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Abstract: Micromobility responds to urban transport challenges by reducing emissions, mitigating
traffic, and improving accessibility. Nevertheless, the safety of micromobility users, particularly
cyclists, remains a concern in urban environments. This study aims to construct a safety map and a
risk-averse routing system for micromobility users in diverse urban environments, as exemplified
by a case study in Lisbon. A data-driven methodology uses object detection algorithms and image
segmentation techniques to identify potential risk factors on cycling routes from Google Street View
images. The ‘Bikeable” Multilayer Perceptron neural network measures these risks, assigning safety
scores to each image. The method analyzed 5321 points across 24 parishes in Lisbon, with an average
safety score of 4.5, indicating a generally safe environment for cyclists. Carnide emerged as the safest
area, while Alcantara exhibited a higher level of potential risks. Additionally, an equation is proposed
to compute route efficiency, enabling comparisons between different routes for identical origin-
destination pairs. Preliminary findings suggest that the presented routing solution exhibits higher
efficiency than the commercial routing benchmark. Risk-averse routes did not result in a substantial
rise in travel distance or time, with increments of 7% on average. The study also contributed
to increasing the existing amount of cycle path data in Lisbon by 12%, correcting inaccuracies,
and updating the network in OpenStreetMap, providing access to more precise information and,
consequently, more routes. The key contributions of this study, such as the safety map and risk-averse
router, underscore the potential of data-driven tools for boosting urban micromobility. The solutions
proposed demonstrate modularity and adaptability, making them fit for a range of urban scenarios
and highlighting their value for cities prioritizing safe, sustainable urban mobility.

Keywords: micromobility; cycling; urban transport; mobility; sustainability; safety assessment; route
optimization; object detection; image segmentation

1. Introduction

Growing demands for accessibility, speed, and efficiency in transportation, due to a
rapid increase in population and urbanization in recent decades, impose significant chal-
lenges on urban transportation [1-3]. Micromobility presents an opportunity to redesign
cities for people, offering complementary alternatives to traditional transport and making
it possible to improve the accessibility of cities, especially for the first-and-last-mile [4,5].
Transportation infrastructure is crucial for urban areas to promote a thriving economy and
quality of life. Effective systems can mitigate congestion and pollution, enhance social
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equity, and stimulate economic development [6,7]. Inadequate infrastructure can reduce
productivity and perpetuate inequality, underscoring the need for accessible and efficient
solutions that meet the diverse requirements of urban inhabitants [8,9].

To address these challenges, cities are adopting innovative transportation solutions
like bike-sharing, electric vehicles, and digital technologies to improve transportation
efficiency and accessibility. However, ensuring equitable access to transportation requires a
multifaceted approach involving infrastructure investment, policy changes, and community
engagement [10,11]. To make cities more livable, sustainable, and equitable, there is a
growing movement to prioritize pedestrians, cyclists, and public transit [12-14]. This
includes investing in safe and accessible pedestrian and cycling infrastructure, focusing on
public transport, and promoting social interaction and a sense of community. Redesigning
cities for people also has significant health benefits, such as reducing rates of obesity and
related health problems, improving mental health, and reducing air pollution [15,16].

Despite the well-documented benefits of cycling, its adoption as a primary mode of
transport remains limited due to various challenges, as outlined by studies from Kaltenbrun-
ner et al. [17] and Félix et al. [18]. Different studies indicate that usage patterns can sig-
nificantly vary based on factors like commuting, leisure, and shopping [17]. Predictive
models can improve efficient planning and bike redistribution [17]. Additionally, barriers
such as safety concerns, a lack of robust cycling infrastructure, and issues around bicycle
ownership need to be addressed [18]. It is also essential to align the motivations of potential
and existing cyclists, considering both improvements to infrastructure and personal or
environmental reasons [18].

On the other hand, there is evidence that replacing short car trips with cycling can
improve health, air quality, and the environment [19-22]. The application of deep learn-
ing to road safety carries transformative potential, as previously explored by various
researchers [23-28]. It introduces a level of sophistication and precision to safety measures
that were previously unattainable. By leveraging advanced technology, it becomes possible
to identify hazards, plan routes, and anticipate potential risks in real-time.

Incorporating micromobility into urban transport can significantly improve mobility,
but challenges persist. Blending micromobility and public transport can enhance accessi-
bility and decrease private car usage, as suggested by Oeschger et al. [29]. Moreover, the
popularity of e-micromobility vehicles, such as e-scooters and e-bikes, is rapidly growing
and plays a meaningful role in promoting sustainability in cities, as stated by Sengiil and
Mostofi [30]. However, questions remain about optimal practices for using, parking, storing,
and operating these vehicles, as noted by Tice [31]. McQueen et al. [32] underscore that the
impact of micromobility on sustainability is varied and that more focused strategies are
required to ensure its continued expansion.

In the wake of the COVID-19 pandemic, governments worldwide are promoting mi-
cromobility as a sustainable and resilient transportation option [33]. This trend aligns with
a broader commitment to eco-friendly urban practices and public health risk mitigation.
Since 2020, people’s mobility patterns have been transformed with changes in commuting
habits and the accelerated adoption of sustainable transport modes [34]. These changes un-
derscore the need to advance urban micromobility through safety mapping and intelligent
route planning.

