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Abstract: The use of artificial intelligence in solutions used in smart cities is becoming more and
more popular. An example of the use of machine learning is the improvement of the management
of shared mobility systems in terms of assessing the accuracy of user journeys. Due to the fact that
vehicle-sharing systems are appearing in increasing numbers in city centers and outskirts, and the
way vehicles are used is not controlled by operators in real mode, there is a need to fill this research
gap. The article presents a built machine learning model, which is a supplement to existing research
and is updated with new data from the existing system. The developed model is used to determine
and assess the accuracy of trips made by users of shared mobility systems. In addition, an application
was also created showing an example of using the model in practice. The aim of the article is therefore
to indicate the possibility of correct identification of journeys with vehicles from shared mobility
systems. Studies have shown that the prediction efficiency of the data generated by the model reached
the level of 95% agreement. In addition, the research results indicate that it is possible to automate
the process of evaluating journeys made in shared mobility systems. The application of the model
in practice will facilitate management and, above all, it is open to further updates. The use of many
machine learning models will allow solving many problems that will occur in an increasing number
of smart cities.
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1. Introduction

In recent years, we have witnessed a significant technological revolution covering not
only societies and all areas of the economy, but also areas of public access, such as cities.
The digitization of numerous services or products forces contemporary cities to use more
and more new IT solutions for their proper functioning [1]. A solution related to this trend
is the concept of smart cities, which has been known for more than two decades. This idea
assumes the use of various types of information and communication technologies by cities
to increase the interactivity and efficiency of the urban infrastructure and its components,
as well as to raise the awareness of residents [2].

The emergence of new Smart Cities is a challenge in which designers must take into
account areas such as the environment, management, energy consumption, education and
human safety [2]. Smart cities are also smart societies that require solutions that will help
ensure high quality and adapt to the fast pace of their lives and, at the same time, the ability
to carry out personal matters, which can often be located in different urban areas requiring
the use of an appropriate and efficient means of transport [3]. Then, one of the domains of
smart cities is to provide the society with efficient movement, i.e., the fulfillment of one
of their basic needs, which is mobility. In the case of smart cities, this mobility is based
on a smart transport network, and the areas of its mobility include aspects such as traffic
management, sustainable mobility and also intelligent searching for routes or parking
spaces [4]. Among sustainable mobility services, the leading solutions in smart cities and,
at the same time, those most accessible to the public, are shared mobility systems [5,6].
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These types of services allow sharing journeys or vehicles while providing the opportunity
to travel in an alternative way to individual motorists. Shared mobility, in addition to
a number of advantages, such as the elimination of transport barriers, is also associated
with challenges faced by cities themselves, transport managers, and service providers of
individual transport solutions [7]. Among the research works identified in the literature,
scientists devote their considerations to the possibilities of solving numerous problems
with shared mobility, such as [8–11]:

• adapting shared mobility services to the needs of society;
• selection of vehicles for systems;
• elimination of communication chaos related to vehicles scattered in urban areas;
• modeling the functioning of shared mobility services;
• optimization of shared mobility services;
• security of shared mobility services and others.

Focusing on one of the thematic areas of research on shared mobility, safety, it should be
stated that despite the multitude of works related to this issue, the emphasis is on research
topics that would concern solving the problem of inappropriate behavior of users using
shared mobility system [12]. Numerous scientific studies on the analysis of the functioning
of shared mobility systems in cities have noted that users of systems such as scooter-sharing,
bike-sharing or car-sharing often use them in a random, often aggressive way, not paying
attention to the style of their driving and not caring about rented vehicles [13,14]. As a
result, users are often involved in various types of accidents or accidents. Relating this
type of behavior to the issue of road safety, research emphasizes that aggressive driving is
currently one of the leading problems [15]. Studies show that the aggressive driving style
of drivers increases the risk of an accident 15-fold, regardless of whether the driver is a
professional or a private driver [16]. Moreover, inappropriate behavior of users of shared
mobility directly affects operators providing shared mobility services. They are associated
with additional costs incurred for vehicle repairs, but they are also important in perceptions
of the services by society at large, which, due to the inappropriate behavior of service users,
begins to see shared mobility systems as dangerous [17]. As a result, we are increasingly
dealing with some urban centers that limit the functioning of shared mobility systems in
their area or create various types of referenda aimed at developing solutions for the proper
management of services; such a referendum took place, for example, in Paris [18]. An
exemplary speed course of a vehicle used in the carsharing system is shown in Figure 1.

