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Abstract: Smart cities are urban areas that utilize digital solutions to enhance the efficiency of
conventional networks and services for sustainable growth, optimized resource management, and the
well-being of its residents. Today, with the increase in urban populations worldwide, their importance
is greater than ever before and, as a result, they are being rapidly developed to meet the varying
needs of their inhabitants. The Internet of Things (IoT) lies at the heart of such efforts, as it allows
for large amounts of data to be collected and subsequently used in intelligent ways that contribute
to smart city goals. Time-series forecasting using deep learning has been a major research focus
due to its significance in many real-world applications in key sectors, such as medicine, climate,
retail, finance, and more. This review focuses on describing the most prominent deep learning
time-series forecasting methods and their application to six smart city domains, and more specifically,
on problems of a multivariate nature, where more than one IoT time series is involved.
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1. Introduction

A smart city is a place where traditional networks and services are improved by utiliz-
ing and embracing contemporary technological principles for the benefit of its citizens [1].
Smart cities are being rapidly implemented to accommodate the continuously expanding
population in urban cities and provide them with increased living standards [2]. Going
beyond the use of digital technologies for better resource use and less emissions, the de-
velopment of smart cities entails smarter urban transportation networks, more responsive
and interactive administration, improved water supply and waste disposal facilities, more
efficient building lighting and heating systems, safer public places, and more. To this end,
smart cities employ Internet of Things (IoT) devices, such as connected sensors, embedded
systems, and smart meters, to collect various measurements at regular intervals (time-series
data), which are subsequently analyzed and ultimately used to improve infrastructure and
services [3].

Deep learning algorithms [4], renowned for their ability to extract intricate patterns
from complex datasets, have proven particularly adept at handling the multifaceted time-
series data characteristic of smart city IoT applications. These algorithms are designed to
capture the dynamics of multiple time series concurrently and harness interdependencies
among these series, resulting in more robust predictions [5]. Consequently, deep learning
techniques have found application in various time-series forecasting scenarios across
diverse domains, such as retail [6], healthcare [7], biology [8], medicine [9], aviation [10],
energy [11], climate [12], automotive industry [13] and finance [14].

Remarkable examples of these technologies in action include Singapore’s Smart Nation
Program around traffic-flow forecasting , Beijing’s Environmental Protection Bureau ’Green
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Horizon’, the City of Los Angeles’ ’Predicting What We Breathe’ air-quality forecasting
projects, and the United States Department of Energy SunShot initiative around renewable
energy forecasting. More specifically, in Singapore, the Land Transport Authority has
created a traffic management system powered by AI that analyzes real-time data to optimize
traffic flow and alleviate congestion. In Beijing, IBM’s China Research Lab has developed
one of the world’s most advanced air-quality forecasting systems, while across multiple
cities in the United States, IBM is making renewable energy-demand and supply forecasts.

Beyond their technical implications, the implementation of such technologies brings
profound socioeconomic and environmental outcomes for cities and their residents [15].
Indicatively, it can foster economic growth by attracting talented individuals and en-
trepreneurs, potentially turning cities into innovation hubs, which, in turn, can lead to job
creation and increased economic competitiveness [16]. As smart cities become more pros-
perous through economic growth, healthcare and education become more accessible and
more inclusive, which results in more engaged and empowered citizens, contributing to
social cohesion and overall well-being [17]. Moreover, AI-driven efficiency improvements
in resource management can make cities more environmentally sustainable, addressing
global challenges such as climate change [18].

There have been several surveys around deep learning for time-series forecasting, both
in theoretical [5] and experimental [19] contexts. Looking at smart cities, deep learning has
been used in various domains, but since this is still an emerging application area, only a few
surveys have studied the current state-of-the-art models. Many of these, such as [20,21],
describe deep learning as part of a broader view of machine learning approaches and
examine a limited number of models. Other studies focusing on deep learning methods
consider a wide set of data types, such as text and/or images [22–25], or address tasks
beyond forecasting (e.g., classification), thus not providing a comprehensive overview on
time-series forecasting in IoT-based smart city applications. More importantly, these studies
do not include research works pertaining to contemporary deep learning architectures (see
Table 1). This study endeavors to address this gap by providing a more recent and concise
overview of how deep learning methods enhance smart cities through the modeling and
forecasting of multivariate time-series IoT data.

Smart city applications can be grouped into six major domains [17]: smart environment,
smart mobility, smart buildings, smart governance, smart living, and smart economy
and people. In this paper, we focus on two domains—smart environment and smart
mobility—that have witnessed the extensive adoption of deep learning methods (see
Table 1), analyzing six prominent applications: air-quality, water-quality, and energy-
demand management from the smart environment domain, and car park occupancy, traffic-
flow monitoring, and passenger flow from the smart mobility domain. We intentionally
narrow our scope to provide an in-depth examination of these applications, emphasizing
the trends and dynamics of deep learning models for time-series forecasting within the
context of smart cities.

The remainder of this paper is structured as follows: Section 2 introduces existing ad-
vances in deep learning algorithms for multivariate time-series forecasting, encompassing
recurrent neural networks (RNNs), convolutional neural networks (CNNs), the attention
mechanism, graph neural networks (GNNs), and their combinations. Section 3 delves
into the applications of these models in the smart environment and smart mobility do-
mains, exploring their characteristics, popularity, and performance. Section 4 highlights
the challenges and limitations present in the existing literature, each paving the way for
a discussion on future directions. Finally, Section 5 concludes with a summary of our
study and offers insights into emerging trends in state-of-the-art deep learning models,
considering their applicability to the reviewed domains.
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Table 1. Comparison of relevant survey papers.

Article Field Data Types
Deep Learning Algorithms

Smart City Domain
CNN RNN Attention GNN Hybrid

[20] ML + DL Time series,
images X

Environment,
mobility,

living

[21] ML + DL Time series,
images Environment

[22] DL Time series,
images, text X X X

Environment,
mobility,

buildings,
living

[24] DL Time series,
images, text X X X

Environment,
mobility,

living

[25] DL Time series,
images, text X X X

Environment,
mobility,

living

Our paper DL Time series X X X X X Environment,
mobility

2. Deep Learning Architectures for Multivariate Time-Series Forecasting

Deep learning architectures model complex relationships through a series of nonlinear
layers—the set of nodes of each intermediate layer capturing the corresponding feature
representation of the input [26]. In a time-series context, these feature representations
correspond to relevant temporal information up to that point in time, encoded into some
latent variable at each step. In the final layer, the very last encoding is used to make a
forecast. In this section, the most common types of deep learning building blocks for
multivariate time-series forecasting are outlined.

2.1. Recurrent Neural Networks

Recurrent neural networks have a long and well-established history when it comes to
time-series forecasting [27] that continues to date. The core building block of RNNs is the
RNN cells that essentially act as an internal memory state. Their purpose is to maintain
a condensed summary of past information deemed useful by the network for forecasting
future values. At each time step, the network is presented with fresh observations, and
cells are updated accordingly with new information. The standard structure of an RNN
and its unfolded-in-time version are shown in Figure 1. In the case of multivariate time
series, the inputs x and outputs t are multidimensional in each of the time steps.

Figure 1. RNN unfolding—adapted from [28].
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Older versions of RNNs were notorious for failing to adequately capture long-term
dependencies, a problem commonly known as ’exploding and vanishing gradients’ [29].
More specifically, the lack of restriction on their look-back window range meant that the
RNNs cells were unable to contain all the relevant information from the beginning of the
sequence [30]. The advent of long short-term memory networks (LSTMs) [31] and other
closely related variants, such as the gated recurrent units (GRUs [32]), largely alleviated
this problem, by allowing the gradients to flow more stably within the network. In Figure 2,
the different cells used by the LSTMs and GRUs are displayed.

Figure 2. Different recurrent neural network cells: LSTM (left) and GRU (right)—adapted from [33].

Another shortcoming of conventional RNNs was the inability to make use of future
time steps. To overcome this limitation, a new type of architecture, bidirectional RNNs
(BiRNNs), was proposed by Schuster and Paliwal [34]. The novelty of BiRNNs was that they
could be trained in both time directions at the same time, using separate hidden layers for
each direction: forward layers and backward layers. Later on, Graves and Schmidhuber [35]
introduced the LSTM cell to the BiRNN architecture, creating an improved version: the
bidirectional LSTM (BiLSTM). Using the same principles, the bidirectional paradigm can
be extended to GRUs to create BiGRU networks. A very common and powerful end-to-end
approach to sequence modeling that utilizes LSTMs, GRUs, or their bidirectional versions
is the sequence-to-sequence (Seq2seq) or encoder-decoder framework [36]. This framework
originally had a lot of success in natural language processing tasks, such as machine
translation, but can also be used in time-series prediction [37]. Under this framework,
a neural network (the encoder) is used to encode the input data in a fixed-size vector,
while another neural network takes the produced fixed-size vector as its own input to
produce the target time series. Any of the mentioned RNN variants can act as the encoder
or the decoder. Such an architecture can produce an entire target sequence all at once. All
these advances and improvements to RNNs have resulted in them being established as
the driving force behind many modern state-of-the-art multivariate time-series forecasting
architectures, which use them as their main building blocks [38–42].

When utilizing RNNs and their variants, careful attention should be given to their
hyperparameter tuning [43], especially in the selection of the number of hidden units,
hidden layers, the learning rate, and the batch size. The number of hidden units and layers
should align with the data complexity, and the more complex the data, the higher the
number of layers and neural networks as a general rule of thumb. Adaptive learning rate
techniques are essential to address nonstationarity, while the right batch size can ensure
a smoother learning process. Lastly, for such models to thrive, it is important that the
length of the input sequences should match the time patterns in it, especially if long-term
connections are to be captured.

2.2. Convolutional Neural Networks

Convolutional neural networks were originally used for computer vision tasks. By
making strong, but to a great degree correct, assumptions about the nature of images in
terms of the stationarity of statistics and locality of pixel dependencies, CNNs are able to
learn meaningful relationships and extract powerful representations [44].

