
Citation: Jamil, H; Qayyum, F.; Iqbal,

N.; Khan, M.A.; Naqvi, S.S.A.; Khan,

S.; Kim, D.H. Secure Hydrogen

Production Analysis and Prediction

Based on Blockchain Service

Framework for Intelligent Power

Management System. Smart Cities

2023, 6, 3192–3224. https://doi.org/

10.3390/smartcities6060142

Academic Editors: Faisal Jamil,

Zeinab Shahbazi and Pierluigi Siano

Received: 25 July 2023

Revised: 17 October 2023

Accepted: 8 November 2023

Published: 22 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

smart cities

Article

Secure Hydrogen Production Analysis and Prediction Based
on Blockchain Service Framework for Intelligent Power
Management System
Harun Jamil 1,2, Faiza Qayyum 3,* , Naeem Iqbal 2,4 , Murad Ali Khan 3, Syed Shehryar Ali Naqvi 1,*,
Salabat Khan 2,5 and Do Hyeun Kim 3,*

1 Department of Electronic Engineering, Jeju National University, Jeju-si 63243, Republic of Korea;
1harunjamil@gmail.com

2 Big Data Research Center, Jeju National University, Jeju-si 63243, Republic of Korea;
naeemiqbal@jejunu.ac.kr (N.I.); salabat.khan@jejunu.ac.kr (S.K.)

3 Department of Computer Engineering, Jeju National University, Jeju-si 63243, Republic of Korea
4 School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast,

Belfast BT7 1NN, UK
5 Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan
* Correspondence: faizaqayyum@jejunu.ac.kr (F.Q.); syedshehryar@stu.jejunu.ac.kr (S.S.A.N.);

kimdh@jejunu.ac.kr (D.H.K.)

Abstract: The rapid adoption of hydrogen as an eco-friendly energy source has necessitated the
development of intelligent power management systems capable of efficiently utilizing hydrogen
resources. However, guaranteeing the security and integrity of hydrogen-related data has become
a significant challenge. This paper proposes a pioneering approach to ensure secure hydrogen
data analysis by integrating blockchain technology, enhancing trust, transparency, and privacy in
handling hydrogen-related information. Combining blockchain with intelligent power management
systems makes the efficient utilization of hydrogen resources feasible. Using smart contracts and
distributed ledger technology facilitates secure data analysis (SDA), real-time monitoring, prediction,
and optimization of hydrogen-based power systems. The effectiveness and performance of the
proposed approach are demonstrated through comprehensive case studies and simulations. Notably,
our prediction models, including ABiLSTM, ALSTM, and ARNN, consistently delivered high accuracy
with MAE values of approximately 0.154, 0.151, and 0.151, respectively, enhancing the security
and efficiency of hydrogen consumption forecasts. The blockchain-based solution offers enhanced
security, integrity, and privacy for hydrogen data analysis, thus advancing clean and sustainable
energy systems. Additionally, the research identifies existing challenges and outlines future directions
for further enhancing the proposed system. This study adds to the growing body of research on
blockchain applications in the energy sector, specifically on secure hydrogen data analysis and
intelligent power management systems.

Keywords: blockchain; IoT; hydrogen production; secure data-driven analysis; historical data management

1. Introduction

Green hydrogen, produced from renewable sources such as wind, solar, and hy-
dropower, has emerged as a promising solution to decarbonize the global energy system. It
can potentially reduce greenhouse gas emissions, create new job opportunities, and con-
tribute to energy security. However, effective management and analysis of the production
and consumption data is crucial to achieve its full potential. This requires multiple data
analytics techniques to extract valuable insights from the large amounts of data generated
by green hydrogen production and consumption [1].

The analysis of green hydrogen production and consumption data can provide valu-
able insights into the production process’s efficiency, the equipment’s performance, and
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the impact of external factors such as weather and demand fluctuations. By employing
data analytics techniques such as machine learning, statistical analysis, and optimization
algorithms, patterns and correlations in the data can be identified, future trends can be
predicted, and the production and consumption process can be optimized [2].

Furthermore, analyzing green hydrogen consumption data offers insights into the
performance and efficiency of equipment that uses hydrogen, such as fuel cells, hydrogen
turbines, and hydrogen engines. The data can be used to optimize equipment operation,
improve performance and reliability, and reduce costs. Data analytics techniques also help
identify potential issues and prevent equipment failures [3].

The effective management and analysis of green hydrogen production and consump-
tion data can also contribute to developing policies and regulations that support the growth
of the green hydrogen industry. The insights gained from data analysis can inform decision
making, set targets and standards, and allocate resources effectively [4].

