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Abstract: With the increasing popularity of wireless networks and the development of smart cities,
the Mobile Crowdsourcing System (MCS) has emerged as a framework for automatically assigning
spatiotemporal tasks to workers. The study of mobile crowdsourcing makes a valuable research
contribution to community service and urban route planning. However, previous algorithms have
faced challenges in effectively addressing task allocation issues with massive spatial data. In this
paper, we propose a novel solution to the spatiotemporal task allocation problem using a knowledge
graph. Firstly, we construct a robust spatiotemporal knowledge graph (STKG) and employ a knowl-
edge graph embedding algorithm to learn the representations of nodes and edges. Next, we utilize
these representations to build a task transition graph, which is a weighted and learning-based graph
that highlights important neighbors for each task. We then apply a simplified Graph Convolutional
Network (GCN) and an RNN-based model to enhance task representations and capture sequential
transition patterns on the task transition graph. Furthermore, we design a similarity function to facili-
tate personalized task allocation. Through experimental results, we demonstrate that our solution
achieves higher accuracy compared to existing approaches when tested on three real datasets. These
research findings are significant as they contribute to an 18.01% improvement in spatiotemporal task
allocation accuracy.

Keywords: smart city; mobile crowdsensing; task allocation; knowledge graph; GCN; RNN

1. Introduction

With the rapid development of smart cities, spatio-temporal crowdsensing has at-
tracted more and more attention, which is a novel distributed service model that enables
resource sharing and value creation by assigning many tasks to many mobile device work-
ers. However, the problem of task allocation in spatiotemporal crowdsensing has been
a major challenge since it directly determines the efficiency of task completion. There-
fore, it is of great theoretical significance and practical value to study how to optimize
spatio-temporal crowdsensing task allocation by using advanced technology [1].

In recent years, the development of deep learning techniques has provided new ideas
and methods for studying the task allocation problem in spatiotemporal crowdsensing.
Graph neural networks (GNNs) are deep learning methods that effectively handle graph
data. By learning the relationships between nodes and local structural features, GNNs can
model and optimize task allocation problems. As a result, spatiotemporal crowdsensing
task allocation methods based on GNNs have become a popular research direction [2].

Currently, spatiotemporal task allocation problems [3] can be divided into two cate-
gories: sequence-based solutions and knowledge graph-based solutions. Sequence-based
solutions encompass Markov chains, recurrent neural networks (RNNs), and attention-
based models. Initial research employed Markov chains to model sequence transition
patterns. RNN-based methods [4,5] aim to integrate classical RNN architectures, such
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as Long Short-Term Memory networks, with temporal and spatial contexts to enhance
the model’s ability to capture sequence patterns. Moreover, attention mechanism models
have been proposed for task allocation based on the success of Transformers in natural
language processing. Recently, knowledge graph-based models have emerged to improve
task representations by considering the characteristic that similar users tend to access
similar tasks. However, knowledge graph-based spatiotemporal task allocation methods
have certain limitations that significantly impact their effectiveness:

Knowledge graph construction: Previous methods primarily constructed custom
homogeneous task graphs consisting of only one type of node and edge [6,7]. These
methods primarily emphasized task connectivity while neglecting to consider edge weights.
Conversely, a limited number of studies have explored the utilization of heterogeneous
graphs that incorporate multiple types of nodes and edges. These studies aim to generate
learning-based homogeneous task graphs.

Task representation: Current knowledge graph-based models directly employ graph
neural networks (GNNs) on custom graphs to enhance the representation of each task
through neighborhood sampling strategies. However, these models lack sufficient theo-
retical support. Additionally, avoiding unnecessary operations (e.g., feature transition)
presents challenges in the application of GNNs [8]. Furthermore, it is crucial to clarify the
learning process of weight coefficients, which signify the importance of neighbors for each
task, as overlooking this aspect may undermine the effectiveness of the model.

Personalized allocation: The majority of existing methods combine user feature vec-
tors, such as embeddings, with the model’s output to allocate tasks in a personalized
manner. However, this operation must consider users’ general preferences for different
tasks. Alternatively, other studies combine user and task representations and utilize them
as input to the model to reflect personalized user preferences. However, accurately ob-
taining and incorporating personalized user preferences solely by concatenating user and
task representations is challenging due to the multitude of factors that can influence user
preferences, including time, location, and task category.

This paper introduces a knowledge graph-based algorithm for spatiotemporal task
allocation to overcome the aforementioned limitations. Initially, we construct a robust and
versatile spatiotemporal knowledge graph (STKG) to address the limitations of previous
methods’ custom homogeneous task graphs. By utilizing knowledge graph embedding
(KGE) algorithms on the STKG, we learn representations for each node and edge. Next,
these learned representations are used to construct a task transition graph, as depicted in
Figure 1. Unlike previous methods, our task graph explicitly denotes the importance of
different neighbors (excluding itself) for each task. Through the application of a simplified
graph convolutional network (GCN) on the task transition graph, we enrich the representa-
tion of each task. Finally, the enhanced representations are inputted into an RNN-based
model to effectively capture sequence transition patterns, thus leading to improved task
allocation services. To tackle the third limitation, we design a similarity function that
encompasses various factors, such as time, location, and task category, to measure the
preferences of different users and facilitate personalized task allocation.

(a) task graph (b) learned task graph

Figure 1. A simple example that illustrates the difference between customized task graph and learned
task transition graph.
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In summary, we contribute to spatiotemporal task allocation in the following ways:

• We propose a novel spatiotemporal knowledge graph (STKG) that can be directly used
to learn task graphs reflecting the patterns of task transitions. To our knowledge, this
is the first method that learns weighted isomorphic task graphs using heterogeneous
knowledge graphs in spatiotemporal crowdsensing.

• We introduce a novel Knowledge Graph-based GTA approach that seamlessly in-
tegrates the learned task transition graph with an RNN-based model to effectively
capture sequence transition patterns. Furthermore, to enhance the effectiveness of
personalized task allocation, we introduce a meticulously designed similarity function
to measure the preferences of different users.