CNNs typically consist of a series of convolutional layers followed by pooling layers,
with one or more dense layers in the end. Convolutional layers perform a convolution op-
eration of their input series with a filter matrix to construct high-level representations. The
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purpose of the pooling operation is to reduce the dimensionality of these representations
while preserving as much information as possible. In addition, the produced representa-
tions are rotationally and positionally invariant. CNNs for time-series data, usually referred
to as temporal CNNs and similar to standard/spatial CNNs, make invariance assump-
tions. In this case, however, such assumptions are about time instead of space, as they
maintain the same set of filter weights across each time step. For CNNs to be transferred
from the domain of computer vision to time-series forecasting, some modifications are
needed [45,46]. A main concern is that the look-back window of CNNs is controlled by and
limited by the size of its filter, also known as the receptive field. As a result, choosing the
right filter size is crucial for the network’s capability to pick up all the relevant historical
information, and finding an optimal size is not an easy task and is usually considered
part of the hyperparameter tuning process [46]. Another consideration is related to the
leakage of data from the future into the past; in [45], the so-called causal convolutions were
developed to make sure that there is no leakage from the future into the past and only
past information is used for forecasting. Lastly, to capture long-term temporal dependen-
cies, a combination of very deep networks, augmented with residual layers, along with
dilated convolutions, are employed, which are able to maintain very long effective history
sizes [46]. An example of a CNN architecture for multivariate time-series forecasting can
be seen in Figure 3. Since the number of parameters grows in line with the size of the
look-back window, the use of standard convolutional layers can be computationally ex-
pensive, especially in cases where strong long-term dependencies are formed. To decrease
the computational burden but maintain the desired results, newer architectures [45,47]
often employ so-called dilated convolutional layers. Dilated convolutions can be viewed as
convolutions of a downsampled version of the lower-level features, making it much less
expensive to incorporate information from past time steps. The degree of downsampling is
controlled by the dilation rate, applied on a layer basis. Dilated convolutions can, therefore,
gradually accumulate information from various time blocks by increasing the dilation rate
with each layer, allowing for more efficient utilization of historic information [5].

When it comes to hyperparameter tuning, focus should be directed towards the
alignment of the number of filters, the filter sizes, the number of convolutional layers, and
pooling strategies with the inherent patterns of the data [47]. More specifically, the more
intricate and diverse the data are, the greater the number of filters and layers needed to
capture it. Longer sequences contain more information and context and usually require
larger filters to capture broader patterns and dependencies over extended periods. If the
data are noisy, then pooling layers can help cut through the noise and improve the model’s
focus on the features that matter.

Figure 3. Convolutional neural network architecture for multivariate time-series
forecasting—adapted from [48].

2.3. Attention Mechanism

LSTMs acted to mitigate the problem of vanishing gradients, however, they did not
eradicate it. While, in theory, the LSTM memory can hold and preserve information from
the previous state, in practice, due to vanishing gradients, the information retained by these
networks at the end of a long sequence is deprived of any precise, contextual, or extractable
information about preceding states.
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This problem was addressed by the attention mechanism [49,50], originally used in
transformer architectures for machine translation [51–53]. Attention is a technique that
helps neural networks focus on the more important parts of the input data and deprioritize
the less important ones. Which parts are more relevant is learned by the network through
the input data itself and is derived by the context. This is achieved by making all the
previous states at any preceding point along the sequence available to the network; through
this mechanism the network can access all previous states and weight them according
to a learned measure of relevancy, providing relevant information even from the distant
past. Outside of natural language processing tasks, attention-based architectures have
demonstrated state-of-the-art performance in time-series forecasting [54–56]. The two most
broadly used attention techniques are dot-product attention and multihead attention. The
former calculates attention as the dot product between vectors, while the latter incorporates
various attention mechanisms—usually different attention outputs are independently
computed and are subsequently concatenated and linearly transformed into the expected
dimension. These two different types of attention are shown in Figure 4.

Figure 4. Attention mechanisms: dot-product (left) vs. multihead (right)—adapted from [57].

The choice of hyperparameters in attention models for time-series forecasting can be
heavily influenced by the specific characteristics of the time-series data [58]. For instance,
the series length can affect the number of attention heads and the attention window size.
Longer sequences may require more attention heads to capture various dependencies
and a wider attention window to consider longer-term patterns. Seasonality in the data
may necessitate specialized attention mechanisms or attention spans to focus on recurring
patterns, while nonstationary data may benefit from adaptive attention mechanisms to
adapt to changing dynamics. The choice of attention mechanism type may also depend on
the data characteristics; self-attention mechanisms like those in transformers are known for
their ability to capture complex dependencies and intricate patterns.
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2.4. Graph Neural Networks

In some cases, time-series problems are challenging because of the complex temporal
and spatial dependencies. RNNs and temporal CNNs are capable of modeling the former,
but they cannot solve the latter. Normal CNNs, to some degree, alleviate the problem by
modeling the local spatial information; however, they are limited to cases of Euclidean
structure data. Graph neural networks (GNNs), designed to exploit the properties of
non-Euclidean structures, are capable of capturing the underlying spatial dependencies,
offering a new perspective on approaching such forecasting problems, e.g., traffic-flow
forecasting [59].

GNN-based approaches are generally divided into two categories: spectral and non-
spectral approaches. For spectral approaches to function, a well-defined graph structure is
required [60]. Therefore, a GNN trained on a specific structure that defines the relationships
among the different variables cannot be directly applied to a graph with a different struc-
ture. On the other hand, nonspectral approaches define convolutions directly on the graph,
operating on groups of spatially close neighbors; this technique operates by sampling a
fixed-size neighborhood of each node, and then performing some aggregation function
over it [61]. In any case, variables from multivariate time series can then be considered as
nodes in a graph, where the state of a node depends on the states of its neighbors, forming
latent spatial relationships.

To capture the spatial dependencies among their nodes, GNNs use a different type of
convolution operation, called graph convolution [60]. The basic idea of graph convolutions
is similar to that of traditional convolutions, often used in images, where a filter is applied
to a local region of an image and produces a new value for each pixel in that region.
Similarly, graph convolutions apply a filter to a local neighborhood of nodes in the graph,
and a new value is computed for each node based on the attributes of its neighbors. This
way, node representation is updated by aggregating information from their neighbors.
Graph convolutions are typically implemented using some message-passing scheme that
propagates information through the graph [62]. In Figure 5, such convolution operations
on different nodes of a graph are exemplified.

Regarding the temporal dependencies, some GNN-based architectures may still use
some type of RNN or temporal CNN to learn the temporal dependencies [63,64], while
others have tried to jointly model both the intraseries temporal patterns and interseries
correlations [65]. A new type of GNN, which incorporates the attention mechanism,
called a graph attention network (GAT), was introduced by Veličković et al. [61]. The
idea is to represent each node in the graph as a weighted average of the nonlinearly
transformed features of only the neighboring nodes, using the attention coefficients. As
a result, different importances are assigned to different nodes within a neighborhood,
and at the same time, the need to know the entire graph structure upfront is eliminated.
Even though recent advances in GNNs have demonstrated great potential by achieving
state-of-the-art performance in various tasks, they have not been applied to time-series
forecasting tasks to such a large extent as their RNN or CNN counterparts [66].

When applying GNNs to time-series data structured as graphs, key considerations
captured by hyperparameters include defining node and edge representations, determin-
ing the number of message-passing layers to handle temporal dependencies, choosing
aggregation functions for gathering information from neighboring nodes, and addressing
dynamic graph structures for evolving time series [67]. More specifically, while simpler
GNN architectures with fewer layers can suffice for short sequences or stable trends, longer
sequences often require deeper GNNs to capture extended dependencies. Highly variable
data patterns may demand more complex GNN structures, while the presence of strong
seasonality may warrant specialized aggregation functions. Finally, the graph structure
should mirror the relationships between variables in the time series, e.g., directed, weighted,
or otherwise, to enable effective information propagation across the network.



Smart Cities 2023, 6 2526

Figure 5. Graph convolutions applied to different nodes of a graph. Each node is denoted by a
number (0–5).

2.5. Hybrid Approaches

Hybrid approaches combine different deep learning architectures, bringing together
the benefits of each. Generally speaking, architectures integrating more than one learning
algorithm have been shown to produce methods of increased robustness and predictive
power, compared to single-model architectures [68]. Their increased robustness stems from
the fact that, by using multiple types of neural networks, hybrids are less prone to noise and
missing data, which helps them learn more generalizable representations of the data. At the
same time, the combination of different types of neural networks increases the flexibility
of the model, allowing it to be more easily tailored to the specific characteristics and
patterns of the given time-series data [69]. A common approach in deep learning hybrids
for time-series forecasting has been to combine models that are good at feature extraction
such as CNNs or autoencoders, with models capable of learning temporal dependencies
among those features, such as LSTMS, GRUs, or BiLSTMs. In Figure 6, a commonly used
CNN–LSTM hybrid architecture is depicted.

Figure 6. A simple CNN–LSTM hybrid architecture—adapted from [70].

Despite their advantages, hybrid models are often more computationally intensive,
leading to longer training times and demanding more resources. Additionally, hyperpa-
rameter tuning becomes more challenging due to the increased complexity and the need to
optimize settings for multiple components. They should, therefore, be considered mostly
in cases where simpler models do not perform adequately.

3. Smart City Applications

In this section, studies applying deep learning algorithms to multivariate time-series
forecasting problems around smart cities are presented. A smart city essentially comprises
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an emerging, technology-enhanced urban management model that has the power and
potential to address contemporary challenges of urban agglomerations mainly caused
by climate change and cumulative urbanization. Smart cities envision a techno-utopian
urban future, where technological advancements and intelligent interconnected systems
are expected to deliver on the promise of optimized resource utilization, environmental
sustainability, economic growth, and increased quality of living [71]. While each city has its
own unique needs and characteristics that drive urban innovation, smart city applications
come in a rich variety in terms of engaged stakeholders, technological features, offered
services, and used platforms. In this section, six major smart city domains are examined:
air quality, car park occupancy, energy-demand management, passenger flow, traffic flow,
and water quality.

