advantages of the proposed algorithm more concretely,
we visualize the detection results of Faster R-CNN, YOLOX and our method, as shown in
Figure 4. It can be found that the ships in the LS-SSDD-v1.0 dataset are extremely small,
and the background clutters indeed makes the detection difficult. However, as can be
seen, our model not only improves the recall but also alleviates the false alarms, especially
in inshore scenes. As shown in Figure 4a,d,g, some small ships that almost blend with
nearshore objects have been accurately detected, proving the strong detection performance
of our method for small-scale ships in complex backgrounds. In addition, the densely
distributed ship objects are also well detected by the proposal, such as Figure 4b,e,h. When
missed detection occurs in other models, our network locates almost all the objects. Besides,
Figure 4c,f,i also show the ability of our proposal to suppress irrelevant false alarms.
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We conduct the same comparative experiments on the HRSID dataset, and the results
are shown in Table 4. It can be seen that the proposed method in this article ranks first
among all other models with an AP, R, and P of 90.85%, 91.72%, and 83.24%, which are
1.33%, 0.42%, and 0.11% higher than YOLOv5 with the second best results. As we know
from Figure 3, the object size distribution in the HRSID dataset is relatively wide. Therefore,
the experimental results indicate that our method can not only effectively improve the
detection performance of small-scale ships in SAR images, but that they also satisfied
adaptability to multi-scale object detection. Meanwhile, the proposal has also been proven
to have sufficient robustness and generalization ability against other datasets.
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Figure 4. Visualization Results. (a–c): Faster R-CNN, (d–f): YOLOX, (g–i): our method. Image
denoted as (·)-sub indicates the local enlarged drawing of its corresponding original image (·). Green
box refers to ground truth, and red box represents detection result.4.5.2. Results on HRSID.

5. Discussion

In Section 4, we emphatically verified the effectiveness of the proposed method. The
results show that our proposal not only alleviates the interference caused by complex
backgrounds and noise in SAR images, significantly reducing the false alarms, but also
enhances the performance of small-scale ship detection. Furthermore, we also test the
adaptability and generalization capability of our algorithm in different environments and
with multi-scale ship objects. In this section, we will focus on introducing the computational
complexity and limits of this method.

The other models, such as Faster R-CNN, YOLOv3, YOLOv5, and YOLOX, adopt a
standard convolution to construct the frameworks. In order to avoid a significant increase
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in the calculation amount while introducing extra modules, we utilize the depthwise sepa-
rable convolution. Figure 5 illustrates the computational complexity differences between
standard convolution and depthwise separable convolution.
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Given input feature maps with a size of Hin ×Win × Cin, convolutional kernels with a
size of Hconv ×Wconv × Cin and number of Cconv, as well as the output feature maps in a
size Cconv × Hin ×Win, the calculation amount of standard convolution Amountstandard is:

Amountstandard = Hin·Win·Cin·Hconv·Wconv·Cconv (5)

Using depthwise separable convolution, the amount of the required calculation
Amountdepthwise is:

Amountdepthwise = Hconv·Wconv·Cin·Hin·Win + Cconv·Cin·Hin·Win (6)

Thus, we achieve the ratio of the computational complexity of two convolutions:

ratio =
Amountdepthwise

Amountstandard
=

1
Cconv

+
1

Hconv·Wconv
< 1 (7)

From Equation (7), the depthwise separable convolution effectively reduces the
amount of computation compared to standard convolution.

In order to verify the computational efficiency of our method intuitively, we compare
the Floating Point Operations (FLOPs) and Parameter quantity (Params) with other state-
of-the-art networks, as shown in Table 5. It can be seen that CenterNet has the smallest
parameter count of 32.66 M and the lowest computational complexity of 170.74 GFLOPs.
Among all YOLO models mentioned in this paper, YOLOv3 has the highest computation
amount with 302.95 GFLOPs, while YOLOv5 possesses the most parameters at 76.8 M.
Compared to the baseline model YOLOX, the parameters and computational complexity of
our method have slightly increased by 4.8% and 1.3%, which is negligible considering the
remarkable performance boost. In other words, the approach adopting depthwise separable
convolution effectively introduced additional modules without the extra computational
burden. However, while this method does not demonstrate outstanding computational
efficiency advantages among other mainstream models, which is our current limitation, it
also brings more possibilities for practical engineering work. Owing to the use of simple
and general operators, the network has good potential for lightweight processing. Through
routine pruning and quantization operations, our algorithm can achieve real-time inference
on FPGA devices or AI chips. Nonetheless, in future work, we will strive to incorporate
the concept of a lightweight design into the module as well as network construction. A fast
and accurate SAR ship detection model is more adaptable for the high-speed operation of
smart cities.
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Table 5. Comparisons of computational efficiency. Bold indicates the best performance.

Methods Params (M) FLOPs (G)

Faster R-CNN 41.35 268.22
CenterNet 32.66 170.74

FCOS 45.66 374.74
YOLOv3 61.53 302.95
YOLOv5 76.8 174.06
YOLOX 54.15 243.13

Ours 56.74 246.36

6. Conclusions

Aiming at the problems of complex backgrounds and small object scales for ship
detection in SAR images, this paper proposes a small-scale ship detection algorithm using
a coordinate-aware mixed attention mechanism and spatial semantic joint context method.
The coordinate-aware mixed attention mechanism integrates the coordinate-aware channel
attention and the spatial attention to enhance the focusing ability on small objects and
suppress the background noise. The spatial semantic joint context method effectively
combines the local and global context, so as to enrich the spatial and semantic feature
expression and, thus, make small objects more recognizable. The experiment results show
that our proposed method has significant performance advantages in the detection of small
ships in SAR images.
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