This paper introduces a comprehensive and modular approach to tackle urban trans-
portation challenges by promoting micromobility as a viable, safe, and sustainable alterna-
tive. The goal is to offer safe routes for micromobility users in Lisbon, Portugal. The method
utilizes Google Street View (GSV) images as a data source and combines object detection,
semantic image segmentation, and a proprietary neural network called Bikeable [35]. By
employing advanced computer vision and deep learning techniques, images of Lisbon are
processed to create a safety map and a smart route planner for the city’s micromobility
users. A similar approach was developed for the City of London in 2020 by Rita et al. [36],
in which the objective was to identify risk factors for cyclists.
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Figure 1 briefly describes the framework configuration adopted in this study. The
procedure initiates with the input of images captured from randomly chosen locations
within the study area. Four images are collected for each point, taken at 90, 180, 270, and
360 degrees. These images undergo object detection and image segmentation algorithms
for analysis. Following this step, the processed images are evaluated using Bikeable [35],
which ranks them on a safety scale from 1 (least safe) to 10 (safest). In the safety map
output, orange points denote areas with identified risk factors. The deeper the orange
hue, the higher the associated risk. For safety routing, the orange line represents a path
determined by the developed routing system.
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Figure 1. Summary of the implemented framework. Input: GSV images; processing: image seg-
mentation and object detection from GSV images, assessed using the Bikeable neural network; and
outputs: a safety map created from the safety score provided by Bikeable, and safety routes avoiding
dangerous points.

Consequently, the output includes a detailed safety map and an intelligent route
planner that generates paths circumventing the detected risk points. This planner provides
three routing options: shortest (avoids risk points less than three), balanced (avoids risk
points less than four), and safest (avoids risk points less than five). This paper seeks to
improve user safety by leveraging computer vision, machine learning, and deep learning
techniques. It achieves this by integrating these technologies into a coherent system that
produces a comprehensive visualization of safety levels across the city and a practical tool
that enables cyclists and other micro-mobility users to plan safe routes.

This study centers on image analysis to assess the safety of specific locations in an
urban environment. By recognizing and analyzing objects and their contexts, the research
aims to offer a holistic insight into the elements impacting road safety for micromobility
users. This approach prioritizes environmental factors without directly considering aspects
such as fatalities, severe injuries, or individual cycling comfort.

This study is structured across six chapters. Section 2 elucidates key concepts and
tools such as object detection and semantic segmentation, underscoring their importance
for micromobility user safety. Section 3 lays out the methodologies adopted to construct a
safety map and routing system for micromobility. The application of these methodologies
to a case study in Lisbon is detailed in Section 4. Section 5 delves into the study’s findings,
including a discussion of associated challenges and limitations. The paper concludes with
Section 6, which encapsulates the primary insights gained from the research.

2. Background

Object detection has been widely researched and applied to various fields, including
urban transportation and micromobility. Using GSV images, object detection can identify
multiple objects of interest in urban areas, such as recurring stationary objects, signs, and
obstacles [37-39]. GSV images are a valuable big data source for predicting urban mobil-
ity patterns [40] and evaluating the safety and accessibility of micromobility options in
cities [41]. Additionally, in order to assess bikeability, many methods have been used [42],
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including street-view images [41,43]. Object detection has been used in the context of
micromobility to extract road information and detect cyclists from GSV images, enrich-
ing existing data [44]. Cyclist detection has been the subject of active research in object
detection, with promising results [45,46]. These studies demonstrate the versatility and
potential of object detection in urban transportation, particularly in the rapidly evolving
field of micromobility.

Semantic segmentation, proven to effectively segment roads from street-view im-
ages [47,48], is also adept at extracting valuable information from these images [49]. This
research blends image segmentation techniques with object detection algorithms to enable
safe, quick, and cost-effective journeys for micromobility users. This novel approach ad-
dresses the burgeoning presence of micromobility in urban spaces and associated safety
concerns. The overarching goal of such an initiative is to contribute to creating more
sustainable and people-centric urban environments.

2.1. Micromobility Expansion in Cities

The rapid growth of urban populations has led to increased demands for transporta-
tion options that are efficient, affordable, and sustainable [31,50,51]. In response, micromo-
bility has emerged as an alternative solution, offering new ways for people to move within
urban areas [31,32,52,53]. Micromobility is a new umbrella term that encompasses a range
of small, lightweight vehicles such as bicycles, e-bikes, e-scooters, and shared mobility
devices typically suited for short-distance trips [53]. This mode of transportation comprises
various options, such as walking, cycling (traditional), e-bikes, and e-scooters (emerging),
among others [54].

Technological advances, the rise of the sharing economy, and the shift in public atti-
tudes towards sustainable transportation have all contributed to the increased prominence
of micromobility [53]. This form of transportation offers many benefits, including reduced
traffic congestion, decreased carbon emissions, enhanced accessibility, and improved health
and well-being for urban residents [55].