3.1. Air Quality

The rapid progress of industrial development, urbanization, and traffic has caused
air-quality reduction that negatively affects human health and environmental sustainability,
especially among developed countries. As a result, one of the major aims of smart city
development is air-quality management. The major pollutants that contribute to air pollu-
tion are carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3),
and particulate matter (PM10 and PM2.5). These days real-time air-quality data, captured
by sensors, are made widely available through API connections. Such ease of access has
allowed for swift experimentation and the development of predictive models, which can
offer advanced insights on environmental trends so that dangerous events can be prevented
and mitigation acts can be designed to maintain high standards of air quality in urban
environments [72]. In the field of air-quality forecasting using deep learning, recurrent
neural networks, such as RNNs, LSTMs, and GRUs dominate the literature review, while
most recent studies also make use of the attention mechanism. Many studies can be found
over the past years using such models, either as standalone or in a hybrid setting with
other models, such as CNNs.

In terms of simple recurrent neural network studies, in [73], an LSTM model was de-
veloped, utilizing multivariate time-series data covering both chemical and meteorological
parameters captured by an air monitoring station. LSTMs were also used in [37], where
an LSTM-based, sequence-to-sequence architecture was proposed to handle the dynamic,
spatial-temporal, and nonlinear characteristics of multivariate air-quality data. Similar
studies, adopting LSTMs to model air pollution levels include [74–78], while in [79], LSTMs
and GRUs were equally proposed. The problem of missing values in air-quality datasets
was raised and subsequently tackled in [80], by designing an LSTM-based framework. The
lack of context-aware features, such as pollutant sources specific to certain geographical
areas, in many air-quality modeling studies was pointed out and an attempt to address
it was made with the design of an LSTM-based, context-aware air-quality system. To
improve air-quality forecasts, domain-specific knowledge was considered in [81]—the goal
being its incorporation into GRUs, in the form of a regularized loss function. To forecast
separate air-quality components simultaneously, a multitask, multichannel, nested LSTM
architecture was proposed in [82]. The problem of indoor air quality has also been explored
through the lens of recurrent neural networks, as both LSTM and GRU networks were
developed in [83], using multiple indoor microclimate indicators with GRUs demonstrating
higher performance.

A popular way to improve upon simple recurrent neural network architectures is the
inclusion of the attention mechanism. More specifically, after arguing their limitations in
air-quality forecasting [84], the authors developed an attention-based sequence-to-sequence
model relying on positional embeddings to try and improve on them. The attention
mechanism has also been used in more studies: in [85], it was combined with bidirectional
LSTMs, to provide forecasts of increased robustness and better handling of randomly
missing values, while in [86], it was combined with bidirectional GRUs, to allow for two-
way transmission of the information at a lower computational cost, since GRUs have
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fewer parameters than LSTMs. The idea of adding spatiotemporal attention to an encoder–
decoder LSTM architecture was introduced in [87], where time-series data were used in
conjunction with non-time-series data and spatial information, to capture dependencies
across both. More recently, an architecture relying on bifold attention was employed [88]
and tested on several multivariate datasets, including air quality.

Another way to improve model performance is hybrid approaches developed for
air-quality forecasting. The most popular ones blend CNNs with recurrent neural network
variants, while others also add the attention mechanism on top. The main idea behind
combining CNNs with LSTMs is that multivariate time-series data can be modeled as a
sequence of space-time images [89]. Furthermore, while LSTMs can better capture the
long-term historic time dependencies of the input time-series data, they struggle to learn
the interdependencies found in multivariate time-series data as well as CNNs do. More
specifically, the kernel size of CNNs can be adjusted to learn relationships that reflect
narrower or longer data dependencies [90]. More studies using the CNN–LSTM paradigm
include [91–93]. In an attempt to utilize more information, the simple versions of recurrent
networks were replaced with their bidirectional versions in some studies, for example, with
bidirectional LSTMs [94–96], or bidirectional GRUs [97], allowing data to be processed in
two directions. Finally, the most recent hybrid CNN–(Bi)LSTM-based methods, blend in the
mechanism of attention to further enhance performance and model interpretability [98,99].

In Table 2, the discussed deep learning studies around air-quality forecasting and the
components used in their architectures are summarized. Air-quality forecasting involves
complex interactions between multiple pollutants and external factors such as meteorologi-
cal conditions, industrial emissions, and traffic patterns. Recurrent neural networks and
their variants dominate the literature either as standalone models or as parts of hybrids
due to their ability to capture long-term dependencies, especially with the addition of
the attention mechanism. The inclusion of multiple variables, including exogenous ones
such as meteorological data, can significantly improve the accuracy of predictions. Lastly,
the incorporation of CNN networks can be very useful in scenarios where multiple sta-
tions or locations are taken into consideration since CNNs are excellent at capturing such
spatial information.

Table 2. Recent deep learning studies around air-quality forecasting including the proposed architec-
ture, data used, and the types of models the proposed method was compared against; “|” indicates
components were used as part of a hybrid; “,” indicates components were separately used.

Year Paper Components Used Data Compared Against

2018 [73] LSTM IoT sensors in Kuwait Traditional and deep
learning

2018 [37] LSTM Beijing PM2.5 dataset Traditional and deep
learning

2018 [74] LSTM DHT11 and MQ135
sensor dataset

No comparisons were
made

2018 [84] GRU | Attention
Olympic center and
Dongsi stations in

Beijing, China
Deep learning

2018 [90] CNN | LSTM

Air-quality and
meteorological

monitoring stations in
Beijing City

Deep learning

2019 [75] LSTM

Weather and pollution
levels from earth

stations and satellite
sensors in Madrid,

Spain

No comparisons were
made
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Table 2. Cont.

Year Paper Components Used Data Compared Against

2019 [83] GRU SML2010 dataset Deep learning

2019 [76] LSTM

Air pollution and
meteorological data
from air monitoring
station in Chokchai,

Thailand

Traditional

2019 [85] BiLSTM | Attention

Air-quality monitoring
dataset from Central

Pollution Control
Board in Delhi, India

Traditional and deep
learning

2019 [94] CNN | BiLSTM Urban air-quality
dataset

Traditional and deep
learning

2019 [97] CNN | BiGRU Beijing PM2.5 dataset Traditional and deep
learning

2020 [77] LSTM
Monitoring stations in

Upper Hunter,
Australia

No comparisons were
made

2020 [80] LSTM

Beijing PM2.5 dataset
Italy air-quality dataset

Beijing multisite
air-quality dataset

Deep learning

2020 [81] GRU | Attention
KDD Cup of Fresh Air

(Beijing, China) Met
Office (London, UK)

Traditional and deep
learning

2020 [86] BiGRU | Attention

National urban
air-quality real-time

release platform of the
China Environmental

Monitoring Master
Station in Xining City,

Qinghai Province,
China

Deep learning

2020 [89] CNN | LSTM

Real-time pollution
dataset from pollution
control board for three
monitoring stations in

Bhubaneswar city,
Odisha state, India

Deep learning

2020 [91] CNN | LSTM Beijing PM2.5 dataset Deep learning

2020 [98] CNN | LSTM |
Attention

Air-quality monitoring
stations in Taiyuan City,

China
Deep learning

2021 [82] LSTM Beijing multisite
air-quality dataset Deep learning

2021 [78] LSTM IoT sensors in India No comparisons were
made

2021 [79] LSTM, GRU Monitoring stations
from Wrocław, Poland

Traditional and deep
learning

2021 [87] LSTM | Attention Monitoring stations
from Beijing, China Deep learning
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Table 2. Cont.

Year Paper Components Used Data Compared Against

2021 [92] CNN | LSTM Beijing multisite
air-quality dataset Deep learning

2021 [95] CNN | BiLSTM Monitoring stations in
Odisha state, India Traditional

2022 [88] LSTM | Attention
Beijing PM2.5 dataset,

Beijing multisite
air-quality dataset

Traditional and deep
learning

2022 [93] CNN | LSTM
Sensors in Barcelona,

Spain and Kocaeli and
İstanbul, Turkey

Deep learning

2022 [96] CNN | BiLSTM Beijing PM2.5 dataset Deep learning

2022 [99] CNN | BiLSTM |
Attention

Monitoring stations in
South Korea Deep learning

3.2. Car Park Occupancy

With extremely high pollution levels and a large number of cars on city roads, existing
policies for sustainable traffic management in cities have, in many cases, been proven insuf-
ficient. To alleviate the issue, intelligent IoT-based parking systems have been developed,
allowing drivers to avoid unnecessary laps and, therefore, reduce fuel consumption and
exhaust emissions [100]. Most intelligent parking occupancy systems, utilize RNNs [101]
and their variants, i.e., LSTM [102–106] and GRU networks [107]. Such models have been
shown to produce increased performance by using exogenous data sources such as weather
data [104,107–109], point of interest (POI)-related and map mobility data [110], traffic
data [111], and location information [112]. Using a similar logic, a CNN architecture was
proposed [113] with the addition of transactional data.

In attempts to boost performance, hybrid architectures have been developed, such
as CNN–LSTM hybrids [100,114,115] and stacked GRU–LSTM networks [116]. More
advanced hybrid-based studies include [117], where graph convolutions were integrated
with LSTMs to capture the spatial and temporal patterns of block-level parking occupancies,
and [118], where a graph convolutional network, a regular convolutional network, and an
attention mechanism were combined to model the spatial correlations by measuring the
similarity of parking duration distributions.

Table 3 holds a condensed view of the reviewed deep learning studies around car park
occupancy forecasting and the components used in their architectures. Car park occupancy
heavily depends on factors such as the influence of dynamic human behavior and real-time
data availability. It often exhibits daily and weekly patterns, making recurrent neural
networks and their variants a well-suited choice as they are very effective at capturing these
temporal fluctuations. However, for scenarios with significant spatial dependencies among
parking lots or complex parking networks, combining them with CNNs or GNNs may
be beneficial to capture both temporal and spatial aspects effectively. Lastly, exogenous
variables, including weather conditions, holidays, day of the week, time of day, traffic
conditions, and local events can significantly enhance model performance.
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Table 3. Recent deep learning studies around car park occupancy forecasting including the proposed
architecture, data used, and the types of models the proposed method was compared against; “|”
indicates components were used as part of a hybrid.