• We extensively evaluate our approach on three real datasets and demonstrate that
GTA outperforms existing solutions with higher accuracy.

The structure of this paper is described as follows: First, we briefly introduce the
basic concepts of spatiotemporal crowdsensing and task allocation and explore the current
challenges and problems faced in this area in Section 1. Next, we review the research work
related to spatiotemporal crowdsensing task allocation in Section 2. In Section 3, we describe
the system model and the problem formulation. Subsequently, we describe our proposed
knowledge graph-based spatiotemporal crowdsensing task allocation algorithm in detail in
Section 4. In Section 5, we verify the effectiveness and feasibility of the proposed algorithm
through experiments on three real datasets and discuss potential research directions and
application prospects. Finally, we review the main contributions and shortcomings of this
paper in the Section 7 and look forward to possible future research directions.

2. Related Works

Spatio-temporal crowdsensing has attracted considerable attention because of its high
practicality for real-world applications. We have studied the online allocation of two types
of objects in spatio-temporal crowdsensing. In this section, we will briefly review some of
the work on task allocation and prediction, as shown in Table 1.

2.1. Task Allocation

In recent years, the problem of task allocation in spatio-temporal crowdsensing sys-
tems has become a research hotspot. Early research mainly focused on the aspect of offline
task allocation. However, with the advancement of technology and the popularity of mobile
devices, the timeliness of tasks is becoming more and more critical. Therefore, the impor-
tance and complexity of online task allocation problems in spatio-temporal crowdsensing
systems have become increasingly prominent. To address these issues, researchers have pro-
posed many new methods and frameworks. Zhao et al. [9,10] proposed a dynamic delayed
binary matching (DDBM) problem and designed value-based task allocation (VBTA) and
policy gradient-based task allocation (PGTA) frameworks, respectively. To achieve safe
and efficient task allocation, Liu et al. [11] proposed a task allocation framework based on
federated preference learning. The framework not only ensures the privacy of the central-
ized data on each platform but also enables task allocation based on worker preferences.
Wang et al. [12] proposed a multi-task allocation problem with the goal of maximizing
spatio-temporal coverage, aiming to solve the competition and prioritization problems
among tasks while considering temporal and spatial constraints. These research results help
us better understand and solve the task allocation problem of spatio-temporal crowdsensing
systems, and provide more effective and feasible solutions for practical applications.

For heterogeneous task, Li et al. [13] proposed a worker selection problem with
the goal of minimizing costs. Specifically, the problem involves selecting a group of
workers suitable for a specific task in order to perform the task efficiently and minimize
costs while these workers can continue to perform their daily work without changing
the original trajectory. The study provides an effective solution for worker selection for
heterogeneous sensing tasks. Li et al. [14] further formulate a time-constrained task
allocation problem aimed at maximizing the utility of mobile crowdsensing platforms.
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Time constraints are considered critical because tasks must be completed within strict time
constraints. Their goal is to allocate multiple tasks to the right mix of workers to maximize
the utility of the overall platform, thereby increasing system efficiency and productivity.
Wang et al. [15] proposed a new task allocation framework from the perspective of task
organizers and participants to optimize the overall system utility. The framework aims
to address challenges in task allocation, such as unfair distribution, full load of workers,
etc. They propose a new task allocation algorithm that considers multiple factors between
workers and tasks to maximize the utility of the overall system. The framework helps to
optimize task allocation and improve productivity and efficiency while allowing workers
to complete mobile crowdsensing tasks in their daily work without changing the original
trajectory, improving work flexibility.

2.2. Mobility Prediction

Movement prediction is widely studied in task allocation in spatio-temporal crowd-
sensing systems. Zhang et al. [16] proposed a novel multi-task allocation method based
on mobility prediction, which optimizes the overall task completion rate according to
the mobility prediction results while considering the spatio-temporal characteristics of
workers and tasks. Yang et al. [17] used a Markov model to predict the probability of
a worker completing a task and select a worker set that maximizes the probability of
completing multiple tasks while satisfying a budget constraint. The work aims to optimize
the task allocation scheme, thereby improving overall efficiency. Wang et al. [18] proposed
a multi-objective optimization algorithm using a mobile prediction model, including task
coverage maximization and task cost minimization. The model simulates worker flow
using statistical models, improving the accuracy and efficiency of task allocations. At the
same time, they also take into account the mobility of workers, increasing the flexibility of
task allocation. Wang et al. [19] proposed a multi-task allocation algorithm to maximize
spatio-temporal coverage under the total budget constraint. The algorithm exploits the
Poisson distribution to predict task completion and optimize task allocation to maximize
system utility. The work is optimized for overall benefit, taking into account budgetary
constraints and task completion. Wang et al. [19] used the poisson distribution to obtain
the probability of workers passing through a certain area within a certain period of time
and proposed an effective task allocation algorithm. The algorithm aims to optimize task
allocation to improve overall efficiency. Through the application of the movement predic-
tion model, this algorithm can more accurately predict the movement trajectory of workers,
thereby improving the accuracy and efficiency of task allocation.

Poisson distribution is widely used to predict user mobility in spatio-temporal crowd-
sensing task allocation. Wang et al. [20] and Xiao et al. [21] used poisson distribution
to predict the user’s moving trajectory to improve the accuracy and efficiency of task
allocation. Guo et al. [22] proposed the task allocation problem in two situations, namely,
time-sensitive tasks and delay-tolerant tasks. The latter aims to reduce the workload of
employees by predicting the mobility of users to allocate tasks. The work is mainly to con-
sider the mobility of employees and improve the flexibility and accuracy of task allocation.
Liu et al. [23] used a Markov model to predict worker mobility and select a set of workers
to perform tasks. The algorithm aims to optimize the task allocation scheme, thereby
improving system efficiency and work efficiency. Lai et al. [24] proposed a DSTA model
that aims to maximize the number of completed tasks under a specific perceived duration
requirement. The model models the probability of task completion for each worker based
on an exponential distribution to account for worker mobility and task completion time
constraints. The work optimizes task allocation by predicting worker mobility, thereby
improving system efficiency and productivity. In order to quantify the differences between
the trajectories of workers, Deng et al. [25] employed a contrastive learning mechanism
to learn the latent representations of the trajectories and proposed a trajectory similarity
calculation model called CL-TSim based on contrastive learning.
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Table 1. Methods and techniques for task allocation in smart cities.