As urban landscapes evolve, cities are evolving to become more people-friendly by
promoting diversity and mobility options. It is within this context that micromobility has
emerged as an important component in reshaping urban transportation systems [32,56].
Not only does micromobility mitigate emissions and reduce individual car use, but it also
addresses social inequalities by providing a more affordable and egalitarian solution [32].

However, the integration of micromobility into existing urban systems comes with
challenges. The primary issues revolve around user safety and the conflicts arising from
sharing space with established modes of mobility, such as pedestrians and traditional
cyclists. While these problems are recognized, research and development in this field
continue to seek ways to mitigate risks and improve the harmonious coexistence of various
mobility options within the urban landscape.

2.2. Micromobility Safety Issues

Despite the advantages of micromobility, addressing safety concerns is essential for
its continued growth and acceptance in urban environments [57,58]. Micromobility users
face various risks, including accidents, inadequate infrastructure, conflicts with other road
users, and irresponsible behavior. In 2018, approximately 41,000 cyclists lost their lives,
representing 3% of traffic-related deaths, with potentially even more fatalities among other
micromobility users [59]. These users are particularly vulnerable, as they have limited
protection against cars in the event of an accident [55].

Collisions that involve motor vehicles, cyclists, and pedestrians can lead to serious
injuries or fatalities. On the other hand, accidents involving cyclists and pedestrians, ex-
cluding motor vehicles, seldom result in death or significant harm [55]. So, by taking
automobiles out of the equation, lives are saved. Likewise, contributing factors to accidents
can include inadequate infrastructure, user behavior, and visibility issues [58]. Many cities
lack the necessary infrastructure to support safe micromobility usage, such as dedicated
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bike lanes, safe intersections, and secure parking facilities [60]. Poorly maintained roads
and pathways, particularly those with defects like potholes, can significantly hinder mi-
cromobility. These defects not only increase transportation operating costs [61], but also
present potential safety hazards for micromobility users. Abrupt changes in road surfaces
can cause accidents, especially for those on small, lightweight vehicles like bicycles and
e-scooters, where stability is crucial.

Conflicts between micromobility users, pedestrians, and motor vehicles can arise
due to a lack of clear guidelines and regulations governing their interactions, as well as
misunderstandings about the rights and responsibilities of each group [58]. Inexperienced
or irresponsible micromobility users can put themselves and others at risk by not following
traffic rules, riding under the influence of alcohol or drugs, or misusing devices, such as
riding e-scooters on sidewalks [57]. E-scooter regulations vary widely among jurisdictions,
impacting the extent and nature of safety issues [57]. The lack of consistency in the law has
already led to differing road rules for powered micro-vehicles in different jurisdictions [58].
Existing road safety measures were primarily designed to evaluate motor vehicle crashes
and must be better suited for alternate or emerging modes of micromobility transportation,
particularly e-scooters [62].

2.3. NVIDIA Semantic Segmentation

The NVIDIA Semantic Segmentation algorithm uses a deep learning-based approach
to semantic image segmentation. This method assigns semantic labels to each pixel in an
image using convolutional neural networks, multi-scale inference, and hierarchical atten-
tion mechanisms for improved accuracy. The implementation of this algorithm by NVIDIA
has achieved state-of-the-art performance on benchmark datasets such as Cityscapes and
Mapillary Vistas [63].

2.4. YOLOvS

In 2015, Redmon et al. [64] introduced YOLO (You Only Look Once), a new approach
to object detection, in their publication “You Only Look Once: Unified, Real-Time Object
Detection”. At the time, the dominant method for object detection was Region-based
Convolutional Neural Networks (RCNN), which were accurate but slow due to their multi-
step process. YOLO aimed to improve speed by detecting objects in a single shot, using a
single convolutional neural network to process the entire image.

Redmon et al. [64] developed the first three versions of YOLO (v1-v3), with later
versions developed by other authors. The version used in this work is YOLOv5, which
was released for the first time in May 2020; since then, it has been constantly updated.
The latest release (YOLOVS5 v7.0) is dated November 2022 [65] and is a cutting-edge object
detection algorithm known for its high accuracy [66]. It is widely used in computer
vision applications such as autonomous vehicles, robotics, industrial automation, medical
applications, and video surveillance.

The YOLOVS5 architecture comprises three main parts: Backbone, Neck, and Head.
Backbone takes the imputed images and forms features at different levels of granularity.
The Neck brings these features together and transfers them to the prediction layer. Finally,
the Head component predicts features and generates bounding boxes and classifications
for each object [65].

2.5. Bikeable

A new approach to urban mobility and safety for micromobility users has been de-
veloped by implementing a unique neural network called Bikeable. This neural network
is designed to predict safety scores from images using a combination of inputs, including
object detection and image semantic segmentation. Training for the Bikeable network was
based on data obtained through crowdsourcing, where participants were requested to select
the safer image from a pair of options. The output of this neural network consists of safety
scores for each image, and, after cross-validation, it exhibited an accuracy of 70% [35].
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Therefore, the image semantic segmentation algorithm discerns the overall context
within the images, whereas the object detection algorithm precisely identifies individual
objects. With this combined information, Bikeable assesses and allocates a safety score to
every image.