One of the primary challenges in managing green hydrogen production and consump-
tion is the need for efficient data analytics techniques. The sheer volume of data generated
from various sources, such as weather data, production logs, and consumption patterns, can
be overwhelming. Various data analytics techniques such as correlation analysis, feature
extraction, and pattern recognition are used to manage and analyze these data effectively.
These techniques enable the identification of trends, patterns, and anomalies that aid in
improving the efficiency of green hydrogen production and consumption [5].

Correlation analysis is an essential data analytics technique in green hydrogen pro-
duction and consumption management. It examines the relationships between wind speed,
solar irradiation, and hydrogen production variables. Correlation analysis helps iden-
tify the factors that influence green hydrogen production and consumption, enabling the
development of better predictive models [6].

Feature extraction is another important data analytics technique used in green hydro-
gen management. It involves identifying relevant features from large datasets. Features
such as wind speed, solar irradiation, and temperature in green hydrogen production and
consumption provide valuable insights into the system’s performance. By extracting these
features, data analysts can identify patterns and trends that inform decisions related to
system optimization and maintenance [7].

Pattern recognition is also a key data analytics technique in green hydrogen man-
agement. It involves identifying patterns or anomalies in datasets. In green hydrogen
production and consumption, pattern recognition aids in detecting abnormal system be-
havior, such as a sudden drop in hydrogen production or consumption. By detecting and
responding to these patterns, operators can improve the efficiency and reliability of the
system [8,9].

Furthermore, blockchain technology plays several essential roles in green hydrogen
production. It ensures the traceability and transparency of green hydrogen production by
recording and verifying each step of the production process on a decentralized ledger [10].
Blockchain-based platforms facilitate the certification and verification of green hydrogen
production according to specific standards, such as renewable energy sourcing or car-
bon intensity limits [11]. Additionally, blockchain enables the peer-to-peer trading of
green hydrogen, eliminating the need for intermediaries. Through smart contracts, pro-
ducers and consumers can directly trade hydrogen and settle transactions securely and
efficiently [12,13]. Moreover, blockchain technology facilitates the integration of renewable
energy sources into green hydrogen production, enabling the real-time monitoring of
energy generation, consumption, and storage as well as optimizing the use of renewable
energy sources [14].

Overall, the effective management and analysis of green hydrogen production and con-
sumption data are crucial for harnessing the full potential of green hydrogen as a clean en-
ergy source. By utilizing various data analytics techniques and integrating blockchain tech-
nology, the intelligent power management system can optimize production and consump-
tion, improve efficiency, and contribute to a sustainable and decarbonized energy future.
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• In this paper, blockchain is applied for secure hydrogen data analysis, ensuring data
integrity, transparency, and immutability, to enhance the security and trustworthiness
of the hydrogen data analysis process.

• The paper proposes integrating intelligent power management systems with blockchain
technology. It highlights the benefits of combining these two domains to optimize
hydrogen generation, storage, and consumption, leading to more efficient and sustain-
able power management practices.

• The paper presents various data analysis techniques specifically tailored for hydrogen
data analysis. These include correlation analysis, box plot analysis, feature ranking,
and predictive analytics, enabling valuable insights and informed decision making.

• The paper addresses the security and privacy challenges associated with hydrogen
data analysis. It proposes using encryption, access control mechanisms, and secure
data handling protocols to safeguard sensitive information and ensure secure data
management throughout the analysis process.

• The paper discusses the practical implementation aspects of the proposed system. It
includes details on the architecture, algorithms, protocols, and technologies employed
to realize the secure hydrogen data analysis system based on blockchain and intelligent
power management.

The rest of the paper is organized as follows: Section 2 presents a literature review
wherein contemporary state-of-the-art on green hydrogen production is explained. The
system overview of the proposed model is described in Section 3. Section 4 presents
the implementation details of the architecture along with a blockchain-based secure data
analysis case study. Section 5 analyzes the performance of the proposed green hydrogen
production platform. Section 6 discusses the limitations of the proposed method, and
Section 7 concludes the paper with possible future dimensions.

2. Literature Review

This section will explore recent advancements in green hydrogen as a promising
energy carrier for decarbonization across sectors. Numerous research studies have focused
on managing and analyzing green hydrogen production and consumption using various
data analytics techniques. Analyzing historical data offers valuable insights into system
performance, enabling improvements in efficiency and sustainability. This paper presents
a comprehensive review of the literature on green hydrogen production, historical data
management and analysis, diverse data analytics techniques, the role of blockchain in data
analysis, and trend prediction derived from historical data analysis.