Year Paper Components Used Data Compared Against

2018 [101] RNN Birmingham car park
occupancy dataset Traditional

2018 [102] LSTM IoT sensors in St.
Petersburg, Russia

No comparisons were
made

2018 [103] LSTM Melbourne dataset Deep learning

2018 [108] LSTM IoT sensors in Sanlitun,
Beijing, China Deep learning

2018 [110] LSTM
IoT sensors in le in
Beijing and Shenz,

China
Traditional

2019 [104] LSTM Melbourne dataset,
Kansas City dataset Traditional

2019 [109] GRU IoT sensors in Riyadh,
Saudi Arabia

No comparisons were
made

2019 [117] GCN | LSTM
IoT sensors in

Pittsburgh, United
States

Traditional and deep
learning

2020 [105] LSTM IoT sensors in Aarhus,
Denmark

Traditional and deep
learning

2020 [106] LSTM Birmingham car park
occupancy dataset

No comparisons were
made

2020 [113] CNN IoT sensors in Arnhem,
Netherlands

Traditional and deep
learning

2021 [100] CNN | LSTM IoT sensors in the
Campania Region, Italy Traditional

2021 [114] CNN | LSTM

Birmingham car park
occupancy dataset IoT

sensors in Mantova,
Italy

Deep learning

2021 [118] GCN | CNN |
Attention

Melbourne on-street
car park bay dataset
Melbourne on-street
parking bays dataset

Traditional and deep
learning

2022 [107] GRU ISPARK dataset Deep learning

2022 [111] LSTM

Birmingham car park
occupancy dataset

on-street car parking
sensor data—2018

No comparisons were
made

2022 [112] LSTM Melbourne public
dataset

Traditional and deep
learning

2022 [115] CNN | LSTM Private dataset Traditional and deep
learning

2022 [116] GRU | LSTM IoT sensors in
Chongqing, China Traditional
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3.3. Energy-Demand Management

One of the greatest societal concerns is the energy consumption and the environmen-
tal footprint of cities. According to statistics, cities consume approximately 75% of all
energy, and their needs are anticipated to significantly grow in the future due to further
urbanization [119]. Energy-demand patterns can be affected by a great number of factors.
Some of these factors are reoccurring, such as holidays or seasonality, or different time
periods within a day. Other contributing elements can vary a lot among different groups,
places, or individual use cases. Weather conditions, economic situations, indoor or outdoor
activities, power market policies, and many other aspects can all affect, in one way or
another, energy consumption demand. The sheer number of variables involved, many of
which are captured by sensor networks in a smart city setting, increases the complexity of
energy-demand forecasts, emphasizing the importance of intelligent, self-adaptive, and
optimal energy management systems. Accurate forecasts, leading to better planning, dis-
tribution, and optimization, can all help to improve the reliability of the power system
and the usability of a load management system, while at the same time having a positive
environmental impact [120].

There is ample literature on energy load forecasting using deep learning and multi-
variate time series. More specifically, LSTMs have been used for various electricity demand
forecasting scenarios [121–123], such as households [124] and short-term loads [125] and
gas usage forecasting in big buildings [126]. In all these studies, exogenous temporal
variables, and environmental variables such as solar luminescence, humidity, pressure, dew
point, temperature, and wind speed—all potentially captured by sensors—were used to
improve the forecasting accuracy. To further boost recurrent neural network performance
for electricity load forecasting, Ke et al. [127] added an autoencoding step to transform
the raw data, before feeding it into a GRU network. In addition, for natural gas consump-
tion, singular spectrum analysis was proposed by Wei et al. [128] as a preprocessing step.
Lastly, in [129], a BiLSTM-based encoder–decoder architecture was applied to individual
household electric power consumption.

While not as popular, CNNs have also been shown to achieve competitive performance
when it comes to energy consumption forecasting as they were used for short-term load
prediction [130,131] and peak load forecasting [132].

That said, CNNs have been very popular in hybrid settings, where they have been
used primarily as a feature extraction layer, in combination with LSTMs for residential
consumption [133], short-term load forecasting [134], and buildings [135], with GRUs
for residential load [136], smart grids [137], and smart homes [138], and, in many cases,
alongside BiLSTMs [139,140] for residential consumption [141] and smart buildings [142].
Hybrids including CNNs were also further enhanced with the incorporation of the attention
mechanism for residential load forecasting [143,144]. Furthermore, Ji et al. [145] proposed a
hybrid residential short-term load forecasting framework, which blends a dilated CNN to
extract the long-term data relationships, an LSTM to capture the sequence features hidden
in the extracted features, an autoencoder to decode them into output features, and finally
an attention mechanism.

In Table 4, a summary of the considered deep learning studies around energy demand
and the components used in their architectures is presented. Recurrent neural networks and
their variants can be very effective when energy demand exhibits strong daily and seasonal
patterns and more so when the attention mechanism is used on top. However, they may
struggle in cases where nontemporal factors such as geographical layouts impact energy
grids, and knowledge extracted from CNNs should be incorporated in one form or another.
Weather conditions, including temperature, humidity, light intensity, and wind speed play
a significant role as they affect heating, cooling, and lighting requirements. Moreover, such
conditions also affect renewable source production, which can affect demand for other
sources. Lastly, energy prices are an important indicator of shape consumption trends.
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Table 4. Recent deep learning studies around energy-demand forecasting including the proposed
architecture, data used, and the types of models the proposed method was compared against; “|”
indicates components were used as part of a hybrid.

Year Paper Components Used Data Compared Against

2018 [126] LSTM

IBM B3 Building
Lawrence Berkeley
National Lab Gas

Dataset

Traditional and deep
learning

2019 [121] LSTM Electrical load data
from Ljubljana, 2011

No comparisons were
made

2019 [124] LSTM IHEPC dataset Traditional and deep
learning

2019 [127] GRU Short-term power load
dataset

Traditional and deep
learning

2019 [128] LSTM

Gas consumption
datasets of London,

Hong Kong,
Melbourne, and

Karditsa

Traditional and deep
learning

2019 [133] CNN | LSTM Electrical load dataset Traditional and deep
learning

2019 [139] CNN | BiLSTM IHEPC dataset Traditional and deep
learning

2019 [141] CNN | BiLSTM IHEPC dataset Deep learning

2020 [130] CNN Romanian power
system dataset

No comparisons were
made

2020 [136] CNN | GRU AEP
IHEPC

Traditional and deep
learning

2020 [143] CNN | LSTM |
Attention IHEPC Traditional and deep

learning

2020 [129] BiLSTM | Attention

Beijing PM25
power consumption

Italian air quality
highway traffic

PeMS-Bay

Traditional and deep
learning

2021 [122] LSTM AEP
IHEPC

Traditional and deep
learning

2021 [125] LSTM Building electricity
consumption dataset Deep learning

2021 [132] CNN Panama’s power
system dataset Deep learning

2021 [135] CNN | LSTM
KReSIT building

energy consumption
dataset

Traditional and deep
learning

2021 [140] CNN | BiLSTM Turkey household
consumption dataset

Traditional and deep
learning

2021 [142] CNN | BiLSTM
Smart home dataset

with weather
information

Traditional and deep
learning
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Table 4. Cont.

Year Paper Components Used Data Compared Against

2021 [134] CNN | LSTM Electric load from a
Spanish utility

Traditional and deep
learning

2022 [123] LSTM KEGOC energy
consumption dataset Traditional

2022 [131] CNN
CK Bogazici Elektrik
dataset in Istanbul,

Turkey
Deep learning

2022 [138] CNN | GRU Electrical energy
consumption dataset

Traditional and deep
learning

2022 [144] CNN | LSTM |
Attention IHEPC Deep learning

2022 [145] CNN | LSTM |
Attention IHEPC Traditional and deep

learning

3.4. Passenger Flow

Accurate and real-time traffic passenger-flow forecasting at transportation networks,
such as subways and bus stations, is crucial for traffic management and planning, public
safety, control, and guidance in smart city settings [146]. Deep learning-based algorithms,
able to capture spatial-temporal properties from highly complicated and nonlinear traffic-
flow information, can boost such efforts. That said, managing the spatial and temporal
dependencies of so many interconnected aspects, such as the topological structure of the
urban transportation network and the rules of traffic flows, is still very difficult [147].

Both LSTMs [148,149] and GRUs [150] have been applied to multivariate passenger-
flow forecasting. The performance of such models has been shown to improve with
modifications such as the inclusion of exogenous variables, e.g., weather data [151–153].
Studies incorporating the attention mechanism [154,155] have also reported performance
improvements. That said, similar to traffic-flow forecasting, passenger-flow forecasting is
a graph-based problem by nature. Since transportation networks, such as bus and train
stops, essentially maintain a graph structure, passenger flow is, therefore, best modeled
using GNNs [59]. With this in mind, GNNs have been applied to forecast passenger flow
in various transportation networks and settings [146,156,157]. In terms of hybrid models,
even though the versatile combination of LSTM with CNN has been applied [158], the
majority of such approaches prefer combining GCNs with other architectures, such as
attention [159,160], CNNs [161], and GRUs [162].

Table 5 contains a summary of the surveyed deep learning studies regarding passenger
flow and the components used in their architectures. Passenger-flow forecasting is more
contingent on specific scenarios than other domains, each scenario demanding a more
tailored approach. More specifically, to capture passenger flow in airports, where flow
is primarily driven by temporal patterns, recurrent neural networks excel by capturing
such daily and hourly fluctuations. Conversely, in public transit congestion, particularly
in urban settings, such as modeling dependencies across various bus stops, one can ben-
efit more from CNNs delineating these spatial congestion patterns. In cases of complex
transit hubs consisting of potentially hundreds of interconnected stations, GNNs shine,
taking advantage of the network properties. The integration of exogenous variables, such
as holidays, weather conditions, or public transportation schedules offers critical contex-
tual information.
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Table 5. Recent deep learning studies around passenger-flow forecasting, including the proposed
architecture, data used, and the types of models the proposed method was compared against; “|”
indicates components were used as part of a hybrid.