A pipeline that processes input data from YOLOv5x6 object detection and NVIDIA
image semantic segmentation has been established. The data are then passed through the
Bikeable neural network to generate safety scores as an output. These safety scores are now
employed to generate high-resolution safety maps, leveraging GSV imagery.

2.6. OpenRouteService and OpenStreetMap

After generating the safety points in a given city, routing is provided by OpenRoute-
Service, an open-source routing platform developed by the Heidelberg Institute for Geoin-
formation Technology (HeiGIT) [67], using data from OpenStreetMap (OSM).

OpenStreetMap is an open-source map database that provides users with detailed
information about streets, buildings, landmarks, and other features of the physical world.
Using OSM instead of traditional map services such as Google Maps or TomTom has some
advantages. First, given that OSM relies on contributions from millions of volunteers
around the globe who update the maps regularly, the maps are updated and provided in
real-time. In contrast, proprietary data sources are often updated infrequently. Additionally,
because OpenStreetMap is free to use and share under an open license agreement, develop-
ers have access to all the necessary tools they need to build custom routing applications
tailored to their specific needs without worrying about licensing fees or restrictions, which
is the case for this work (routes that should avoid danger spots).

3. Materials and Methods

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

The primary objective of this study centers on devising safe and efficient travel alter-
natives for micromobility users. To this end, a safety map delineating high-risk points was
developed, and a routing system was constructed to facilitate effective travel by circum-
venting these points. This section offers a comprehensive overview of the methodology
employed to achieve these objectives, harnessing GSV and Al techniques in the established
framework. The procedure is based on object detection via YOLOv5x6, image semantic seg-
mentation using NVIDIA’s model, and a bikeable neural network. Moreover, a case study
was undertaken to illustrate the practical application of this solution, with the efficiency
of the developed router factor evaluated in a real-world context. This case study will be
further elaborated upon in the following chapter.

The GSV imagery serves as the data source for evaluating the safety of various lo-
cations. Google Street View, a widely used platform, offers panoramic images of streets
and urban areas captured by GSV’s vehicles. The extensive coverage and availability
of these images make them a valuable resource for analyzing urban environments and
infrastructure.

The proposed framework, as illustrated in Figure 2, consists of four main stages:
preparation, data collection, processing, and outputs. These steps work together to create
the pipeline.
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Figure 2. Applied methodology in this research.

1.  Preparation: The study zone was selected in this stage, and boundaries are defined
based on the geographic data of the region under analysis. Random latitude and
longitude coordinates were generated using a uniform distribution.

2. Data Collection: Using the GSV AP, the data (images) necessary for processing were
collected. The API retrieved four images for each generated location, capturing the
full surroundings at 90, 180, 270, and 360 degrees. The API was specified to retrieve
outdoor images only. Metadata, such as coordinates and the date of the image, was
extracted, and metadata and images were saved for further processing.

3. Processing: This stage involved applying image semantic segmentation (NVIDIA Im-
age Semantic Segmentation) and object detection (YOLOv5x6) techniques to identify
and classify structures and objects within the images. This information was crucial for
determining potential safety risks in the urban environment. Points where no objects
were detected in any of the images from the four different angles were discarded. The
list of segmented classes is in Appendix A. Additionally, a list of detected objects can
be found in Appendix B.
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4. Outputs: A safety map was created at this stage, which served as the basis for the
safe route planner and was designed to help users easily understand the safety levels
of different areas in the city. Additionally, a safe route generator was developed and
made available for users. The generator avoids locations based on the user’s selected
safety options when routing.

3.1. Safety Score

The Bikeable Neural Network [35] generates unique safety scores for each location
in any given city, using object detection and image segmentation results as inputs. The
methodology entails an evaluation of four images per location. Each image undergoes
object detection and image segmentation, subsequently feeding into the Bikeable algorithm.

The final safety score for a location is an average derived from processing these
four images. If any of these images depict risks identified by object detection or image
segmentation, it proportionately reduces the safety score of that location.

This methodology can be applied across various locations within a city, generating
safety scores for numerous points. These scores, ranging from 1 (least safe) to 10 (safest),
provide a user-friendly overview of safety levels across different locations. Additionally, an
average safety score for each area can be calculated by aggregating all the points within
each administrative division, such as districts or parishes.

3.2. Routing

After generating the safety points, routing is provided while trying to avoid these
points. Routes are generated using the OpenRouteService APL. It is given the start and end
points, the safety scores (provided by us), and the updated cycling network (provided by
OSM). Finally, as explained before, three routes are provided: shortest, safest, and balanced.
On a scale of 1-10, the shortest route avoids points with a safety score lower than 3, the
balanced route avoids points lower than 4, and the safest route avoids all points with a
score lower than 5.