As can be seen in Figure 1, the average speed of a vehicle moving in the city was
31 km/h, which is generally acceptable. Unfortunately, speeding can be also observed
in a certain range, where the maximum speed was 81 km/h, which is unacceptable in
urban conditions.

To solve the problem of improper use of shared mobility systems, a machine learning
model that will support shared mobility operators and smart city managers is proposed
by the author to predict the correctness of journeys made by shared mobility vehicles. It
is an innovative solution that uses the latest technology, which is artificial intelligence.
In addition, the use of artificial intelligence in solutions supporting the functioning of
shared mobility systems is a kind of novelty, as there are no such practical applications and
theoretical framework in the literature so far. This article is a presentation of the model
developed based on research on shared mobility systems carried out by the author. The aim
of the work is to indicate the possibility of correct identification of vehicle journeys from
shared mobility systems. The need to search for various types of solutions to eliminate the
inappropriate behavior of users of shared mobility systems is evidenced by the continuous
development of systems that predict that by 2027 the number of users using shared mobility
systems will reach five billion [19]. Moreover, according to the report [20], it was estimated
that in 2023 over 29 billion devices will be connected to the Internet of Things (IoT). This
only underlines the importance of how much data today’s cities will have to deal with,
especially in terms of the security of using them.
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Figure 1. Exemplary speeds of a vehicle moving in urban conditions.

This article has been divided into five parts. The first part is a general outline of the
existing problem and a presentation of preliminary information in the field of mobility
in smart cities. The second part is a presentation of the methodology that was used to
develop the model. The third part presents the results of the obtained research, which
are discussed in the fourth part of the work. The fifth part is a summary of the article
along with conclusions, limitations and further research plans of the author in the research
topic undertaken.

2. Data and Methods

Machine learning is one element of artificial intelligence (AI), which is being used
in more and more areas of daily life [21]. The services offered as part of smart cities are
also built with the use of artificial intelligence. Previous records of models describing the
occurring phenomena required a lot of time to conduct research, and their results were
limited by an untested element [22]. One of the solutions currently in use is the ability to
use existing data as part of the input data, or data validating the model. In this article, the
data used to train the functions published in other original articles [23–27] were also used
to verify the data obtained during the test runs.

The proposed model to evaluate the correctness of the driver’s journeys was built
according to the scheme of its functioning presented in Figure 2.

The developed model was built of four main parts. The first part is the identification
of the particular vehicle that has moved in the vehicle-sharing scheme. The data model
describing the Mvehicle was written with the Formula (1):

Mvehicle(Id) = [P1, P2, P3 . . . ., Pn] (1)

where:

Id—individual number of the vehicle [-];
n —number of variables [-];
P1, P2, P3 . . . ., Pn—variables describing the technical data of the vehicle [-].
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The following exemplary technical data of one of the vehicles (2) were adopted in the
developed model:

Mvehicle(Id) = [P1, P2, P3, P4, P5, P6] (2)

where:

P1—vehicle brand [-];
P2—vehicle model [-];
P3—engine power [kW];
P4—declared energy consumption [kWh/100 km];
P5—battery charge status [%];
P6—number of vehicle seats occupied [-].
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Another part of the model is a set of data from each trip (Mtrip) of the vehicle, repre-
sented by a data matrix (3):

Mtrip =

Mvehicle(Id)11 T12 . . . T1j Iuser
...

...
...

...
...

Mvehicle(Id)i1 Ti2 . . . Tij Iuser

 (3)

where:

i, j —number of horizontal and vertical matrix levels [-];
Tij—data describing the route traveled [-];
Iuser—individual identification number of a given user [-].