Year Paper Components Used Data Compared Against

2018 [150] GRU
Ile-de-France Mobilites

railway, metro, and
tramway dataset

Traditional

2018 [156] GCN Beijing subway dataset Traditional and deep
learning

2019 [146] GCN Metro system of Shanghai,
China

Traditional and deep
learning

2019 [148] LSTM
Qingdao public

transportation group
dataset

Traditional

2019 [154] LSTM | Attention
Transportation operations

coordination center
dataset in Beijing, China

Traditional and deep
learning

2019 [159] GCN | Attention
Beijing subway dataset

Beijing bus dataset
Beijing taxi dataset

Deep learning

2019 [157] GCN Beijing subway dataset Traditional and deep
learning

2020 [147] GCN | LSTM
Beijing subway dataset

Beijing bus dataset
Beijing taxi dataset

Traditional and deep
learning

2020 [152] LSTM Taipei city government
dataset

Traditional and deep
learning

2020 [161] GCN | CNN Beijing subway dataset Traditional and deep
learning

2020 [160] GCN | Attention
Beijing subway dataset

Beijing bus dataset
Beijing taxi dataset

Traditional and deep
learning

2021 [149] LSTM Kochi metro rail limited
dataset Traditional

2021 [151] LSTM
Ali Tianchi big data

competition in
Guangzhou, China

Traditional

2021 [153] LSTM Beijing bus dataset Deep learning

2022 [158] CNN | LSTM
Guangzhou BAIYUN
International Airport

dataset

Traditional and deep
learning

2022 [155] CNN | LSTM | BiLSTM |
Attention

Bus card data in
Guangdong, China Deep learning

2022 [162] GCN | GRU HZMetro and SHMetro
datasets

Traditional and deep
learning

2022 [163] LSTM | Attention
Hong Kong mass transit
railway (MTR) system

dataset

Traditional and deep
learning

3.5. Traffic Flow

Traffic-flow forecasting refers to predicting the next state of the traffic flow in terms
of volume, speed, density, or behavior, based on historical or even real-time data. Such
information can greatly help in avoiding unpleasant situations on the roadways like traffic
congestion, which, in turn, can lead to increased energy/fuel consumption and enormous
emission of pollutants that negatively impact the health and quality of life of citizens [164].

Traffic forecasting is a challenging problem mainly due to the complex spatial depen-
dency on road networks, the nonlinear temporal dynamics with changing road conditions,
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and the inherent difficulty of long-term forecasting [64]. A great amount of scientific litera-
ture around vehicle traffic-flow forecasting using multivariate time-series data involves
the use of recurrent neural networks such as LSTMs. A variety of studies adopted simple
LSTM modeling [165–170], while others tried to improve on the simple recurrent models
either by integrating more information from external sources, such as weather [171], ai-
quality data [172], congestion propagation patterns [173], or modified architectures such as
weighted LSTMs [174], stacked LSTMs [175], and the sequence-to-sequence model [176].

With the advent of the attention mechanism, more works using recurrent neural
network architectures were conducted, trying to exploit it to improve performance, and
make the proposed architectures more interpretable. In [177], the attention mechanism was
used in conjunction with LSTM networks to help capture high-impact values of very long
sequences and integrate them into the time step of interest, while in [178] traffic flow under
interference caused by unexpected events, such as the COVID-19 pandemic, was modeled.

That said, the traffic-foresting approaches mentioned so far ignored the graph-bound
nature of the problem, making them suboptimal: a road network can be interpreted as
a graph, with junctions as the nodes and road connections as the edges. As a result,
in recent years, the most advanced and well-performing studies around traffic forecast-
ing have focused more on GNNs, due to their inherent ability to capture graph-based
relationships [59].

Although GNNs can be used as standalone models for traffic-flow forecasting—for
example, in [179], they were used to build different modules for different time periods
to capture the heterogeneities in localized spatial-temporal graphs—most graph-based
approaches rely on the combination of GNNs with other models, resulting in hybrid archi-
tectures. For example, in [180], GCNs were enhanced with the attention mechanism, as a
dynamic GNN was used to incorporate correlation information into the spatial structure,
and a multihead attention component was developed to dynamically uncover temporal re-
lationships. Furthermore, a new GNN-based architecture, called a diffusion convolutional
recurrent neural network (DCRNN), was proposed in [64], combining a graph convolu-
tional network and a GRU-based sequence-to-sequence model. The former was used to
capture the spatial relationships using random bidirectional walks on the graph, while the
latter, was able to model the temporal ones and used scheduled sampling to enhance the
long-term forecasts. Similarly, Zhao et al. [181] combined GCNs with GRUs to capture
temporal and spatial dependencies at the same time. To further improve the performance
of DCRNNs, the notion of “rank influence factor” was introduced in [182]; the idea being
that the contribution of neighboring sensor nodes can be adjusted, based on their proximity
to the target node. In a newer study [183], a similar CGN–GRU hybrid was developed
that used a generative method to model the topology of the dynamic graph at each time
step. Another popular type of GNN-based hybrids is that of GCN–CNN. In [63], a new
deep learning framework was proposed for traffic prediction, combining gated temporal
convolution and graph convolution via spatiotemporal convolutional blocks. Similarly,
after touching upon the inefficiencies of RNN-based approaches for long sequences and the
exploding gradient problems when RNNs are merged with graph convolution networks,
Wu et al. [184] proposed a CNN–GCN hybrid methodology called Graph WaveNet. Under
this methodology, a self-adaptive dependency matrix, able to automatically uncover unseen
graph structures, was created, and by combining graph convolution with dilated casual
convolution spatiotemporal dependencies were captured. To further enhance the perfor-
mance of the GCN–CNN architecture, Guo et al. incorporated an attention mechanism into
it to effectively learn the dynamic spatiotemporal correlations in traffic data [185], while
in [186], a graph talking-heads attention layer was added to capture the spatiotemporal
dependencies and dynamic graph structure at the same time. More GNN-based hybrids
include approaches that blend GCNs with LSTMs and the attention mechanism. In [187],
an architecture consisting of a cascaded LSTM block and an attentive diffusion convolution
process was proposed to reveal the spatiotemporal relations of the traffic-flow data along-
side social and economic factors. Similar building blocks were used in [188]; however, in
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this case, two attention mechanisms were introduced: 1. an internal attention mechanism
to capture the correlations across the different time series; and 2. a dynamic neighborhood-
based attention mechanism to capture the complex spatial relationships and uncover how
heterogeneous data at specific locations directly affect the forecasts. Other notable men-
tions that use hybrid approaches but without employing GNNs include [189–191], where
CNNs were combined with LSTMs, ref. [192], where CNNs were combined with GRUs,
ref. [193], where LSTMs were combined with GRUs, and [194,195], where attention-based
CNN–LSTM architectures were developed.

A summarized view of the discussed deep learning studies around traffic flow is
shown in Table 6. Similar to passenger-flow forecasting, traffic-flow forecasting is based on
the interplay between temporal and spatial dependencies, such as vehicle interactions, road
conditions, traffic signals, and real-time events such as accidents or road closures. Recurrent
neural networks are best when complex temporal relationships dominate, making them
ideal for scenarios with recurring daily or hourly traffic variations on single roads. That
said, given how interconnected roads are in a real-world scenario, GNNs are a much
more realistic choice that should be used, at least complementarily. Additionally, attention
mechanisms can empower GNNs by allowing them to focus on certain critical spatial
relationships and selectively aggregate information. CNNs, while also effective at capturing
spatial dependencies, are not as powerful as GNNs in traffic-flow scenarios due to the graph
nature of the data. External factors that have a significant impact on traffic-flow forecasting
and are frequently incorporated into time-series prediction models encompass weather
conditions, holidays, the day of the week, time of day, schedules of public transportation,
traffic incidents, and measures related to social distancing during pandemics.

Table 6. Recent deep learning studies around traffic-flow forecasting, including the proposed architec-
ture, data used, and the types of models the proposed method was compared against; “|” indicates
components were used as part of a hybrid.

Year Paper Components Used Data Compared Against

2018 [165] LSTM Traffic dataset from Seoul Deep learning

2018 [166] LSTM DPTI dataset Deep learning

2018 [171] GRU PEMS Traditional

2018 [64] GCN | GRU
METR-LA
PEMS-BAY Deep learning

2018 [63] GCN | CNN
BJER4

PeMSD7
Traditional and deep

learning

2019 [181] GCN | GRU
SZ-taxi dataset

Los-loop dataset
Traditional and deep

learning

2019 [167] LSTM PEMS Traditional and deep
learning

2019 [176] LSTM Traffic-flow dataset
(highways England)

Traditional and deep
learning

2019 [177] LSTM | Attention PEMS Traditional and deep
learning

2019 [189] LSTM | CNN PEMS traffic-flow dataset
(highways England) Deep learning

2019 [190] LSTM | CNN IoT sensors in Stretford,
UK

No comparisons were
made

2019 [182] GCN | GRU
METRLA

PEMS-BAY
SZ-taxi

Deep learning
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Table 6. Cont.

Year Paper Components Used Data Compared Against

2019 [184] GCN | CNN METR-LA
PEMS-BAY

Traditional and deep
learning

2019 [185] GCN | CNN | Attention PeMSD4
PeMSD8

Traditional and deep
learning

2020 [65] GCN | CNN

METR-LA
PEMS-BAY

PEMS07
PEMS03
PEMS04
PEMS08

Deep learning

2020 [168] LSTM PEMS No comparisons were
made

2020 [172] LSTM Open data from Madrid,
Spain

No comparisons were
made

2020 [194] LSTM | CNN | Attention NYC taxi Traditional and deep
learning

2020 [179] GCN

PEMS03
PEMS04
PEMS07
PEMS08

Traditional and deep
learning

2020 [187] GCN | LSTM | Attention
METR-LA
PEMS-BAY

Traditional and deep
learning

2021 [169] LSTM Open traffic data of
Austin, Texas Traditional

2021 [170] LSTM Traffic data for Buxton, UK No comparisons were
made

2021 [173] LSTM PEMS Traditional

2021 [174] LSTM Taxis GPS trajectory in
Beijing

Traditional and deep
learning

2021 [178] LSTM TPS dataset Deep learning

2021 [191] CNN | LSTM PEMS No comparisons were
made

2021 [195] CNN | LSTM | Attention PEMS No comparisons were
made

2021 [188] GCN | LSTM | Attention PeMSD4
PeMSD8

Traditional and deep
learning

2021 [183] GCN | GRU
METRLA

PEMS-BAY
NE-BJ

Traditional and deep
learning

2022 [175] LSTM Baruipur region in
Kolkata, India dataset

Traditional and deep
learning

2022 [193] LSTM | GRU Floating car data Traditional and deep
learning

2022 [186] GCN | CNN | Attention METRLA
PEMS-BAY

Traditional and deep
learning

2022 [180] GCN | Attention

PEMS03
PEMS04
PEMS07
PEMS08

Deep learning

3.6. Water Quality

By utilizing IoT devices and technologies, water operators have the opportunity to
monitor the water grid in real time and gain insights into water quality and leakages, in-
frastructural components status, and consumption, to optimize resource utilization, ensure
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the quality of drinking water, and improve management decisions [196]. More specifically,
regarding water quality, a set of previously established parameters are measured, moni-
tored, analyzed, and maintained for real-time management, to ensure the quality of surface
water or underground water. Subsequently, water-quality management systems are tasked
with the interpretation and analysis of the obtained sensor measurements and decision
making and alerting if readings reach alarming levels, as decided by policymakers [197].