4. Case Study

The solution proposed in this study was evaluated in a real-world case in Lisbon, Por-
tugal. With a population of about 550,000 in an area of 86 km?, Lisbon’s diverse landscape
offers both challenges and opportunities for micromobility. The city has 24 parishes and
provides varied non-motorized transportation infrastructure. Despite a high urban density
of 6346 individuals per km? and an array of public transport options, private vehicle usage
remains high at 61% of work or school commutes. In contrast, bicycle usage is minimal,
accounting for merely 0.6% of such trips [68]. This highlights significant challenges, includ-
ing safety and the requirement for more dedicated bike lanes. The aim of this study is to
tackle these issues by utilizing data-driven insights to foster safer and more sustainable
urban transport in Lisbon.

4.1. Cycling Infrastructure Improvement

Open data and collaborative mapping, such as OSM, are very valuable tools support-
ing global mobility studies. However, data quality can vary, and in some cases, as we
experienced in our study of Lisbon, additional updates and supplements were required,
particularly regarding cycling infrastructure. Since it is crucial to have the most updated
cycle infrastructure available to generate good routes, we first analyzed the available cy-
cling data on OSM. In Lisbon, we noticed discrepancies in the data related to cycle lanes
compared to the data provided by the City of Lisbon. To address this, we manually updated
Lisbon’s cycle network data into OSM up to April 2023.

In Figure 3, which shows the map of cycle lanes in Lisbon, the updates we made
to the OSM database are distinctly marked in orange, increasing the cycling network by
about 12%. With the cycling infrastructure updated for Lisbon, we can now provide more
accurate routes for cyclists, considering the safety scores previously obtained.
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Figure 3. Lisbon’s cycling network updated to April 2023.

4.2. Safety Score Prediction

Applying the Bikeable Neural Network methodology, as described earlier, a compre-
hensive safety analysis of Lisbon was performed. Four images were analyzed for each
point within the city with the processes of object detection, image segmentation, and the
application of the Bikeable algorithm. Safety scores were generated and calculated for
5321 individual points throughout Lisbon. An average safety score was calculated for each
parish in Lisbon to give a broad view of safety levels. This was achieved by aggregating
the scores of all the points within every parish.

Table 1 provides a snapshot of safety scores for various parishes in Lisbon regarding
micromobility, while Figure 4 displays them on a map across Lisbon parishes. These scores,
ranging from 1 (least safe) to 10 (safest), are derived using Bikeable’s Neural Network. The
table allows us to compare the safety scores of the parishes, observing the diverse areas and
point density. Regarding density, although point selection was completely random across
Lisbon, maintaining constant density, only some points were considered in the safety map,
which was then used to evaluate neighborhoods. This is due to the fact that Bikeable was
seen to be more accurate when objects were present in the images, so points where images
were missing objects were discarded, as seen in the Processing section of Figure 2.

Carnide is recognized as the safest parish for micromobility in Lisbon, with a safety
score of 4.8 and 46 processed risk points per square kilometer. However, the relationship
between risk point density and safety across different parishes is complex and not directly
correlated. For example, Ajuda and Alcantara have a density well below average, while
Campo de Ourique and Campolide are above average, yet all have safety scores of 4.3
or lower.
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Table 1. Parish safety scores.

Parish Area (km?) Num.ber of Points/km? Safety Score
Points

Ajuda 2.88 114 40 4.3
Alcantara 5.07 170 34 4.2
Alvalade 5.34 397 74 4.7
Areeiro 1.72 155 90 4.7
Arroios 2.13 277 130 45
Avenidas Novas 2.99 296 99 4.6
Beato 248 84 34 45
Belém 10.43 350 34 4.5
Benfica 8.02 294 37 44
Campo de Ourique 1.65 125 76 4.3
Campolide 2.77 143 52 4.3
Carnide 3.69 168 46 4.8
Estrela 4.60 194 42 45
Lumiar 6.57 385 59 4.6
Marvila 7.12 359 50 4.6
Misericordia 2.19 66 30 4.4
Olivais 8.09 405 50 4.7
Parque das Nagoes 5.43 240 44 4.6
Penha de Franga 2.71 168 62 4.5
Santa Clara 3.36 143 43 4.7
Santa Maria Maior 3.01 114 38 4.3
Santo Anténio 1.49 134 90 4.7
Sdo Domingos de 429 255 59 46
Benfica

Sao Vicente 1.99 96 48 4.5
Average 216 60 45

Source: Area [69].
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Figure 4. Safety scores across Lisbon parishes.
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This may suggest that increasing the number of images will not guarantee better or
worse scores; however, it should make the results more representative. So, in the future,
the aim should be to increase the density of points processed. The complexity of the
relationship between safety and density emphasizes the need for more comprehensive
investigation and understanding. This insight can help guide more targeted interventions
to improve safety across various locations within Lisbon.

4.3. Router Factor

The routing efficiency factor is introduced to compare different routes based on their
travel time and distance. Taking inspiration from the ‘15 Minute City’ concept [70], the focus
is on journeys of approximately 5 km lasting about 15 min. The procedure for calculating
this routing factor is as follows:

e A total of 100 pairs of random points are generated, each 5 km apart when measured
in a straight line. The methodology for generating these pairs is described in detail in
the subsequent sub-chapter;

Routes are calculated for origin and destination pairs based on time and distance;
Following this, the routing factor for each route is computed.