Category Authors Objective

Task
Allocation

Zhao et al. [9,10]
Formulate the Dynamic Delayed Binary Matching (DDBM) prob-
lem and design Value-Based Task Assignment (VBTA) and Pol-
icy Gradient-Based Task Assignment (PGTA) frameworks

Liu et al. [11]
Propose a task allocation framework based on federated prefer-
ence learning to ensure data privacy and assign tasks according
to worker preferences

Wang et al. [12]
Solve multi-task competition and priority issues, optimize task
allocation to maximize spatio-temporal coverage, and consider
spatio-temporal constraints

Li et al. [13] Propose a worker selection problem in heterogeneous percep-
tion tasks to minimize costs and maintain worker trajectories

Li et al. [14]
Study the time-constrained task allocation problem, maximize
the utility of mobile crowdsourcing platforms, and improve
system efficiency and productivity

Wang et al. [15]
Optimize task allocation from the perspective of task organizers
and participants, solve problems such as unfair allocation and
worker load, and improve work flexibility

Mobility
Prediction

Zhang et al. [16] Multi-task allocation method based on mobility prediction to
optimize task completion rate

Yang et al. [17] Use the markov model to predict the probability of workers
completing tasks and optimize task allocation

Wang et al. [18]
Multi-objective optimization algorithms using movement pre-
diction models, including task coverage maximization and task
cost minimization

Wang et al. [19] Multi-task allocation algorithm for maximizing spatiotemporal
coverage under total budget constraint

Prediction
and Task
Allocation

Cheng et al. [26] Consider current and future workers/tasks, improve global task
allocation, increase task allocation accuracy

Zhang et al. [27]
A task allocation framework based on worker churn prediction,
which optimizes the allocation of individual tasks by predicting
worker churn

Zhao et al. [28] Considering current and future workers/tasks (location un-
known), maximizing the number of task allocation

Zhai et al. [29] Use the SeqST-ResNet deep learning model to effectively capture
the temporal dependence of historical tasks

Wang et al. [30] Research on task allocation problem based on worker churn to
achieve the highest total task allocation reward

Wei et al. [31]
Joint Predictive Model (JPM), considering worker location and
preference category, predicts worker location and preference
category

Wang et al. [32]
Use knowledge graph technology to predict task allocation, op-
timize task allocation, and explore complex spatio-temporal
relationships

Quan et al. [33] Propose Conv-STAN and CT-Voting prediction methods to pre-
dict the future distribution of crowdsourced entities

2.3. Prediction and Task Allocation

Task prediction has great potential to improve the accuracy of task allocations on
mobile crowdsensing platforms, and there are many existing works on task prediction.
Cheng et al. [26] were the first to carry out research on task prediction. They consider
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existing and future (via prediction) workers/tasks to improve global task allocation, design
an efficient grid-based prediction method to estimate the spatial distribution of future
workers/tasks, and then allcate workers to tasks. Zhang et al. [27] proposed a task
allocation framework based on worker turnover prediction, which helps to optimize the
allocation of a single task. Researchers have also focused on more complex and realistic
perception task settings, such as multi-task competition, heterogeneous perception tasks,
time constraints, and party factors. Zhao et al. [28] also consider current and future
workers/tasks (location unknown) entering the system to maximize the number of allcated
tasks. Zhai et al. [29] proposed a novel deep learning model called SeqST-ResNet, which
effectively captures the temporal dependency of historical task occurrences at multiple time
scales. To capture complex spatio-temporal correlations and underlying supply-demand
relationships, Wang et al. [30] investigated the task allocation problem based on worker
attrition, with the aim of achieving the highest total task allocation reward while considering
worker attrition. Wei et al. [31] considered both worker location and preference categories
and proposed a joint prediction model (JPM) for location and preference category prediction
of workers at each sample timestamp. Some researchers consider using knowledge graph
technology to predict tasks. Wang et al. [32] explored the potential relationship between
tasks and users, analyzed the characteristics of mobile users and tasks, and constructed
a knowledge graph. They proposed a task allocation method based on link prediction.
Quan et al. [33] proposed a convolutional spatio-temporal attention model (Conv-STAN)
and a clustering-based time-weighted voting method (CT-Voting) for predicting the future
distribution of crowdsensing entities.

3. Preliminaries

We first introduce the definitions in MCS system.

Definition 1 (Crowd Worker). We use a quaternion wi =< li, vi, mdi, si > to denote crowd
worker wi. Among them, li represents the geographical location of the worker, vi represents the
moving speed of the worker, mdi represents the maximum moving distance of the worker, and si
represents the working skill of the worker. The representation helps to fine-tune the behavioral
characteristics and capabilities of workers in crowdsensing systems. Location information helps to
understand a worker’s geographic location, movement speed, and maximum travel distance reflect a
worker’s ability to move, and skill information indicates the tasks a worker can perform. The set of
workers in mobile crowdsensing is defined asWS = {w1, w2, . . . , wm}.

Definition 2 (Crowd Task). We use a quaternion tj =< lj, cj, bj, dlj > to denote the crowd task
tj to be allocated. Among them, lj represents the location of the task, cj represents the category
of the task, bj represents the budget of the task, and dlj represents the deadline of the task. The
representation helps to fully consider the requirements and constraints of the task during the task
allocation process. The location of a task is critical to assessing worker viability, task category
sets represent the skills or skill sets required for the task, budget constraints help ensure tasks are
completed at an affordable cost, and deadlines constrain tasks completion time. The set of tasks to be
allocated in spatio-temporal crowdsensing is expressed as T S = {t1, t2, . . . , tn}, also known as the
set of candidate tasks.