Toshiba Corporation (Tokyo, Japan), Tohoku Electric Power Co., Inc. (Sendai, Japan),
and Iwatani Corporation (Osaka, Japan) collaborate to advance hydrogen energy tech-
nology, focusing on innovative solutions such as advanced electrolysis systems, efficient
storage and transportation methods, and establishing hydrogen refueling stations and
power plants. This aligns with the global shift toward cleaner and more sustainable energy
sources, as hydrogen offers high energy density and produces only water vapor when
utilized. Their investment aims to contribute to the growth of the hydrogen economy and
promote its adoption as a viable energy solution [15].

Shimizu specializes in hydrogen infrastructure development, including planning, de-
signing, and constructing hydrogen production facilities, storage systems, and distribution
networks. They also integrate hydrogen energy systems into construction projects and
offer smart energy management systems that optimize hydrogen utilization with other
renewable energy sources [16].

ENEOS Corporation (Tokyo, Japan) focuses on technologies for efficient and sus-
tainable hydrogen production, storage, and distribution. They explore hydrolysis, steam
methane reforming, and biomass gasification to generate hydrogen. ENEOS also inte-
grates hydrogen energy with renewable sources like solar and wind power, enhancing
sustainability and carbon neutrality for hydrogen production. They incorporate advanced
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energy management systems into their hydrogen initiatives, optimizing energy usage by
integrating smart grid networks and demand–response systems [17].

PCI energy solutions accelerate decarbonization by integrating hydrogen assets into
energy systems. Hydrogen plays a crucial role in energy storage, utilizing excess renewable
energy through electrolysis for later use. This enables sector coupling across transporta-
tion, industrial processes, and power generation, creating new markets and stimulating
the development of hydrogen production technologies, infrastructure, and distribution
networks [18].

A framework aims to evaluate the feasibility and potential of green hydrogen produc-
tion projects, utilizing open-source software tools and integrating Geographic Information
Systems, Life Cycle Assessment, Techno-Economic Analysis, and Optimization Algorithms.
This systematic approach supports decision-making processes and optimizes the design of
hydrogen production systems [19].

The primary objective of this research is to demonstrate the feasibility and potential
of using hydrogen as an energy carrier for power generation. It follows a power-to-
X-to-power concept, where renewable electricity is converted into hydrogen through
electrolysis and later utilized to generate power in a gas turbine [20]. This work address
challenges related to integrating renewable energy sources into the power grid, enhancing
grid flexibility, improving energy storage capabilities, reducing carbon emissions, and
promoting renewable energy integration [21].

Historical data analysis plays a crucial role in understanding the performance of
green hydrogen production and consumption systems and predicting future trends. Nu-
merous studies have focused on utilizing historical data analysis to forecast trends in the
field [22]. Blockchain technology holds significant promise for managing and analyzing
historical data in green hydrogen systems. Its decentralized and secure nature makes
it an ideal platform for storing and sharing historical data. Research has explored the
potential of blockchain in this regard. For instance, blockchain enables the traceability and
transparency of green hydrogen production by recording and verifying each production
step on a decentralized ledger [23]. This transparency fosters trust among stakeholders and
simplifies the verification of hydrogen’s green credentials. Additionally, blockchain-based
platforms facilitate the certification and verification of green hydrogen production [24],
enhancing credibility and marketability. Furthermore, blockchain eliminates the need for
intermediaries, enabling peer-to-peer trading of green hydrogen [25]. This decentralized
trading system reduces costs, improves market efficiency, and promotes the wider adop-
tion of green hydrogen. Moreover, blockchain technology aids in integrating renewable
energy sources into green hydrogen production [26]. By aligning hydrogen production
with the availability of renewable energy, blockchain-based systems help balance the grid
and maximize the utilization of green energy.

Historical data management and analysis are crucial for improving the efficiency
and sustainability of green hydrogen production and consumption systems. Several re-
search studies have focused on historical data management and analysis using various
data analytics techniques. The article [27] focuses on the analysis of smart meter data in
power systems. The primary role of clustering analysis, time-series analysis, and pattern
recognition in this article is to enable the interpretation and utilization of smart meter data
for applications such as demand response, load profiling, energy-efficiency analysis, and
anomaly detection. Similarly, in [28], the article reviews the application of data analytics
techniques for the predictive maintenance of power transformers. The main aim of this
article’s statistical analysis and support vector machines is to analyze transformer data,
including sensor readings, historical maintenance records, and other relevant information,
to predict the health condition and remaining useful life of power transformers. Moreover,
in [29], various data analysis techniques are applied to wind power forecasting. It explores
using historical weather data, wind turbine data, and other relevant variables to develop
accurate wind power forecast models. The article applies time series and regression anal-
yses to understand the relationship between weather patterns and wind power output.
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Furthermore, in another research article [30], data analysis techniques for demand response
in smart grids, such as clustering analysis, pattern recognition, and regression analysis, are
used to explore the use of data analysis to analyze energy consumption patterns, customer
behavior, and grid conditions for effective demand response programs.