We employed a weighting scheme in our route factor calculation, with a weighting

of 60% for time and 40% for distance. This approach shaped our route factor equation
as follows:

)

1 k 0.6 x TravelTime & 0.4 x TotalDistance
Route factor = —
oute factor = - x (2 2 )

15 min 5 km

i=1 i=1
s.t.

Travel Time ~ 15 min

TotalDistance > 5 km

where k is the total routes (100 random routes), TravelTime is the duration of the route
calculated by the router, and TotalDistance is the distance calculated by the router.

Equation (1) above calculates the “Route factor”, which is a measure of the efficiency
and usability of a selected route, taking into consideration both the distance traveled
and the time taken. The equation involves two key factors: TravelTime and TotalDistance,
represented by the duration and distance of the route calculated by the router, respectively.
In an ideal scenario where a 5 km route is covered in exactly 15 min, the route factor would
equal 1. The route factor will also increase as the travel time increases or the route becomes
longer. This study expects these values to be greater than 1, with values between 1 and
1.5 being considered acceptable for an urban commute.

The selected parameters align with the principles of the “15-Minute City” design [70],
underlining a commitment to developing a sustainable urban model to curb greenhouse
gas emissions and consumption [71].

4.4. Random Route Generation

To compare the proposed routing approach to commercial solutions, a set of random
routes was generated to eliminate any bias. These routes were designed to approximate
a straight-line distance of 5 km. The generation of these random routes within a specific
study area required a systematic approach to ensure the routes were representative. The
five-step process, illustrated in Figure 5, is elaborated further below:
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Figure 5. Random route generation.

1.  Determine the study area: The initial step involves defining the boundaries of the
study area, which is Lisbon, Portugal in this case.

Create a grid of points: Using these boundaries, a grid is constructed consisting
of points that are spaced every 500 m. The grid is confined within the previously
established boundaries, resulting in a total of 442 points distributed throughout the
study area.

Calculate distances between all points: Subsequent to the grid’s creation, the distances
between each point and every other point on the grid are calculated. Applying the
mathematical concept of combinations, all unique pairings of points are determined,
leading to a total of 97,581 routes.

Filtering routes: Given the aim of generating routes with a specific distance, pairs
of points where the Euclidean distance between them is approximately 5 km, with a
tolerance of £10 m, are filtered out. This step narrows down the number of suitable
routes to 1168. Routes with routing errors have been excluded. Additionally, routes
for which the safest path could not be computed due to an excessive number of risk
points were excluded from the analysis.

Randomly choose routes: Finally, 100 routes are randomly selected from the list
of suitable ones. This random selection ensures a diverse set of routes distributed
throughout the study area.

2.

5. Results and Discussion
5.1. Safety Score Prediction

Figure 6 shows the outcomes of image segmentations, reflecting risk factors discerned
in the examined images. The intensity of the orange color corresponds to the density of
these risk factors, with each coordinate point deploying four images for an all-encompassing
360-degree view. The random distribution of points broadly covered Lisbon, with fewer
processed risk points in some areas due to features like parks or the Lisbon airport. Positive
elements such as vegetation, suggesting safer spaces for micromobility users, are empha-
sized in Figure 6a. Conversely, Figure 6b reveals guard rails as a potential risk factor, which
might reduce safety.

After image segmentation, object detection was performed. Once more, the intensity
of color represents the density of these factors, with four images processed for each point.
Figure 7a shows identified bicycles, while Figure 7b discloses cars, being those objects
positive and negative factors, respectively.

A comprehensive map pinpointing risk spots across Lisbon, created from the analysis
of images from 5321 randomly distributed points across the city, is presented in Figure 8.
Each point employed four images, culminating in 21,284 processed images. We used a green-
red scale from the safest to the most dangerous location, highlighting potential challenges
for cyclists. More images showing the detection of bicycles, bike lanes, buses, cars, people,
poles, potholes, rail tracks, streetlights, and trucks during the image segmentation process
can be found in our repository.
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Figure 6. Pixel-level segmentation concentration of detected positive and negative risk factors in

Lisbon: selected examples of (a) vegetation; (b) guardrail.
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(b)

Figure 7. Objects detected: selected examples of (a) bicycles; (b) cars.
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Figure 8. Safety map of Lisbon.

5.2. Route Planning and Comparative Analysis

The creation of the safety map enabled the design of a route planner intended to
navigate around identified risk points. This tool calculates trip routes based on three
different criteria: shortest, balanced, and safest. Figure 9 presents an example of a route
using the three options provided by our router, along with a benchmark route (Google
Maps). Although the route shown was randomly selected, distinct differences between
the benchmark route and the other three can be seen. The benchmark route, for instance,
sometimes prioritizes high-speed paths or necessitates navigating over level crossings.
While the three proposed routes exhibit minimal variation in terms of time and distance,
the benchmark route is notably slower and longer. This pattern is consistent across the
other 100 randomly generated routes.