Definition 3 (Historical Task Set). When processing the historical task set HTSi completed by
a worker, we observe that each worker-task pair is represented as a tuple < workerID, taskID,
timestamp, location >. workerID represents the ID of the worker, taskID represents the ID of the
task, timestamp represents the time when the task was executed, and location represents the location
where the task was performed. Since the size of the historical task set HTS for each worker may vary,
we need to process it to fit the model proposed in this paper. To achieve this goal, we transform the
worker’s historical task set into a fixed-length task sequence, where ml is the maximum length we
consider. This way, regardless of the number of historical tasks completed by the worker, they can
be uniformly represented as a fixed-length task sequence. When dealing with task sets of varying
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lengths, we employ the following strategy: if length(HTSi) > ml, we only keep the most recent ml
tasks; if length(HTSi) < ml, we pad zeros to the right of HTSi until the task sequence reaches ml.

Definition 4 (Knowledge Graph). A knowledge graph is represented by G = (V , E ,R), where
V denotes the set of entities, E represents the set of relationship types, and R denotes a set of
subject-relationship-object triples, where each triple r = (h, p, t) represents a relationship p from
head entity h to tail entity t. Specifically, (h, p, t) indicates the relationship p between the head
entity h and the tail entity t. For example, (Tom, pick up, package) indicates that Tom picked up
a package.

Definition 5 (Worker-Task Matching). Given the knowledge graph G, the worker wi, and the
historical task set HTSi of worker wi, the goal of the task allocation problem is to allocate the tasks
that worker wi is most likely to perform.

4. Transition Graph Learning

This section introduces an explicit approach to learning the transition patterns between
spatiotemporal tasks. This method utilizes a knowledge graph to generate representations
for each entity and relationship. It defines neighborhoods based on these representations
to obtain a graph representing the transition patterns between spatiotemporal tasks. This
transition graph can be used for the spatiotemporal task allocation task. The method learns
the transition patterns between spatiotemporal tasks by leveraging the knowledge graph.
The knowledge graph consists of spatiotemporal tasks as entities and their relationships
as edges or relations. Representations for each entity and relationship in the graph can
be derived from various sources such as textual descriptions, worker comments, or other
contextual information. We create neighborhoods around each spatiotemporal task based
on these representations, capturing the relevant spatiotemporal tasks and relationships
in the knowledge graph. Neighborhoods can be defined by considering the proximity
of entities and the strength of relationships. By constructing neighborhoods, we form a
graph representing the transition patterns between spatiotemporal tasks. The edges in
this graph represent the transitions between spatiotemporal tasks. The edges’ strength or
weight can be determined based on the learned representations to indicate the relevance
or likelihood of transitions. This transition graph can be used for the spatiotemporal task
allocation. Given the current spatiotemporal task, the graph can provide insights about
possible tasks based on observed transition patterns in the neighborhoods. This method
explicitly models and captures the transition patterns between spatiotemporal tasks using
a knowledge graph and learned representations. This enables the generation of a graph for
the spatiotemporal task allocation.

4.1. Spatio-Temporal Knowledge Graph

We propose a novel knowledge graph called Spatio-temporal Knowledge Graph
(STKG), as shown in Figure 2. STKG integrates the traditional spatiotemporal task inter-
action graph, the spatio-temporal correlations between tasks, and the social relationships
among workers. Formally, STKG is represented as G = (V , E ,R), where V represents the
union of the worker set and the task set V = WS ∪ T S , E represents edges that belong
to one of the four types of relationships: execution, temporal, spatial, and social. It is
important to note that the execution and temporal relationships are directed. Our goal is to
learn the transition patterns between spatiotemporal tasks using the execution information
recorded by all workers. Next, we will provide a detailed description of how to construct
the four types of relationships mentioned above.
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Figure 2. A simple illustration of our Spatial-Temporal Knowledge Graph.

Construction of Execution Relationship: Firstly, we construct the execution relationship
represented by the triple (worker, rwt, task), which indicates that worker has executed task.

Construction of Temporal Relationship: Next, we construct the temporal relationship
represented by the triple (task1, rtt, task2), which indicates that task1 has been executed
before task2.

Construction of Spatial Relationship: For a given spatiotemporal task, we employ
two methods to construct its spatial relationship: threshold-based method and rank-based
method. The threshold-based method constructs spatial relationships between task and all
other tasks whose distance to it is smaller than a predefined threshold ∆ (e.g., 0.5 km). On
the other hand, the rank-based method constructs spatial relationships between task and
its n nearest neighboring tasks (e.g., 50 tasks).

Construction of Social Relationship: Finally, we construct the social relationship
represented by the triple (worker1, rww, worker2), which indicates that worker1 and worker2
have a friendship relationship. Considering the friendship relationship, when worker1
executes a task, if worker1 and worker2 are friends, then worker2 may also execute similar
tasks, refer to Figure 2.

The above describes the construction process of the spatiotemporal task knowledge
graph we designed. The goal of this knowledge graph is to learn the transition patterns
between spatiotemporal tasks by integrating execution information, in order to better
understand the relationships and dependencies among tasks.

4.2. Spatio-Temporal Knowledge Graph Embedding

Our objective, with the given spatiotemporal knowledge graph (STKG) G, is to obtain
an embedding function f : V(E) → Rm that assigns an m-dimensional feature vector
(i.e., embedding) to each entity v ∈ G.V or each relationship e ∈ G.E . The embedding
function f (·) is expected to preserve the intrinsic properties of the graph G. To accomplish
this, we employ Knowledge Graph Embedding (KGE) algorithms that rely on translation-
based distance models, including TransE [34], TransH [35], and TransR [36], to acquire
representations for entities and relationships within the knowledge graph. As an illustration
of our embedding scheme, we provide an example using TransH. TransH is based on the
concept of using distinct hyperplanes to represent different relationship spaces, considering
relationships as translation operations on these hyperplanes. Specifically, for a triplet
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(head, relation, tail), the entity embeddings head h and tail t are first projected onto a
hyperplane wr with the constraint ||wr||2 = 1, as shown in Equation (1).

h⊥ = h− wT
r hwr

t⊥ = t− wT
r twr

(1)

where h⊥ and t⊥ represent the projected embeddings of h and t, respectively. Next, we use a
scoring function g(·) to measure the credibility of incorrect triplets, as given by Equation (2).

gr(h, t) = ‖h⊥ + dr − t⊥‖2
2 (2)

here, dr denotes the translated embedding on the hyperplane. A lower value of gr(h, t)
indicates a higher likelihood of correctness for the triplet, whereas a higher value suggests
a reduced likelihood of correctness.