We have curated a collection of 10 diverse research methods (in 2023) as shown in
Table 1, each applied to distinct application areas, showcasing the evolving landscape of
blockchain-based data analysis. These methods explore cutting-edge solutions, addressing
various industries’ specific challenges and opportunities. Here is a summary of methods
with diverse application areas based on blockchain-based data analysis:

In summary, the related work acknowledges the importance of historical data analysis
in understanding the performance of green hydrogen systems and predicting future trends.
It explores the potential of blockchain technology in managing and analyzing historical
data, including its role in traceability, transparency, certification, and the peer-to-peer trad-
ing of green hydrogen. The use of blockchain-based systems aligns hydrogen production
with renewable energy availability and aids in balancing the grid and maximizing the
utilization of green energy. In addition, the related work also provides a comprehensive
review of green hydrogen production, historical data management and analysis, diverse
data analytics techniques, the role of blockchain, and trend prediction derived from his-
torical data analysis. It highlights the efforts of various companies and research projects
in advancing hydrogen technology. It emphasizes the significance of data analysis in
improving the efficiency and sustainability of energy generation and delivery systems.
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Table 1. Critical summary of the existing blockchain-based data analysis applications.

Application
Area Ref. Method Summary Advantageous Dis-Advantageous

Bibliometric
Analysis [31]

Emerging trends in the field of blockchain and
machine learning are analyzed for the
development of new blockchain-based machine
learning platforms and data analysis frameworks.
It enables federated learning that allows multiple
parties to train a shared model and create
decentralized marketplaces for bibliometric
analysis.

In the method, blockchain provides a decentralized
and immutable ledger, which helps to improve the
security and privacy of data with better
transparency and traceability. ML-based methods
can be used to develop new automation tools and
processes.

Blockchain and machine learning are both complex
technologies; combining them can be challenging,
slow, and expensive to scale.

Health Care [32–34]

A private blockchain network is built based on
Hyperledger Fabric for health care to support the
sharing and management of patient records
between different health-care providers.

The method improves the security and privacy of
patient records by providing a decentralized and
tamper-proof ledger. Automated many manual
processes in the health-care system, such as patient
registration and record sharing.

The lack of standardization of blockchain
technology. Blockchain implementations must
adhere to the health-care regulations where
achieving compliance can be complex and
time-consuming

Supply Chain
Management [35,36]

The authors use a structural equation modeling
approach to analyze data from a survey of 300
retail supply chain employees in India to adopt
blockchain technology.

The authors perceived the benefits of blockchain
technology, such as improved transparency,
traceability, and efficiency, are positively associated
with employees’ intentions to adopt blockchain.

The perceived risks of blockchain technology, such
as complexity and cost, are negatively associated
with employees’ intentions to adopt blockchain.

Construction
Industry [37,38]

The authors investigate the barriers and mitigation
strategies to blockchain technology
implementation in the construction industry. The
authors use an interpretive structural modeling
(ISM) approach to analyze data from a survey of 10
construction experts.

A systematic and rigorous method for identifying
the root causes of problems and to develop
effective mitigation strategies in the construction
industry to communicate complex information in a
clear and concise manner for blockchain-based
data analysis.

ISM can be time consuming and complex to
implement as it requires a high degree of expertise
from the researcher. It can be subjective, and the
results may vary depending on the researcher’s
interpretation of the data.

Social
Network
Analysis

[39,40]

A social network analysis (SNA) framework for
modeling and handling cross-blockchain
ecosystems. A multi-dimensional and multi-view
SNA framework is designed for modeling
cross-blockchain ecosystems. The framework
considers different dimensions of the ecosystem,
such as the network’s topology, the flow of
transactions, and the behavior of wallets and users.

SNA is a powerful tool for analyzing complex
networks, such as cross-blockchain ecosystems
that allow it to capture the different aspects
(multi-dimensional and multi-view) of
cross-blockchain ecosystems. It can be used to
identify important wallets in cross-blockchain
ecosystems and to develop strategies for handling
common challenges.

SNA is complex and computationally expensive to
implement. The framework proposed in the paper
is still in its early stages of development, and more
research is needed to evaluate its effectiveness in
real-world cross-blockchain ecosystems.
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Table 1. Cont.