The sample trip data are presented in the form of Table 1.
An exemplary view of the route taken by the user is shown in Figure 3.
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Subsequently, the Mvehicle(Id) and Mtrip data are exported to the database, which
keeps a copy of the archived data and at the same time analyzes on this basis, identifying
the correctness of the trip. The analyzed data are a set of Dinput training data, which consists
of the following elements (4):

Dinput =
{

Mvehicle, MTrip, Mrating
}

(4)

where:
Mrating is an assessment of the drivers’ journeys, which was classified by the model (5):

Mrating =


1− vehicle driven inconsistently

2− vehicle moves correctly in urban conditions
3− vehicle moves correctly in extra− urban conditions

(5)
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Table 1. Sample route values Mtrip.

Sample Mvehicle
(Id)

Ti2 Ti3 Ti4 Ti5 Ti6 Ti7 Ti8 Ti9 Ti10 Ti11 Ti12 Ti13 Ti14 Ti15 Ti16 Uuser

1 5929 18 June 2023 12:24 18 June 2023 12:27 181 1.7 74 33 10 6 4 0 20 19.1873 50.4005 19.2042 50.4121 911,792
2 5414 18 June 2023 18:36 18 June 2023 18:41 242 2.7 64 32 16 16 2 0 34 19.3326 50.5783 19.3041 50.5607 905,840
3 8115 20 June 2023 10:15 20 June 2023 10:18 180 2 100 55 6 4 9 1 20 19.1057 50.0910 19.1309 50.0838 911,745

where: Ti2—rental start date [-]; Ti2—rental end date [-]; Ti3—rental time [s]; Ti4—trip length [km]; Ti5—Max speed [km/h]; Ti6—average speed [km/h]; Ti7—number of GPS samples in
the speed range of 0–30 km/h [-]; Ti8—number of GPS samples in the speed range of 30–60 km/h [-]; Ti9—number of GPS samples in the speed range of 60–90 km/h [-]; Ti10—number of
GPS samples in the speed range of 90–120 km/h [-]; Ti11—number of GPS samples in the speed range of >120 km/h [-]; Ti12—the number of all GPS samplings during the rental [-];
Ti13, Ti15—vehicle GPS position data at the start of the rental [-]; Ti14, Ti16—vehicle GPS position data at the end of the rental [-].
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Due to the high availability of model machine learning tools, an analysis of the
selection of the optimal model training was carried out for the prediction model [28,29].
Models created on the basis of the methods were adopted for the analysis: Tree models,
Naïve Bayes models, Support Vector Machines (SVM) models, K-nearest neighbors (KNN)
models, Ensemble (Tree) models and Neutral Network models. In addition, to optimize
each of the applied machine learning methods, the minimum value of the classification
error was verified for various parameters of model building. Figures 4–9 show the results
of individual methods and the values of the minimum classification error in individual
iterations (changes in model-building data).
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In order to assess the usefulness of the methods and to create an appropriate model,
the assessment measures of individual factors were used, such as: True Positive Rate
(TPR), True Negative Rate (TNR), False Positive Rate (FPR), False Negative Rate (FNR),
Minimum Accuracy (MA) and minimum value of the classification error (MCE) according
to Formulas (6)–(11):

TPR =
TP

TP + FN
(6)
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where:

TP—True Positive—the number of observations correctly classified into the positive class.
TN—True Negative—the number of observations correctly classified into the negative class.
FN—False Negative—the number of observations classified into the negative class, when
in fact the observation belongs to the positive class.

TNR =
TN

TN + FP
(7)

where:

FP—False Positive—the number of cases that are positively classified when in fact the case
is negative.

FPR =
FP
TN

(8)

FNR =
FN
TP

(9)

MA =
TP + TN

TP + TN + FP + FN
(10)

MCE = 1−MA (11)

After performing the calculations, the lowest value of the change in the minimum value
of the classification error for the training data was obtained for the Ensemble (Tree) method,
which achieved a result of 5.87%. The second in the ranking was the Tree Models method,
which also achieved a result of less than 6% of the classification error. Detailed results for
the training data are presented in Table 2. It should be emphasized that the remaining
methods after several iterations showed a constant value of the classification error, which
ultimately confirmed that the Ensemble (Tree) method is the most advantageous method
for further use. The detailed results of the classification error value and the correctness of
the classification of the training data model are presented in Table 2.