At this stage, representations have been acquired for every entity and relationship. The
subsequent goal is to devise a function s(·) that captures the transfer patterns among spatio-
temporal tasks. Drawing inspiration from KGE algorithms, we calculate the similarity
between spatio-temporal task1 and task2 by defining a spatio-temporal similarity function
s(·) that aims to capture the spatio-temporal relationship between task1 and task2. Using
TransE as an illustration, the similarity function can be represented by Equation (3):

s(task1, task2) = e−dt(task1,task2)e−ds(task1,task2) (3)

dt(task1, task2) = ‖task1 + rt − task2‖2
2

ds(task1, task2) =
e|string3 |

MP
∑

j=1
ej

where e represents the exponential function, dt(·) is the time distance function, task1 and
task2 represent the learned embeddings, and rt is the embedding of the time relationship.
ds(·) is the spatial distance function. |string3| represents the length of string3, MP is
maximum precision of GeoHash. The spatial distance function is based on the GeoHash
encoding. Specifically, given the latitude and longitude coordinates of task1 and task2,
in the format < longitude, latitude >, the GeoHash encoding is obtained to correspond
to binary codes geoLogx, geoLatx, geoLogy, geoLaty. Following the rule of “even bits for
longitude, odd bits for latitude,” the GeoHash codes of latitude and longitude are combined
to generate a new string string1 and string2. The resulting string is then processed into
a sequence of encodings according to the rules of base32 encoding. The two encodings
are compared starting from the first position in the sequence until different encodings are
encountered, resulting in string3.

Next, we construct the spatio-temporal task transfer matrix M ∈ R|T S|×|T S| based
on Equation (3). However, if the number of spatio-temporal tasks is large, storing M in
memory can be memory-consuming, which is a common issue in task allocation scenarios.
To mitigate the space cost, we construct a sparse transfer graph represented as G. More
specifically, we compute the n-nearest neighbor set Nn for each spatio-temporal task. G is
presented by Equation (4):

G(i, j) =
{

M(i, j), i f task j ∈ Nn(taski)
0, otherwise

(4)

where i, j = 1, 2, . . . , |TS|. Finally, to normalize the sparse graph G between 0 and 1, we
select the maximum value in each row to construct the diagonal matrix D. By Equation (5),
we obtain the learned spatio-temporal task transfer graph A.

A = D−1G (5)
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5. Model Framework

This section provides a detailed introduction to the framework we propose. The
framework consists of several key components: (1) Embedding layer, used to learn dense
representations of workers and spatiotemporal tasks. Through this layer, we can convert
workers and spatiotemporal tasks into high-dimensional vector representations to capture
their feature information. (2) GCN layer, used to enrich the representation of spatiotem-
poral tasks. With the spatiotemporal task transfer graph learned in advance, the GCN
layer can propagate and fuse information from neighboring spatiotemporal tasks, thereby
enhancing the expressive power of spatiotemporal task representation. (3) Aggregation
layer, used to learn weighted spatiotemporal and worker preference effects as the output
of the aggregated hidden state. In this layer, we consider the influence of spatiotemporal
distance and worker preferences on spatiotemporal task selection, and model these factors
through weight adjustment to generate the final aggregated hidden state. (4) Prediction
layer, used to allocate the most probable spatiotemporal task based on the aggregated
output and worker embeddings.

Figure 3 illustrates the network architecture of the proposed GTA model. Through this
network, we can effectively learn and model the information of workers and spatiotemporal
tasks, and make allocation for the spatiotemporal task based on the learned representa-
tions. The design of the entire network framework aims to fully utilize the spatiotemporal
relationships and worker preferences to improve the accuracy and personalization of
spatiotemporal task allocation.

Figure 3. The overview of GTA.

5.1. Multimodal Embedding Layer

To better represent workers and spatiotemporal tasks, we propose a multimodal
embedding layer that jointly encodes information of workers and spatiotemporal tasks,
and integrates with the subsequent allocation module to more effectively accomplish task
allocation. During the allocation process, vector representations play a crucial role in the
overall system performance, so we need to employ appropriate methods to make full use
of the available information. Initially, the information of workers and spatiotemporal tasks
is represented as one-hot vectors, but due to sparsity, this representation fails to accurately
capture workers’ task preferences. To address this, we enhance the representation by learn-
ing low-dimensional dense embeddings, incorporating more useful information onto the
standard sparse representation. Specifically, we first partition each worker’s historical task
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sequence (HTS) into several equally sized subsequences, which are then processed as inputs
to the embedding layer to learn a low-dimensional dense representation. Additionally,
to obtain more task-related information, we use a one-hot vector of dimension |TS| to
represent each spatiotemporal task. Furthermore, since different workers possess distinct
characteristics and preferences, we utilize a one-hot vector of dimension |WS| to represent
each worker’s unique features, better capturing the differences among workers. Through
this approach, the embedding layer can transform one-hot vectors into corresponding low-
dimensional dense representations, Embedding(worker) ∈ Rd and Embedding(task) ∈ Rd,
respectively, to better accomplish task allocation, d is the dimension of the embedding layer.