The average values detailed in Table 2 are computed from 100 routes with an approxi-
mate Euclidean distance of 5 km. These computations were achieved using a proprietary
router to determine the shortest route (avoiding risk points less than 3), a balanced route
(avoiding risk points less than 4), and the safest route (avoiding risk points less than 5).
Importantly, in 12.4% of the calculated routes, the generation of a “safest” route was not
feasible due to an abundance of risk points that could not be circumvented while preserving
a viable route. Consequently, the “balanced” route was adopted as an alternative for these
scenarios. Those routes for which routing was not possible were excluded from the final
dataset of this study. Consequently, the set of 100 routes only contains instances where
successful routing was achieved.
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Figure 9. Comparison of routes between two random points.

Table 2. Comparing routes between different routing options (n = 100 and a Euclidean distance of

5 km).
Variable Benchmark Shortest Balanced Safest
Time (min) 25.25 +4.30 21.77 + 2.58 21.94 +2.62 23.47 +3.10
Distance (km) 6.62 +1.04 6.29 +0.71 6.33 £ 0.71 6.70 4+ 0.81
Route factor 1.54 +0.25 1.37 £ 0.16 1.38 = 0.16 1.47 +0.19
% change in time - —13.7% —13.1% —7.1%
% change in distance - —5.0% —4.4% 1.2%

For comparative purposes, measurements were also obtained via the Google Maps
Distance Matrix API for bicycle routing as of 27 June 2023, 07:41:07 GMT + 1. This bench-
mark provides an industry-standard benchmark for gauging the effectiveness and validity
of our proprietary routing methodologies.

Table 2 provides a comparative analysis of different routing options, including the
shortest, most balanced, and safest paths, all contrasted against a defined benchmark. The
metrics considered for this comparison encompass time, distance, and route efficacy. These
values correspond to the change in time and distance relative to the benchmark. Data
collected from 100 distinct routes, each approximately 5 km in Euclidean distance, display
minor variations in time and distance between the shortest and most balanced routes. A
slightly larger increase is noted when shifting to the safest route.

The time duration varies from about 21.77 min on the shortest route to around
23.47 min on the safest route. These data imply a minor time extension when safety
factors are prioritized in route selection. In the same vein, distances register a marginal
increase, ranging from approximately 6.29 km for the shortest path to 6.7 km for the safest
path. When considering the route factor—an index of travel efficiency—a slight improve-
ment from 1.37 (shortest route) to 1.47 (safest route) is considered negligible. Consequently,
the results suggest that integrating safety considerations into micromobility route planning
may have only a minimal effect on time and distance.
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It is important to note that these routing computations were carried out with the
provision of incorporating the cycling network wherever feasible. Consequently, the
outcomes would likely be altered if the routing was conducted without this constraint.
This study presents a novel routing solution that outperforms the benchmark in almost all
metrics. The router uses an updated OSM database that reflects Lisbon’s cycling network
data accurately and comprehensively. This may have been one of the determining factors
for these results.

Finally, the findings of this research are accessible online via the dedicated route
planning website, available at routeplanner.cycleai.net (accessed on 12 August 2023). All
data employed and produced during this study are openly accessible and can be retrieved
from the designated data repository at routeplanner.cycleai.net/#/data (accessed on 12 Au-
gust 2023).

5.3. Limitations

While the solution proposed in this study to promote cycling and micromobility in
urban environments shows good potential, it also encounters certain limitations and chal-
lenges. Acknowledging these areas of concern not only underlines the practical implications
of implementing the solution but also suggests avenues for future research.

The success of the proposed solution, which combines object detection (YOLOVS5), se-
mantic segmentation (NVIDIA Image Semantic Segmentation), and a multilayer perceptron
neural network (Bikeable), significantly depends on the quality and comprehensiveness
of the input images. If these images are outdated or certain areas are undocumented,
the accuracy of safety scores and route recommendations may be compromised. Also, it
is crucial to note that static data sources like GSV images and OSM data fail to capture
real-time changes in urban environments, such as temporary obstructions or evolving
traffic patterns.

Further, potential errors with machine learning models like YOLOv5x6 and NVIDIA’s
semantic segmentation models, compounded by variations in lighting, image quality, and
resolution, may introduce inconsistencies in image analysis. These inconsistencies could
impact the overall accuracy of the models. Moreover, while the Bikeable tool is effective,
it cannot account for certain variables such as individual cyclist behavior or personal
route preferences.

The success of this solution also relies heavily on robust policy backing, investment in
micromobility infrastructure, and acceptance by the general public. Particularly in regions
where micromobility modes are less established, securing the necessary funding, fostering
public support, and addressing resistance from car users may pose significant challenges.
In addition, nurturing crowdsourcing support is pivotal for improving the predictive
capabilities of the Bikeable neural network and enhancing the accuracy of outcomes.