Table 2. The results of the classification error value and the correctness of the model classification
with the training data.

Method MCE [%] MA [%]

Tree model 5.94 94.06
Naïve Bayes 9.79 90.21

SVM 8.32 91.68
KNN 8.72 91.28

Ensemble (Tree) 5.87 94.13
Neural Network 10.01 89.99

The models created were trained with training data to verify the correctness of the
models’ predictions. For the models, after checking with test data, the values of the
minimum classification error of the models and their classification accuracy were recalcu-
lated. Detailed results of the classification error value and the correctness of the model
classification for the test data are presented in Table 3.
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Table 3. The results of the classification error value and the correctness of the model classification for
the test data.

Method MCE [%] Model Accuracy [%]

Tree model 6.60 93.40
Naïve Bayes 9.20 90.80

SVM 7.90 92.10
KNN 8.40 91.60

Ensemble (Tree) 6.30 93.70
Neural Network 9.70 90.30

It can be concluded that after testing the model with test data, the accuracy of the
model prediction decreased by about 0.5%. Due to the obtained high rates of prediction
accuracy and low value of the classification error, the Ensemble (Tree) method was chosen
as the main research method.

The selected method also has several advantages and disadvantages. The main
advantage is that the proposed method is characterized by better accuracy and efficiency in
the case of complex solutions. In addition, the method can work with different types of
data, and it is not required to enter data of one type. An undoubted disadvantage of the
method is the need for high computing power so that the study is not time-consuming. The
work is carried out on a large amount of data that is necessary for the model to work. With
a large number of variables, it may be difficult to interpret the results and determine the
correct relationships. However, despite the disadvantages, in the analyzed example this
method obtained the highest value of matching the training data to the test data [30,31].

The next step is to perform a graphical interpretation of the efficiency of the predictive
model by determining the qualitative characteristics of the classifiers. This graphical
interpretation is called the ROC curve. The ROC curve is created by determining the cut-off
points (kod) according to the Formula (12):

kod → (x(kod), y(kod)) = (FPR(kod), TPR(kod)) (12)

Then, partial dependence graphs will be determined, showing the impact of the
individual factors (features) tested on the predicted result of the prediction model. The
partial dependence function can be represented by the Formula (13):

f̂s(xs) = EXc

[
f̂s(xs, XC)

]
=
∫

f̂ (xs, XC)dP(XC) (13)

where:

xs—features for which the dependency function is determined;
XC—other features used in the prediction model—random variables.

The end result of the prediction model will be the determination of the correctness
of the journey made and the identification of whether the vehicle is moving in urban
or extra-urban conditions. The developed machine learning model will use a group of
supervised machine learning factors based on the ensemble tree method.

3. Results

In order to build the final version of the model, data from the existing vehicle sharing
system operating in Poland were used. For this purpose, 5558 individual journeys of users
were analyzed and individual journeys were assessed. The Dinput input data were divided
into two groups of data: model training data (90%—of the Dinput input data set) and model
training data—Input data (10%—of the Dinput input data set).

Based on the Dinput data, a confusion matrix was determined to determine the TPR,
FRN, PPV and FDR values. The confusion matrix is shown in Figures 10 and 11.
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Figure 11. Confusion matrix with positive predictive values and false discovery rates.

As can be seen, the coefficient values obtained in Figures 10 and 11 are characterized by
high values above 90%. This means that the training data and test data have been correctly
classified. Subsequently, a graphical interpretation of the efficiency was determined by
creating the ROC curve. The ROC curve for the created model is shown in Figure 12.
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Figure 12. ROC Curve for prediction model.

As can be seen in Figure 12, the variability of TPR depending on FPR is linear. In
addition, the Gini coefficient (AUC) for all three predictors is >95%, which only underlines
the correctness of the prediction model.