5.2. GCN Layer

To adequately capture the characteristics of each spatiotemporal task, relying solely on
the learned low-dimensional dense representations proves insufficient. Hence, we employ
a Graph Convolution Network (GCN) to further optimize the task representation. Building
upon the accomplishments of LightGCN [8], our focus lies solely on neighbor aggregation
within the GCN layer to enhance the precision and efficiency of the representation. It is
important to note that the transition graph A does not account for the influence of each
task on itself. To tackle this limitation, we introduce a unit matrix I (also known as a
self-connection) to A, resulting in a new transition graph Â. This allows us to compre-
hensively capture the relationships between tasks while considering the tasks’ individual
characteristics. By conducting neighboring aggregation and transforming Â through the
GCN layer, we acquire more accurate spatiotemporal task representations, establishing a
foundation for subsequent worker-task allocation.

Â = A + I (6)

Next, we normalize the new transition graph using Equation (7):

Â = D̂−1 Â (7)

where D̂ = diag(Â) represents the out-degree diagonal matrix derived from Â. We employ
the transition graph Â to enrich the representation of each spatiotemporal task. Finally,
we have:

X̂ = ÂX (8)

where X ∈ R|TS|×d represents the previous embeddings of all spatiotemporal tasks, and
X̂ ∈ R|TS|×d is the updated spatiotemporal task embedding.

5.3. Aggregation Layer

The aggregation layer comprises a recurrent module and an aggregation module, each
serving distinct roles. The recurrent module captures sequential patterns, aiding in the
comprehension of workers’ check-in trajectories and enabling more precise task allocation.
On the other hand, the aggregation module considers the influence of historical hidden
states on the current hidden state, as it is crucial to consider workers’ past behavioral
records to accurately predict future behavior during task allocation.

Within the output of the GCN layer, the updated spatiotemporal task embeddings
and worker preference embeddings are inputted into the aggregation layer. To enhance
allocation accuracy, we employ a basic recurrent neural network (RNN) as the recurrent
module to obtain all hidden states. However, using these hidden states directly for allo-
cation fails to fully exploit the temporal periodicity and spatial context embedded within
workers’ check-in trajectories. Notably, workers commonly engage in periodic spatiotem-
poral tasks, such as those close to their residential areas or tasks with shorter distances.
Hence, taking inspiration from Flashback [4], we explicitly devise a similarity function
w(·) that incorporates temporal and spatial context to reflect the correlation between the
historical hidden state hj and the current hidden state hi. Through this function, we can
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more precisely analyze workers’ behavioral records and recommend more suitable tasks
based on them. The definition of w(·) can be found in Equation (9):

w
(
∆Ti,j, ∆Di,j

)
= hvc

(
2π∆Ti,j

)
e−α∆Ti,j e−β∆Di,j (9)

where, hvc(x) = (1+ cos x)/2 represents temporal periodicity. Secondly, ∆Di,j and ∆Ti,j are
used to denote the spatial and temporal intervals between two spatiotemporal tasks i and j.
Parameters α and β are used to represent the temporal and spatial decay weights. It should
be noted that the similarity function w(·) only focuses on the similarity correlation between
spatiotemporal tasks, neglecting the general preference of workers for spatiotemporal
tasks. To better reflect the overall task preferences of workers, we propose to integrate
worker preferences into the function w(·). Specifically, we can use the access relationship
to construct a sparse worker-spatiotemporal task preference graph Gp ∈ R|WS|×|TS|, which
is the same as the method introduced earlier. Then, we can obtain the general preference of
each worker for spatiotemporal tasks through Equation (10), thereby better considering the
overall task preferences of workers and providing more personalized task allocation. When
integrating worker preferences, we also need to ensure that the output of the function w(·)
is constrained within the range [0, 1] to ensure the rationality of the allocation results. With
these improvements, the similarity function w(·) can more accurately calculate workers’
task preferences and spatiotemporal relationships, thus providing better task allocation.
Equation (10) calculates P :

P = GpX̂ (10)

where P ∈ R|TS|×d is the worker preference matrix. Finally, for each worker, we obtain
a new similarity function ŵ(·), Equation (11), which simultaneously considers worker
preference weights and spatiotemporal weights:

ŵ
(
∆Ti,j, ∆Di,j

)
= w

(
∆Ti,j, ∆Di,j

)
e−
∥∥∥Pworker−etaskj

∥∥∥ (11)

where Pworker worker represents the worker’s preference embedding, || · || represents the
L2 distance. The aggregation module combines the similarity function ŵ(·) and historical
hidden states into the current hidden state at each time step i. Thus, we have:

ĥi =

i
∑

j=0
ŵj ∗ hj

i
∑

j=0
ŵj

(12)

where ŵj indicates the similarity ŵ(∆Ti,j, ∆Di,j).

5.4. Prediction Layer

At each time step t, the output ĥt of the aggregation layer and the worker embed-
ding E(worker) are concatenated into a new vector, which is then passed through a fully
connected layer to generate the final output using Equation (13):

ŷ = W f [ĥt||E(worker)] (13)

where W f ∈ R|TS|×2d is a learnable weight matrix, || represents the concatenation operation.
We use the cross-entropy function, represented by Equation (14), as our loss function:

−
|WS|

∑
ws=1

ml

∑
i=1

(
log σ(yws

k ) +
|TS|

∑
j=1,j 6=k

log
(

1− σ
(

ŷws
j

)))
(14)
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where ml represents the length of the spatiotemporal task sequence for each worker, and
represent the predicted values for the current task i of the worker with respect to the label
task k and other spatiotemporal tasks j 6= task k, respectively. σ is the softmax function.

6. Experimental
6.1. Dataset

We evaluated our GTA model on three widely used real-world datasets: Foursquare-
NYC, TKY [37], and Gowalla (http://snap.stanford.edu/data/loc-gowalla.html (accessed
on 4 July 2023)) [38]. These datasets originate from different geographical regions and
contain a large amount of worker, location, and check-in information. Each spatiotemporal
task record includes user ID, task ID, latitude, longitude, and timestamp. Our experiments
are based on these original datasets. For experimental convenience, we consider workers as
mobile crowdsensing workers and enterprises as mobile crowdsensing tasks. We sort the
task records of each user in ascending order of timestamps. The task records of each user
are divided into multiple equal-length sequences as the training set, which accounts for
80% of the records. Similarly, the remaining 20% is considered as the test set. Furthermore,
the training set is used to construct our spatiotemporal knowledge graph. Table 1 shows
the statistical information of the two datasets used in our experiments. Although all three
datasets have four types of relationships, we only utilize the execution relationship.