Most water-quality forecasting studies make use of RNN-based and CNN networks
and hybrids. Wei et al. [198] employed an LSTM network, informed by several environ-
mental parameters including conductivity, temperature, pressure, salinity, and oxygen
concentration. Similarly, Aldhyani et al. [199] trained an LSTM, taking into account seven
different attributes: dissolved oxygen (DO), pH, conductivity, biological oxygen demand
(BOD), nitrate, fecal coliform, and total coliform. Several attempts were made to improve
the performance of a simple LSTM network: Li et al. [200] developed a sparse autoencoder
(SAE) to extract deep latent features of water quality, before feeding them to the LSTM. Eze
et al. [201] used empirical mode decomposition (EEMD) as part of their LSTM pipeline to
extract more than single-scale attributes with respect to predicted signals. Chen et al. [202]
added the attention mechanism on top of their LSTM to effectively capture the more
time-wise distant, but impactful pieces of information, critical to the model’s performance.
To take into consideration both the negative and positive neighborhoods of sequential data,
Zhang et al. [203] proposed a BiLSTM network, able to process data in different directions
simultaneously and learn a bidirectional nonlinear mapping of the information extracted
by the raw water-quality measurements and related environmental factors.

Another family of models used for water quality prediction is that of hybrids. Most
hybrid models broadly combine recurrent neural networks, namely, LTSMs, GRUs, and
BiLSTMs with CNNs; CNN layers are used to extract valuable features around water
quality indicators, while the recurrent layers incorporate these features by learning the
long-range dependencies among them. To this end, Jichang et al. [204] developed a CNN–
GRU hybrid using chemical oxygen demand (COD) data as a measure of water and
wastewater quality. Similarly, Barzegar et al. [205] combined a CNN with an LSTM in
order to learn from several physicochemical water quality variables, such as oxidation
reduction potential and electrical conductivity. The same hybridization (CNN–LSTM) was
also trialed in [206], but it was found that another type of hybrid, CNN–BiLSTM, performed
better. Similar findings were also reported by [207]. To further improve the performance of
hybrid models, Yang et al. [208] and Liu et al. [209] incorporated the attention mechanism
on top, both using an attention-based CNN–LSTM model. Although not very popular in
the field of water-quality forecasting, at least at the time of writing, a graph CNN-based
model was developed by Ni et al. [210]. The proposed model also featured two attention
mechanisms: one to better understand the potential relationships between various water
quality parameters and another to capture the temporal relationships. Lastly, the model
also included both temporal convolution modules and BiGRU modules.

An overview of the examined deep learning studies and the components used in their
architectures for water-quality forecasting is displayed in Table 7. Water-quality forecasting
presents distinct challenges due to its dependence on a range of complex physical, chemical,
and ecological processes and their dynamics, and seasonal trends. In scenarios where
short- to medium-term predictions are needed and temporal patterns are dominant, such as
forecasting daily variations in water turbidity influenced by weather conditions, recurrent
neural networks can be effective. However, in situations with intricate spatial interactions,
such as predicting seasonal fluctuations in nutrient levels across vast aquatic ecosystems,
such models may fall short and CNNs or GNNs should be used. Since water-quality data
do not often exhibit network-like patterns, most studies prefer the use of CNNs over GNNs
for spatial modeling. Among the most impactful exogenous variables for water-quality
forecasting are meteorological factors and land-use/land-cover variables. Meteorological
factors encompass variables like temperature, precipitation, humidity, wind speed, and
solar radiation, all of which significantly influence water quality dynamics. Land-use and
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land-cover variables, on the other hand, capture critical information about the types of land
activities taking place such as urbanization, agriculture, and deforestation.

Table 7. Recent deep learning studies around water-quality forecasting, including the proposed
architecture, data used, and the types of models the proposed method was compared against; “|”
indicates components were used as part of a hybrid.

Year Paper Components Used Data Compared Against

2018 [200] LSTM Private dataset Deep learning

2019 [198] LSTM Ocean networks Canada
data archive Traditional

2019 [204] CNN | GRU Jinze Reservoir in
Shanghai

Traditional and deep
learning

2020 [199] LSTM Indian water quality
dataset Deep learning

2020 [205] CNN | LSTM Prespa basin, Balkan
peninsula

Traditional and deep
learning

2020 [199] LSTM Indian water quality
dataset Deep learning

2020 [205] CNN | LSTM Prespa basin, Balkan
peninsula

Traditional and deep
learning

2021 [201] LSTM An abalone farm in South
Africa Deep learning

2021 [206] CNN | BiLSTM Ganga river in
Uttarakhand, India Deep learning

2021 [208] CNN | LSTM | Attention Beilun Estuary in Guangxi,
China

Traditional and deep
learning

2021 [209] CNN | LSTM | Attention Guangli River in Guangxi,
China Deep learning

2022 [202] LSTM | Attention Burnett River in
Queensland, Australia Deep learning

2022 [203] BiLSTM | Attention Lanzhou section of the
Yellow River Basin, China Deep learning

2022 [207] BiLSTM Yamuna River, India Traditional and deep
learning

2022 [210] CNN | BiGRU | GCNN |
Attention

Monitoring stations in
Jiangsu Province, China Deep learning

4. Challenges, Limitations and Future Directions

In this section, important challenges and limitations around deep learning systems
in smart cities are raised, and, based on them, potential directions for future studies are
discussed. These broadly include model selection and overfitting, model interpretability
and transferability, computational requirements and the monitoring of deployed models,
and deep learning alternatives and data privacy issues that may arise.

4.1. Model Selection and Overfitting

A major consideration when developing a model for a given problem is the choice
of the model and its hyperparameters [211,212]. The domain of the problem is likely to
play a significant role in choosing the right type of model, due to the underlying data
structure. For example, in domains where the underlying structure is a graph, such as car
park occupancy, passenger flow, and traffic flow, architectures using graph neural networks
outperform other approaches, as they take advantage of the network-like properties. In
cases where the data do not follow any particular structure, hybrid models often offer
robust performance; however, they are more computationally expensive since they involve
more than one model.
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In terms of hyperparameters, a different selection corresponds to a different underlying
distribution. The set of hyperparameters to be chosen heavily depends on the metric of
interest to optimize towards and a different metric can lead to a different set. A common
strategy for hyperparameter tuning can be summarized as follows:

1. Define a metric that reflects the performance of the model on the time-series data;
2. Use the k-fold cross-validation technique assuming enough data are available, making

sure the folds created are meaningful, using approaches such as forward chaining,
time-series splitting, or rolling windows;

3. Start with a wide range of hyperparameter values and then gradually narrow them
down based on the results. To find good hyperparameter set candidates, use tech-
niques such as random search or Bayesian optimization. Avoid using grid search for
hyperparameter tuning, as it can be inefficient;

4. Monitor and plot convergence by tracking the cross-validation performance of
the model;

5. After tuning the hyperparameters, check the performance on a held-out test set.

Since deep learning models are known to be prone to model overfitting [213], ap-
propriate regularization techniques should be applied, such as L1 and L2 penalties and
dropout and early stopping.

4.2. Interpretability

Another critical concern when deploying deep learning systems in smart cities, but
also in general, is model interpretability [214]. These systems often involve complex neural
network architectures that can be challenging to interpret, making it difficult to explain
model decisions, particularly in situations impacting city residents’ daily lives. In domains
like traffic management or predictive maintenance, understanding why a deep learning
model makes certain forecasts is crucial for city officials and residents alike. To address this
challenge, research into interpretable deep learning techniques, model visualizations, or
surrogate models is essential. These methods aim to shed light on how the deep learning
models arrive at their predictions, providing transparency and trust in decision-making
processes. As the number of smart cities and their applications expand around the world,
studies should put more emphasis on ensuring that such initiatives are not only effective
but also ethically sound and publicly acceptable by achieving the right trade-off between
the accuracy of deep learning models and their interpretability.

4.3. Transferability

The transferability of deep learning systems refers to their capacity to transfer what
they have learned from one context to another, which promotes the sharing and reuse of
valuable knowledge, thus increasing a system’s scalability and efficiency. Models developed
for specific smart city applications, such as traffic management or energy optimization,
should ideally be transferable to other cities or regions with minimal adjustments [215].
Achieving transferability involves several challenges on its own, including variations in
data characteristics, infrastructure, and local regulations. To enhance transferability, it is
essential to develop generalized models that can adapt to diverse smart city environments.
This may involve incorporating domain adaptation techniques that enable models to learn
from data in the target city while leveraging knowledge from the source city. Additionally,
fostering collaboration and data sharing between cities and municipalities can facilitate the
development of more universally applicable deep learning systems, making them a valuable
asset for addressing common urban challenges in wider regions or even worldwide. It is
essential that future works incorporate transfer learning techniques and better demonstrate
how well the developed models can transfer their knowledge to other problems.