Then, in Figures 13–18, graphs of partial dependence of the classifiers forming the
model are presented—Markings on the graphs:

- red line—prediction of vehicle movement in urban conditions;
- yellow line—prediction of vehicle movement in non-urban conditions;
- blue line—incorrect prediction of vehicle movement.
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The indication of the vehicle travel time (Figure 13) allows one to determine that, as
the travel time increases, the probability of discrepancies detection decreases. On the other
hand, the probability of moving outside the built-up area increases. The probability of
moving around the city assumes a practically constant value of 26%.

The relationship between the length of the trip (Figure 14) and the prediction is very
important. In the range up to 3 km, the model determines that vehicles mainly move in
the urban cycle, correctly and incorrectly. However, after exceeding the value of 3 km, the
prediction of movement in the non-urban area begins to dominate.

The maximum speed detection dependence (Figure 15) has a very large impact on the
prediction result. As can be seen in Figure 15, if the speed exceeds 54 km/h, the model will
strongly strive to predict incorrect vehicle movement in urban conditions. The stability of
the prediction is maintained by detecting movement outside the built-up area.

Determining the average speed (Figure 16) with which the vehicle moved during
the entire route determines that when the speed exceeds 45 km/h, the model prediction
changes from correct vehicle movement to incorrect.

The graph of the partial influence of the factor ‘average value of energy consumption’
(Figure 17) on the prediction value shows that with the increase in the average value of
consumption, the value of the average energy consumption decreases in the case of moving
in non-urban conditions. On the contrary, the average energy consumption increases in the
case of incorrect trips.

The last factor analyzed was energy consumption in relation to the route traveled—
shown in Figure 18. The factor constructed in this way determines the nature of the factor,
and it is visible that with the increase in this factor, the nature of driving the vehicle in
extra-urban mode is predicted. On the other hand, low values of the factor characterize
incorrect driving of the vehicle.

Based on the built model, an application with an intuitive graphical interface was
launched, which has an implemented prediction model for evaluating individual driver
trips. An example screenshot of the application is shown in Figure 19. The application has
two basic functioning dependencies:
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- input data can be imported directly from the vehicle—in real mode;
- archival data can be kept—manually.
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In the application window, it is possible to enter data or their parts in accordance
with Table 1. The model does not require the completeness of all data to predict the
result. However, it should be remembered that entering more data increases the chances of
obtaining the correct result.

The final effect of the application is to determine whether, based on the received
data, the driver used the vehicle correctly or whether he or she misused the vehicle. The
application was made using the Matlab2023a software.

4. Discussion

The results obtained under the developed model clearly indicate that it is possible to
build a fully functional tool to predict the behavior of vehicle drivers in shared mobility
systems. The input data and functions of the behaviors defined in previous studies enabled
the creation of a model that generates correct results of classification of incorrect behaviors
of drivers at the level of 95%. The conducted research is an innovative solution that
allows determining the behavior of drivers of vehicles from short-term rentals. In addition,
the model also received a graphical overlay that allows people who are not necessarily
well-versed in the subject of machine learning to use the software.

When comparing the research conducted with the analyses performed by other sci-
entists, it should be stated that no identical studies referring directly to shared mobility
have been reported. Referring to other research carried out in the field of broadly un-
derstood transport, it is worth mentioning the research carried out by Mohammadnazar
et al. [32], which concerned the development of a proposal for an unsupervised machine
learning model as one of the elements of identifying groups of drivers and the variability
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of driving behavior. However, it was a division that distinguished only drivers, highway
drivers, street drivers and local road drivers. The model developed by the authors [30]
did not take into account driving identification of whether the vehicle was moving in
accordance with the regulations. In addition, it used another method of unsupervised
machine learning, k-means.

For comparison, Liu et al. [33] in their research attempted to use machine learning to
predict the driving conditions of an electric and a hybrid vehicle. As a result, they proved
that the simulations carried out using the proposed model can provide an improvement in
speed prediction, which in turn will translate into improved vehicle operating economy.
This is extremely important in the case of vehicles used in shared mobility systems, whose
operational activities are very often neglected.