Despite its limitations and challenges, the proposed solution opens several oppor-
tunities. Its modular design ensures adaptability across diverse urban contexts, thereby
broadening its impact on urban mobility. By endorsing micromobility, it helps reduce
traffic congestion and greenhouse gas emissions, which therefore improves public health
and the environment. Furthermore, it can save costs by decreasing our reliance on private
vehicles and optimizing transportation systems. Collaborations with local governments,
transportation agencies, and community organizations can also foster innovation and
facilitate implementation.

Finally, the results of this study, which primarily focuses on Lisbon, Portugal, may not
directly apply to other regions due to variations in urban layouts, infrastructure quality,
and cycling cultures. This indicates that the suitability of the proposed solution might vary
in different contexts.
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6. Conclusions

This research puts forward a feasible progression towards safer pathways in the
urban micromobility environment, using Lisbon as a successful test case. Our innovative,
data-driven strategy is a major contribution to urban transport solutions, with a unique
amalgamation of YOLOv5x6 object detection, NVIDIA Image Semantic Segmentation, and
the Bikeable neural network. This integration has targeted establishing safe, efficient, and
customizable routes for cyclists and other micromobility users.

The key attributes of our approach are its modularity and adaptability. This facilitates
a straightforward deployment in cities around the world that are striving to adopt safe
and sustainable modes of transportation. A notable aspect of our methodology is the
underexploited use of GSV images for assessing cycling safety and infrastructure. Further-
more, our collaboration with OpenStreetMap enhances the richness of our data sources
and strengthens our approach.

Object detection and semantic segmentation technologies have effectively extracted
crucial safety information from GSV images. The Bikeable Neural Network then processes
this information to assign safety scores to various locations. Thus, it was possible to create
a router that calculates three distinct routing types according to safety degrees: shortest,
balanced, and safest. We also propose a router factor, allowing a more nuanced comparison
of created routes with widely used benchmark routing.

This successful implementation and adaptability of the solution mark significant ad-
vancements in urban mobility and environmental conservation. They can enhance the
overall quality of urban life, making our solution compelling for urban planners, stake-
holders, and policymakers committed to fostering inclusive, accessible, and sustainable
transport systems.

In conclusion, our study underlines the crucial significance of data-driven methodolo-
gies in reshaping urban transport systems. It provides an adaptable framework that can
serve as a point of reference for cities striving to cater to the transport needs of residents
while linking theory and real-world application. Future research would benefit from focus-
ing on the further refinement of this methodology and its implementation in a variety of
urban contexts.
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Appendix A. List of Segmented Classes

1. Bicycle 24. Curb 47. Rail Track

2. Bicyclist 25. Curb Cut 48. Road

3. Bike Lane 26. Crosswalk—Plain 49. Sand

4. Bike Rack 27. Ego Vehicle 50. Service Lane

5. Billboard 28. Fence 51. Sidewalk

6. Bird 29. Fire Hydrant 52. Sky

7. Boat 30. Guard Rail 53. Snow

8. Boat Mount 31. Junction Box 54. Street Light

9. Brid 32. Lane Marking—Crosswalk  55. Terrain

10. Bridge 33. Lane Marking—General 56. Traffic Light

11. Building 34. Mailbox 57. Traffic Sign (Back)
12. Bus 35. Manhole 58. Traffic Sign (Front)
13. Banner 36. Mountain 59. Traffic Sign Frame
14. Barrier 37. Motorcycle 60. Trailer

15. Bench 38. Motorcyclist 61. Trash Can

16. Bicycle 39. On Rails 62. Truck

17. Boat 40. Other Rider 63. Tunnel

18. Bus 41. Other Vehicle 64. Unlabeled

19. Car 42. Parking 65. Utility Pole

20. Car Mount 43. Pedestrian Area 66. Vegetation

21. Caravan 44. Phone Booth 67. Water

22. Catch Basin 45. Pole 68. Wheeled Slow

23. CCTV Camera 46. Pothole

Appendix B. List of Detected Objects

1. Airplane 24. Donut 47. Sink

2. Apple 25. Elephant 48. Skateboard
3. Backpack 26. Fire Hydrant 49. Skis

4. Banana 27. Frisbee 50. Snowboard
5. Baseball Bat 28. Hair Drier 51. Spoon

6. Baseball Glove 29. Handbag 52. Sports Ball
7. Bear 30. Horse 53. Stop Sign
8. Bed 31. Hot Dog 54. Suitcase

9. Bird 32. Keyboard 55. Surfboard
10. Boat 33. Kite 56. Teddy Bear
11. Book 34. Knife 57. Television
12. Bottle 35. Laptop 58. Tennis Racket
13. Bowl 36. Microwave 59. Toaster

14. Broccoli 37. Motorcycle 60. Toilet

15. Cell Phone 38. Mouse 61. Toothbrush
16. Chair 39. Oven 62. Tie

17. Cat 40. Parking Meter 63. Toilet

18. Clock 41. Person 64. Traffic Light
19. Couch 42. Potted Plant 65. Train

20. Cow 43. Remote 66. Truck

21. Cup 44. Sandwich 67. Umbrella
22. Dining Table 45. Scissors 68. Vase

23. Dog 46. Sheep 69. Wine Glass
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