4.4. Computational Resources

Running deep learning systems using IoT data in a smart city scenario can pose
significant computational requirements [216]. The sheer volume of data generated by IoT
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sensors in a smart city, including data from traffic cameras, environmental sensors, and
energy meters, can be massive. Deep learning models demand substantial computational
resources to process and analyze this data effectively, which often necessitates powerful
hardware, such as GPUs or specialized accelerators, to handle the computational load
efficiently. Additionally, cases of real-time or near-real-time processing of IoT data, such
as traffic management or air-quality monitoring, demand low-latency inference, further
increasing computational demands. As deep learning models become bigger in size,
studies should pay extra attention to the hardware infrastructure and resource optimization
techniques that are required in order to ensure the scalability and responsiveness of such
systems in smart city environments.

4.5. Monitoring

Monitoring models in production is a critical aspect of guaranteeing their continued
performance and reliability, especially in highly critical scenarios, such as smart cities, where
the lives of residents can be directly affected [217]. Since data patterns and conditions can
change rapidly, effective monitoring enables the detection of anomalies, model drift, or
hardware failures and makes sure that timely interventions are made to maintain system
integrity. Effective monitoring also aids in assessing the accuracy of predictions and
optimizing models for evolving data patterns. Due to the big volume and complexity of IoT
data generated, monitoring deep learning systems in smart cities can be quite challenging.
It would, therefore, be beneficial for future studies to discuss in greater detail how (ways,
techniques, tools) the proposed models can be monitored upon deployment or even propose
new methodologies.

4.6. Deep Learning Alternatives

In this study, only deep learning methods were reviewed, and while they are the most
powerful techniques overall, it should be noted that there is no one-size-fits-all approach.
There are cases where simpler models, such as ARIMA variants or exponential smoothing
variants [218], can perform just as well, if not better, in time-series forecasting [219]. Ulti-
mately, the choice between traditional and deep learning approaches should be based on
the specific characteristics of the data and the problem’s requirements. Below are some
potential advantages of simpler approaches over deep learning ones:

1. Shorter time series: simpler models can be more effective if the time-series data are
not very long and long-term dependencies are not needed;

2. Strong prior knowledge: simpler models make strong assumptions about the underly-
ing data distributions and characteristics, such as seasonality, and therefore, if these
are known beforehand, they can be more easily incorporated into these models;

3. Presence of noise and outliers: simpler models are less affected by noisy data and
extreme values, since they are not that flexible;

4. Less resources: simpler models are easier to build, maintain, and monitor after
being deployed.

In some cases, hybrid models that combine both approaches may also provide valuable
insights and forecasts and it is always an avenue that should be explored.

4.7. Data Privacy

When models process user data, data privacy requirements and considerations are
always raised, and more so in a smart city scenario, where vast amounts of data, often
including personally identifiable information (PII) or sensitive information about residents,
are collected by IoT sensors [220]. Ensuring robust data anonymization and encryption is
vital to protecting individuals’ privacy rights. Additionally, data access and sharing policies
must be strictly controlled, with well-defined user permissions to prevent unauthorized
access and breaches. Moreover, complying with data privacy regulations, such as GDPR in
Europe or similar legislation globally, is a fundamental obligation. This entails obtaining
informed consent from residents for data collection, ensuring transparent data usage, and
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implementing mechanisms for data subject rights, including the right to be forgotten. Im-
plementing strong data governance practices and collaborating closely with data protection
authorities are essential to navigating the complex landscape of data privacy while reaping
the benefits of deep learning in smart city applications. It is paramount that new studies
better balance the advancement of technology with the protection of citizens’ privacy rights.

An emerging area of deep learning that has shown great promise in enhancing data
privacy is federated learning [221]. Federated learning is a machine learning approach that
allows for modeling across distributed devices or data sources while keeping sensitive data
localized, mitigating the risk of data exposure during transmission. Privacy-preserving
aggregation techniques, data minimization, local model updates, and user anonymity are
key features of federated learning that protect data privacy. This approach aligns with
data protection regulations, enhances security, and enables cross-institutional collaboration
while preserving the confidentiality of sensitive information.

5. Conclusions

Smart cities are anticipated to grow rapidly in the following years and, as a result,
the utilization of IoT data captured by wireless sensor networks and the development and
implementation of related technologies are expected to play a massive role in transforming
the lives of urban populations. To this end, this study attempted to present the most recent
advances in deep learning methods for multivariate time-series forecasting and examine
how these have been used recently to exploit such IoT data in order to accelerate these
efforts. More specifically, six highly impactful smart city domains were selected to be
examined: air quality, car park occupancy, energy-demand management, passenger flow,
traffic flow, and water quality.

Air-quality forecasting is one of the most heavily examined problems around smart
cities, with a comprehensive body of recent literature. Earlier studies employed LSTM
networks, while the most popular later studies combined CNNs with LSTM or GRUs
or their bidirectional variants to enhance prediction quality. Furthermore, some studies
incorporate the attention mechanism, but this trend does not seem as strong as in other
domains, such as traffic forecasting. On the other hand, research interest in water-quality
forecasting using deep learning does not seem as strong, as the number of recent studies
around it is fewer overall. Similar to air-quality forecasting, earlier works around water-
quality forecasting consisted of architectures that were mainly single-model; whereas,
in more recent ones, the architectures were extended to also include CNNs and even
attention layers.

A great deal of scientific attention has been paid to energy-demand forecasting, most
likely due to the immense benefits that better energy management can bring to many
areas at the same time (society, economy, environment, and more). Architectures com-
bining CNNs with GRUs or LSTMs or their bidirectional variants, sometimes with the
use of attention layers on top, seem to be dominant in this domain. Some studies do rely
on single-model configurations, but they are significantly fewer in comparison and less
effective overall.

Although car park occupancy, passenger-flow, and traffic-flow forecasting are sepa-
rately treated by researchers, the end goal is the same: efficient transport. In the future,
such systems should become more interdisciplinary and incorporate the available knowl-
edge from all the different transportation systems that greatly depend on one another.
Since all three problems are about transportation networks they share common underlying
characteristics. This becomes more evident as the same type of architectures (GNN-based
architectures) dominate performance benchmarks in these fields. Such architectures can
natively handle the graph nature of the data and capture the underlying dependencies
among the different transportation nodes. As a result, they have been established as the
current state of the art for many transportation-related forecasting problems.

In every studied domain, the majority of studies have used real-world, open-source
data, which enhances both their reliability and reproducibility. There is also a good number
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of studies in each domain that compare themselves with both deep learning and non-
deep learning models, emphasizing and consolidating the superiority of deep learning
architectures in smart city multivariate time-series problems. Although deep learning
systems can be resource-heavy to run on devices, little attention has been given to the
infrastructure and general computational requirements needed for the developed models
to operate, which may turn out to be problematic if applied in the real world.

Future work can focus on incorporating more recent performance-enhancing advances
in deep learning and include further information from other domains to allow for more
interdisciplinary approaches. Deep learning advances include meta-learning for zero-shot
or few-shot time-series forecasting, which can enable models to adapt quickly to new tasks
with limited data or even scenarios that were not seen during training, the application of
deep reinforcement learning to time series, and self-supervised learning to learn even more
meaningful representations and patterns. More interdisciplinary approaches can involve
not only the incorporation of data from various urban data sources but also the integration
of human expertise into the models (human-in-the-loop systems), which can further boost
efficiency. That said, while performance enhancement is of great significance, the are
other aspects that are equally important. The vast majority of reviewed studies tend to
overemphasize model performance ignoring several real-world, model-related limitations
to applying the proposed models in smart cities, which leaves a lot of room for improvement
in future works regarding non-performance-related considerations. These include the
lack of focus on model interpretability and model transferability, heavy computational
requirements, continuous model monitoring after deployment, and data privacy issues.

Author Contributions: Conceptualization, S.K. and V.P.; data curation, T.P. and V.P.; formal analysis,
V.P. and P.L.; investigation, V.P. and P.L.; methodology, V.P. and P.L.; project administration, S.K. and
T.P.; supervision, S.K. and T.P.; validation, V.P. and P.L.; visualization, P.L. and V.P.; writing—original
draft preparation, V.P. and P.L.; and writing—review and editing, V.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the research project OpenDCO, “Open Data City Officer”
(Project No.: 22022-1-CY01-KA220-HED-000089196, Erasmus+ KA2: KA220-HED—Cooperation
partnerships in higher education).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pribyl, O.; Svitek, M.; Rothkrantz, L. Intelligent Mobility in Smart Cities. Appl. Sci. 2022, 12, 3340. [CrossRef]
2. Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open

challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [CrossRef]
3. Panagiotakopoulos, T.; Kiouvrekis, Y.; Mitshos, L.M.; Kappas, C. RF-EMF exposure assessments in Greek schools to support

ubiquitous IoT-based monitoring in smart cities. IEEE Access 2023, 190, 7145–7156. [CrossRef]
4. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
5. Lim, B.; Zohren, S. Time-series forecasting with deep learning: A survey. Philos. Trans. R. Soc. A 2021, 379, 20200209. [CrossRef]
6. Böse, J.H.; Flunkert, V.; Gasthaus, J.; Januschowski, T.; Lange, D.; Salinas, D.; Schelter, S.; Seeger, M.; Wang, Y. Probabilistic

demand forecasting at scale. Proc. VLDB Endow. 2017, 10, 1694–1705. [CrossRef]
7. Kaushik, S.; Choudhury, A.; Sheron, P.K.; Dasgupta, N.; Natarajan, S.; Pickett, L.A.; Dutt, V. AI in healthcare: Time-series

forecasting using statistical, neural, and ensemble architectures. Front. Big Data 2020, 3, 4. [CrossRef] [PubMed]
8. Leise, T.L. Analysis of nonstationary time series for biological rhythms research. J. Biol. Rhythm. 2017, 32, 187–194. [CrossRef]

[PubMed]
9. Lynn, L.A. Artificial intelligence systems for complex decision-making in acute care medicine: A review. Patient Saf. Surg. 2019,

13, 1–8. [CrossRef]
10. Vonitsanos, G.; Panagiotakopoulos, T.; Kanavos, A.; Tsakalidis, A. Forecasting air flight delays and enabling smart airport

services in apache spark. In Proceedings of the In Artificial Intelligence Applications and Innovations, AIAI 2021 IFIP WG 12.5
International Workshops, Crete, Greece, 25–27 June 2021; pp. 407–417.