By conducting experiments on these four real-world datasets, we can comprehensively
evaluate the performance of our proposed model in different scenarios and applications.
This helps us further optimize the model and improve its prediction accuracy and general-
ization ability in practical mobile crowdsensing tasks.

6.2. Evaluation Metrics

We use the Top-K accuracy metric commonly used in recommender systems to evaluate
our proposed algorithm. This metric has multiple variants, including ACC@1, ACC@5, and
ACC@10, which represent the proportion of correctly allocated positive samples among
all positive samples in the Top 1, Top 5, and Top 10 allocation results, respectively. In the
context of recommender systems, ACC@K is used to measure the accuracy of predicting
worker preferences. In the context of crowdsensing systems, it is used to evaluate the
accuracy of task allocation, examining how many tasks of interest to the workers are
included in the top K allocation list. Therefore, ACC@K can help us understand the
performance of the model under different lengths of allocation task lists. Clearly, a higher
ACC@K indicates better allocation performance of the model.

6.3. Parameter Settings

When constructing the knowledge graph, we utilize ranking information to determine
the strength of relationships among entities within the graph. We regard the ranking
information as the weight or distance measure of the edges in the graph. A higher ranking
signifies a stronger correlation between entities, whereas a lower ranking implies a weaker
correlation, thereby capturing significant relationships and patterns among entities. To
construct the spatiotemporal task transition graph, we employ TransE. To build the spa-
tiotemporal task transition graph A and the user-spatiotemporal task preference graph Gp,
we consider the nt and np = {20, 40, 60, 80, 100} nearest neighbors for each spatiotemporal
task (user). The default number of neighbors is set to 80. Additionally, we set the embed-
ding dimensions d to 60 for hidden states, workers, and spatiotemporal tasks for the TKY
and NYC datasets, and 30 for the Gowalla dataset. The time decay factor α and space decay
factor β adhere to the default settings in [4]. We employ the Adam optimizer with default
parameter settings, a learning rate of 0.001, a dropout rate of 0.3, and a training period of
80 epochs. We assess the model’s performance every 10 epochs, and the maximum length
of the historical task list is limited to 100. The batch size is 1, as displayed in Table 2.

http://snap.stanford.edu/data/loc-gowalla.html
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Table 2. Parameters.

Parameters Value

Learning rate 0.001
Embedding dimension 50

Batch size 1
Dropout rate 0.3

Epochs 80
number of neighbors 50

6.4. Comparative Algorithms

Here are the descriptions of the comparative algorithms:

• STRNN [39]: An invariant RNN model that incorporates spatio-temporal features
between consecutive visits.

• DeepMove [40]: A state-of-the-art model that utilizes recurrent and attention layers to
capture periodicity.

• STGN [41]: Learn the long-term and short-term preferences of users and extend the
LSTM model using spatial and temporal gates.

• GeoSAN [42]: A state-of-the-art model that employs hierarchical gridding of GPS
locations for spatial discretization and utilizes self-attention layers for matching,
without explicit use of spatio-temporal intervals.

6.5. Allocation Performance

In this study, we conducted a comparative analysis of various allocation models and
thoroughly explored their key characteristics. The results obtained by our proposed GTA
model are highlighted in bold in Table 3, while the best-performing results among the
comparative models are underlined. The findings from the Foursquare-NYC, Foursquare-
TKY, and Gowalla datasets demonstrate the significant superiority of our proposed GTA
model over other state-of-the-art baseline methods across all evaluation metrics, particu-
larly on the Foursquare-NYC dataset. Remarkably, on the Foursquare-NYC dataset, GTA
exhibits relative improvements of 18.01%, 22.95%, and 23.17% over the second-best method
GeoSAN in terms of ACC@1, ACC@5, and ACC@10, respectively. On the Foursquare-
TKY dataset, GTA achieves an average improvement of 16.82% compared to GeoSAN.
Moreover, on the Gowalla dataset, GTA demonstrates an average improvement of 12.38%
over GeoSAN. These results clearly indicate the superiority of GTA in effectively handling
spatiotemporal tasks, as shown in Figure 4.

Table 3. Allocation performance comparison.

NYC TKY Gowalla

ACC@1 ACC@5 ACC@10 ACC@1 ACC@5 ACC@10 ACC@1 ACC@5 ACC@10

STRNN 0.1487 0.1645 0.2661 0.1153 0.1783 0.2793 0.1037 0.1669 0.2327
DeepMove 0.1761 0.2235 0.2781 0.1398 0.2893 0.3451 0.1129 0.1931 0.2637

STGN 0.2023 0.3566 0.5102 0.1728 0.3203 0.3689 0.1181 0.2118 0.3268
GeoSAN 0.2365 0.4775 0.5226 0.1942 0.3925 0.4747 0.1333 0.2942 0.3905

GTA 0.2791 0.5871 0.6437 0.2105 0.4757 0.5537 0.1512 0.3425 0.4256



Smart Cities 2023, 6 1951Version August 5, 2023 submitted to Journal Not Specified 15 of 20

(a) NYC (b) TKY
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Figure 4. Allocation accuracy on Foursquare NYC, TKY and Gowalla
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Upon comparing the performance improvements on different datasets, we observed
that GTA performs exceptionally well on the Foursquare-NYC dataset. We attribute this
to the dataset’s richer relationships in comparison to the Gowalla dataset. Compared to
GeoSAN, our GTA model consistently exhibits significant improvements. By leveraging
the spatiotemporal task transition graph A to optimize task embeddings, we are able to
better capture patterns of task transitions. Additionally, the considered user preferences
significantly enhance the performance of personalized spatiotemporal task allocation.