Subsequently, Wang et al. [34] used machine learning to predict passenger injuries.
They proved that it is possible to identify a collision scenario with a delay of 1.2 ms. This
type of application will improve the traffic safety of autonomous vehicles. They used the
SVM algorithm to build it.

The safety of driving a vehicle in urban conditions is a function of a large number
of factors and variables. Each vehicle driver has his own individual driving style, which
can be applied or can be an act of temporary preference of the driver [32]. Deng et al. [34]
proposed the Markov model as a method of recognizing the driving style, which uses
data on the braking characteristics of the vehicle. The research consisted of the subjective
assessment of the drivers who underwent the experiment; while making the journey, they
interpreted what driving style they used. Unfortunately, the identification of one’s own
passage is burdened with a significant error. Aggressive driving is one of the road safety
problems. Studies [35] indicate that the aggressive driving style of drivers increases the
risk of an accident 15-fold, regardless of whether the driver is a professional or private
driver [15,16].

The integration of many prediction models of phenomena that occur in shared mobility
services may contribute to the creation of a global model that will treat existing models as
subordinate. Tuncel et al. [36] attempted to integrate ride-matching and vehicle-balancing
models for shared mobility services. The integrated model solves the problem of matching
passages and balancing vehicles. Such a connection leads to an improvement in the
functioning of the entire system and also allows the detection of vehicles that are not often
used in the shared system.

Due to the fact that machine learning models process large amounts of data, it is
possible to use data training of a given model for other applications. The authors [37]
determined that estimating safety using pre-programmed dependencies can increase the
traffic safety of unprotected road users, which is extremely important in the structures of
smart cities.

5. Conclusions

In conclusion, the variety of emerging artificial solutions will support the management
and functioning of modern cities. The resulting machine learning model, which can assess
the journey of a particular user in real time and on the basis of archive data, is a support for
shared mobility operators. Unfortunately, at the moment, crossings are not controlled and
more and more often users use vehicles contrary to the regulations and local regulations.

The created model generates the evaluation values of the correctness of the run and
classifies which run was made with an accuracy of over 95%, which makes it a very accurate
and stable model. In addition, operators can pay attention to which factors generate the
highest probability of a given classification.

Based on the research conducted and the created prediction model for the assess-
ment of the correctness of the ride in shared mobility systems, the following conclusions
were formulated:
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• On the basis of the obtained partial graphs of dependencies of the prediction model, it
is possible to determine the probability of the influence of the factor on the evaluation
of the trip;

• The practical use of the model together with the graphic overlay facilitates the use of
the built prediction model;

• The obtained accuracy of the model prediction is at a very high level—over 95% of the
correctness of the classification of passages;

• Machine learning models can be expanded; however, it is important not to overtrain
the model with incorrect data;

• The use of machine learning in security-related applications should be performed
using supervised machine learning.

The built model can be updated with data from other previous studies or studies by
other authors. Therefore, it is possible, based on data on journeys and their classification, to
update individual journey prices or to block the possibility of using the system by per-sons
who excessively do not comply with the regulations or who break local regulations.

The conducted research on shared mobility services points to current and future
directions that the author wants to take.

There is a huge research gap in the use of machine learning in solutions that can
automate the work of shared mobility systems. In addition, machine learning will reduce
the need to analyze huge amounts of data to detect inconsistencies. From the point of
view of the practitioner—the operator and the policy—of local authorities, it will simplify
the management and functioning of the system. Furthermore, the model can become a
subsystem of existing solutions used in smart cities.

In the next stage, the model will be tested in practice on a test number of vehicles
from the fleet of the functioning sharing system. The application graphic page will also be
updated, where the user service model will be implemented, along with their travel history.

The limitation of the model’s application, at the moment, is the possibility of using
it only in the mode without the possibility of data training. Model training data update
the model only in manual mode overseen by the model author. Another limitation is also
the need to have computing equipment that will analyze the data received on an ongoing
basis. In addition, the model should support, and not exclude, the human factor in decision
making at the current stage.
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