http://doi.org/10.3390/app12073440
http://dx.doi.org/10.1016/j.scs.2018.01.053
http://dx.doi.org/10.1109/ACCESS.2023.3237970
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1098/rsta.2020.0209
http://dx.doi.org/10.14778/3137765.3137775
http://dx.doi.org/10.3389/fdata.2020.00004
http://www.ncbi.nlm.nih.gov/pubmed/33693379
http://dx.doi.org/10.1177/0748730417709105
http://www.ncbi.nlm.nih.gov/pubmed/28569118
http://dx.doi.org/10.1186/s13037-019-0188-2


Smart Cities 2023, 6 2545

11. Martínez-Álvarez, F.; Troncoso, A.; Asencio-Cortés, G.; Riquelme, J.C. A survey on data mining techniques applied to electricity-
related time series forecasting. Energies 2015, 8, 13162–13193. [CrossRef]

12. Mudelsee, M. Trend analysis of climate time series: A review of methods. Earth-Sci. Rev. 2019, 190, 310–322. [CrossRef]
13. Nousias, S.; Pikoulis, E.V.; Mavrokefalidis, C.; Lalos, A. Accelerating deep neural networks for efficient scene understanding in

multi-modal automotive applications. IEEE Access 2023, 11, 28208–28221. [CrossRef]
14. Sezer, O.B.; Gudelek, M.U.; Ozbayoglu, A.M. Financial time series forecasting with deep learning: A systematic literature review:

2005–2019. Appl. Soft Comput. 2020, 11, 106181. [CrossRef]
15. Akindipe, D.; Olawale, O.W.; Bujko, R. Techno-economic and social aspects of smart street lighting for small cities—A case study.

Sustain. Cities Soc. 2022, 84, 103989. [CrossRef]
16. Appio, F.P.; Lima, M.; Paroutis, S. Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal

challenges. Technol. Forecast. Soc. Chang. 2019, 142, 1–14. [CrossRef]
17. Neirotti, P.; De Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in Smart City initiatives: Some stylised facts.

Cities 2014, 38, 25–36. [CrossRef]
18. Trindade, E.P.; Hinnig, M.P.F.; da Costa, E.M.; Marques, J.S.; Bastos, R.C.; Yigitcanlar, T. Sustainable development of smart cities:

A systematic review of the literature. J. Open Innov. Technol. Mark. Complex. 2017, 3, 1–14. [CrossRef]
19. Lara-Benítez, P.; Carranza-García, M.; Riquelme, J.C. An experimental review on deep learning architectures for time series

forecasting. Int. J. Neural Syst. 2021, 31, 2130001. [CrossRef]
20. Gharaibeh, A.; Salahuddin, M.; Hussini, S.; Khreishah, A.; Khalil, I.; Guizani, M.; Al-Fuqaha, A. Smart cities: A survey on data

management, security, and enabling technologies. IEEE Commun. Surv. Tutor. 2017, 19, 2456–2501. [CrossRef]
21. Mohammadi, M.; Al-Fuqaha, A. Enabling cognitive smart cities using big data and machine learning: Approaches and challenges.

IEEE Commun. Mag. 2018, 56, 94–101. [CrossRef]
22. Atitallah, S.B.; Driss, M.; Boulila, W.; Ghézala, H.B. Leveraging Deep Learning and IoT big data analytics to support the smart

cities development: Review and future directions. Comput. Sci. Rev. 2020, 38, 100303. [CrossRef]
23. Ciaburro, G. Time series data analysis using deep learning methods for smart cities monitoring. In Big Data Intelligence for Smart

Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 93–116.
24. Chen, Q.; Wang, W.; Wu, F.; De, S.; Wang, R.; Zhang, B.; Huang, X. A survey on an emerging area: Deep learning for smart city

data. IEEE Trans. Emerg. Top. Comput. Intell. 2019, 3, 392–410. [CrossRef]
25. Muhammad, A.N.; Aseere, A.M.; Chiroma, H.; Shah, H.; Gital, A.Y.; Hashem, I.A.T. Deep learning application in smart cities:

Recent development, taxonomy, challenges and research prospects. Neural Comput. Appl. 2021, 33, 2973–3009. [CrossRef]
26. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.

Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]
27. Lipton, Z.C. A Critical Review of Recurrent Neural Networks for Sequence Learning. arXiv 2015, arXiv:1506.00019.
28. Zhang, T.; Aftab, W.; Mihaylova, L.; Langran-Wheeler, C.; Rigby, S.; Fletcher, D.; Maddock, S.; Bosworth, G. Recent advances in

video analytics for rail network surveillance for security, trespass and suicide prevention—A survey. Sensors 2022, 22, 4324
29. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the International

Conference on Machine Learning. PMLR, Virtual Event, 13–18 July 2013; pp. 1310–1318.
30. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.

1994, 5, 157–166. [CrossRef]
31. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
32. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. In

Proceedings of the NIPS 2014 Workshop on Deep Learning, Montreal, QC, Canada, 8–13 December 2014.
33. Han, H.; Choi, C.; Kim, J.; Morrison, R.; Jung, J.; Kim, H. Multiple-depth soil moisture estimates using artificial neural network

and long short-term memory models. Water 2021 13, 2584. [CrossRef]
34. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
35. Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.

Neural Netw. 2005, 18, 602–610. [CrossRef] [PubMed]
36. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 2014, 27, 1.
37. Du, S.; Li, T.; Horng, S.J. Time series forecasting using sequence-to-sequence deep learning framework. In Proceedings of the 2018

9th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), Taipei, Taiwan, 26–28 December
2018; pp. 171–176.

38. Salinas, D.; Flunkert, V.; Gasthaus, J.; Januschowski, T. DeepAR: Probabilistic forecasting with autoregressive recurrent networks.
Int. J. Forecast. 2020, 36, 1181–1191. [CrossRef]

39. Rangapuram, S.S.; Seeger, M.W.; Gasthaus, J.; Stella, L.; Wang, Y.; Januschowski, T. Deep state space models for time series
forecasting. Adv. Neural Inf. Process. Syst. 2018, 31, 7785–7794.

40. Lim, B.; Zohren, S.; Roberts, S. Recurrent Neural Filters: Learning Independent Bayesian Filtering Steps for Time Series Prediction.
In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.

41. Wang, Y.; Smola, A.; Maddix, D.; Gasthaus, J.; Foster, D.; Januschowski, T. Deep factors for forecasting. In Proceedings of the
International Conference on Machine Learning, PMLR, Virtual Event, 13–18 July 2019; pp. 6607–6617.

42. Wen, R.; Torkkola, K. Deep generative quantile-copula models for probabilistic forecasting. arXiv 2019, arXiv:1907.10697.

http://dx.doi.org/10.3390/en81112361
http://dx.doi.org/10.1016/j.earscirev.2018.12.005
http://dx.doi.org/10.1109/ACCESS.2023.3258400
http://dx.doi.org/10.1016/j.asoc.2020.106181
http://dx.doi.org/10.1016/j.scs.2022.103989
http://dx.doi.org/10.1016/j.techfore.2018.12.018
http://dx.doi.org/10.1016/j.cities.2013.12.010
http://dx.doi.org/10.1186/s40852-017-0063-2
http://dx.doi.org/10.1142/S0129065721300011
http://dx.doi.org/10.1109/COMST.2017.2736886
http://dx.doi.org/10.1109/MCOM.2018.1700298
http://dx.doi.org/10.1016/j.cosrev.2020.100303
http://dx.doi.org/10.1109/TETCI.2019.2907718
http://dx.doi.org/10.1007/s00521-020-05151-8
http://dx.doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.3390/w13182584
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://www.ncbi.nlm.nih.gov/pubmed/16112549
http://dx.doi.org/10.1016/j.ijforecast.2019.07.001


Smart Cities 2023, 6 2546

43. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw.
Learn. Syst. 2016, 28, 2222–2232. [CrossRef]

44. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

45. Oord, A.v.d.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. Wavenet:
A generative model for raw audio. arXiv 2016, arXiv:1609.03499.

46. Borovykh, A.; Bohte, S.; Oosterlee, C.W. Conditional Time Series Forecasting with Convolutional Neural Networks. Statistic 2017,
1050, 16.

47. Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling.
In Universal Language Model Fine-tuning for Text Classification; Cornell University: Ithaca, NY, USA, 2018.

48. Chandra, R.; Goyal, S.; Gupta, R. Evaluation of deep learning models for multi-step ahead time series prediction. IEEE Access
2021, 9, 83105–83123. [CrossRef]

49. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
50. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.
51. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
52. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you

need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

53. Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q.V.; Salakhutdinov, R. Transformer-xl: Attentive language models beyond a
fixed-length context. arXiv 2019, arXiv:1901.02860.

54. Fan, C.; Zhang, Y.; Pan, Y.; Li, X.; Zhang, C.; Yuan, R.; Wu, D.; Wang, W.; Pei, J.; Huang, H. Multi-horizon time series forecasting
with temporal attention learning. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2527–2535.

55. Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.X.; Yan, X. Enhancing the locality and breaking the memory bottleneck of
transformer on time series forecasting. Adv. Neural Inf. Process. Syst. 2019, 32, 5243–5253.

56. Lim, B.; Arık, S.Ö.; Loeff, N.; Pfister, T. Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int.
J. Forecast. 2021, 37, 1748–1764. [CrossRef]

57. Zhou, L.; Zhang, J.; Zong, C. Synchronous bidirectional neural machine translation. Trans. Assoc. Comput. Linguist. 2019,
7, 91–105. [CrossRef]

58. Wen, Q.; Zhou, T.; Zhang, C.; Chen, W.; Ma, Z.; Yan, J.; Sun, L. Transformers in time series: A survey. arXiv 2022, arXiv:2202.07125.
59. Jiang, W.; Luo, J. Graph neural network for traffic forecasting: A survey. Expert Syst. Appl. 2022, 207, 117921. [CrossRef]
60. Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Chang, X.; Zhang, C. Connecting the dots: Multivariate time series forecasting with graph

neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
Virtual Event, 23–27 August 2020; pp. 753–763.
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