6.6. Ablation Study

Our framework comprises two primary components: (i) the Graph Convolutional
Network (GCN) layer and (ii) the aggregation layer. To showcase the impact of these
components, we performed a sensitivity analysis using three datasets, the results of which
are outlined in Table 4. Based on our analysis, we draw the following conclusions:

Table 4. Ablation experiments on NYC, TKY and Gowalla dataset.

NYC TKY Gowalla

ACC@1 ACC@5 ACC@10 ACC@1 ACC@5 ACC@10 ACC@1 ACC@5 ACC@10

GTA w/o Both 0.2147 0.4095 0.4687 0.1253 0.3269 0.2983 0.1037 0.1969 0.2529
GTA w/o GCN 0.2487 0.4645 0.5661 0.1653 0.3783 0.3792 0.1137 0.2689 0.3394

GTA w/o Preference 0.2612 0.5734 0.6378 0.2098 0.4327 0.5013 0.1229 0.3019 0.4037
GTA 0.2791 0.5871 0.6437 0.2105 0.4757 0.5537 0.1512 0.3425 0.4256

From our observations, we have noted that the utilization of the spatiotemporal task
transition graph within the GCN layer leads to an enhancement in model performance.
The learned graph contributes to the enrichment of spatiotemporal task representations,
aiding the sequence model in capturing the patterns of transition between these tasks.
Furthermore, our findings reveal that the correct incorporation of user preferences plays
a significant role in improving model performance. The integration of the learned user-
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spatiotemporal task preference graph with the spatiotemporal context results in noticeable
enhancements in personalized spatiotemporal task allocation. We have also observed a
slight performance advantage in GTA over GTA w/o Preference. This outcome can be
attributed to the partial reflection of user preferences within the GCN layer, as shown in
Figure 5. Our study emphasizes the importance of the spatiotemporal task transition graph
and worker preferences in boosting allocation accuracy. These essential factors should be
thoroughly considered during the task allocation process to achieve higher-quality and
more precise allocation outcomes.

(a) NYC (b) TKY

(c) Gowalla

Figure 5. Influence of different modules on allocation performance.

6.7. Comparison Experiment on Embedding Layer Dimension

We also investigated the impact of the embedding layer dimension hyperparameter
on the allocation performance. We varied the embedding dimension d of the multimodal
embedding module from 10 to 70 in increments of 10. Figure 6 presents the experimental
results on the sensitivity of the performance to the embedding layer dimension d for
the four datasets. It can be concluded that as d increases, the effectiveness of the model
predictions initially improves and then stabilizes, as higher-dimensional embeddings can
represent more complex interaction information and capture more latent features. In
the case of optimal performance, further increasing the dimension would be wasteful
of system resources. From Figure 6a,b, it can be observed that on the NYC dataset, the
model performance is almost optimal when the dimension d reaches 50, and there is only a
minimal change of 0.5% in the allocation performance when the embedding dimension d
exceeds 50, indicating stability. From Figure 6c, it can be seen that on the Gowalla dataset,
the model performance is optimal when the dimension d reaches 60 and stabilizes.
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(c) Gowalla

Figure 6. Parameter sensitivity results of embedding dimension
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This is because the Gowalla dataset requires a larger embedding layer dimension to
extract features. From Figure 6, it can be observed that although the embedding layer
dimension varies from 10 to 70 and the allocation accuracy increases, the improvement
is relatively small. For practical applications, the impact on the model’s allocation perfor-
mance can be overlooked to some extent. When the embedding dimension is set to 50,
the model can achieve optimal trajectory and spatiotemporal embedding performance,
providing strong support for subsequent allocation tasks. Therefore, when selecting the
embedding dimension, as long as it is greater than 50, we can ensure the model’s allocation
performance to a large extent.

6.8. Comparison Experiment on Graph Neighbor

We conducted a comparison experiment on the number of graph neighbors and
provided an analysis of the experimental results. According to the results in Figure 7a–c,
we found that nt = 80 are the optimal numbers of nearest neighbors for spatiotemporal tasks
in the NYC, TKY and Gowalla, respectively. On the Gowalla dataset, as nt increases, so does
the accuracy, flattening out when nt reaches 60. However, on the NYC and TKY datasets,
model performance improves correspondingly as nt increases, but it decreases slightly
after reaching 80. This may be due to Gowalla’s sparser spatiotemporal data compared to
Foursquare. Therefore, for each task, the Gowalla and Foursquare datasets need more and
appropriate neighbors to enrich their representations.

Furthermore, based on the results in Figure 7d–f, we observe that np = 100 achieves
better model performance on both the Gowalla and Foursquare datasets, and the model’s
performance on the ACC@5 and ACC@10 metric is relatively stable.
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(a) nt in NYC (b) nt in TKY

(c) nt in Gowalla (d) np in NYC

(e) np in TKY (f) np in Gowalla

Figure 7. The performance comparison about the number of neighbors nt and np

results confirm the accuracy of the GTA model, showcasing its potential in urban planning. 609
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7. Conclusions

This paper and its method are highly significant for journals and fields related to
urban planning. Using a knowledge graph-based approach, the study successfully learns
spatiotemporal crowdsensing graphs, capturing transition patterns between different tasks.
This novel research avenue enhances our understanding of spatiotemporal correlations and
evolutionary patterns in urban planning. The innovative GTA model integrates the learned
graph into existing sequence models, greatly improving transition pattern capture. This
has valuable applications in urban planning and resource optimization, aiding decision-
makers in understanding task evolution and formulating effective development strategies.
Addressing potential participant preference variations, our carefully designed similarity
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functions enhance the model’s practicality in urban planning scenarios. Experimental
results confirm the accuracy of the GTA model, showcasing its potential in urban planning.
Ablation experiments validate each component’s effectiveness. Future research will explore
supplementary information integration, like task categories and participant data, and delve
deeper into examining participant similarity relationships, further enhancing the model’s
performance. This paper and method offer fresh perspectives and tools for urban planning,
providing valuable references for professionals in the academic and practical communities.
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