Application
Area Ref. Method Summary Advantages Disadvantages

Finance and
Insurance
Industry

[41,42]

The blockchain platform provides a secure and
transparent ledger for storing and managing
insurance data. Smart contracts automate many
manual processes in insurance claims processing
and underwriting.

Decentralized applications offer a variety of
services to insurance customers, such as policy
comparison, claims processing, and risk
assessment. Blockchain-based data analysis can
help to reduce fraud in the insurance industry by
providing a secure and tamper-proof ledger for
storing and managing insurance data.

Several assumptions, such as the assumption that
all parties involved in the insurance process are
honest and trustworthy. The framework could be
vulnerable to fraud and attacks if these
assumptions are unmet. The framework is not yet
widely adopted by the insurance industry. This
could make it difficult to find other insurance
companies and organizations that are willing to
participate in the blockchain network.

Smart
Automotive
Diagnostic

[43,44]

The system is designed to improve the efficiency,
transparency, and security of automotive
diagnostics and performance analysis, where the
OBD device collects data from the vehicle’s sensors
and sends it to the blockchain network. The cloud
platform provides a variety of services to users,
such as data visualization, analytics, and reporting.

The system uses cryptography to protect vehicle
data from unauthorized access and tampering.
This can help to improve the security of vehicles
and prevent fraud. Blockchain helped to automate
many of the manual processes involved in
automotive diagnostics and performance analysis.

Many challenges are associated with implementing
and managing blockchain technology in the
automotive industry. More research and testing are
needed to evaluate the effectiveness of the system
in real-world automotive applications.

Smart
Livestock
Farming

[45]

The blockchain network stores and manages
livestock data in a secure manner in which IoT
sensors are used to collect data from livestock,
such as their health, location, and activity levels.
Smart contracts are used to automate animal
feeding and vaccination.

It has automated many of the manual processes
involved in livestock farming and provided a
secure and transparent way to store and manage
livestock data. It can lead to increased efficiency,
reduced costs, improved food safety traceability,
and trust between consumers and farmers.

Blockchain networks are slow and expensive to
scale, which could limit the applicability of the
framework to large-scale livestock farms.

Tourism
Industry [46]

The study uses qualitative and quantitative data
collection methods for a blockchain-based
framework to enhance the integrated blue
economy on smart islands. Qualitative data are
gathered from scientific journal publications and
analyzed using VOS viewer. Quantitative data are
obtained through a questionnaire survey of 150
blue economy industry players in the Seribu
Islands.

The authors identify several potential benefits of
blockchain as well as the challenges of
implementation. They also provide a case study of
the Seribu Islands in Indonesia to illustrate the
potential of blockchain in a real-world setting.

Findings are specific to the Seribu Islands and may
not fully apply to other regions or contexts.
Implementing blockchain technology can be
complex, and the study does not delve deeply into
the technical challenges and potential barriers
faced during implementation.
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Table 1. Cont.

Application
Area Ref. Method Summary Advantages Disadvantages

Data
Protection [47]

Blockchain-based biomedical document protection
(BBDP) uses cryptography to secure biomedical
documents and protect their privacy. The
algorithm allows authorized users to retrieve
biomedical documents from the blockchain in a
secure and privacy-preserving manner.

The blockchain-based framework is transparent
and auditable. This means that all transactions are
recorded on the blockchain and can be viewed by
anyone. BBDPF offers a holistic approach to
safeguarding biomedical documents, addressing
data integrity, non-repudiation, and smart contract
support.

The study focuses on specific blockchain
technologies and may not fully generalize to all
health-care contexts. Blockchain operations,
especially on public blockchains, can consume
substantial computational resources.
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3. Methodology

This section comprehensively overviews the proposed green hydrogen production and
consumption history management and analysis scheme. The scheme provides information
regarding the green hydrogen production steps, elements data analysis, data security, and
prediction of the trends obtained from the history management framework.

3.1. Proposed Scenario of Blockchain Based Secure Hydrogen Data Analysis

Figure 1 represents the scenario diagram of the proposed secure hydrogen production
and management network. The scenario involves multiple participants: the operational in
charge, maintenance in charge, data analyst, and supply management. Each participant
has specific requests and interactions within the hydrogen power management system.

Figure 1. Proposed blockchain-based secure hydrogen data analysis architecture aims to improve the
efficiency of the green hydrogen asset network’s performance and optimize hydrogen production
and distribution.

The operational in charge requests the blockchain framework to adjust power man-
agement system control. This represents transaction 1 in the hydrogen power management
application. The maintenance in charge requests the maintenance of the hydrogen storage
system. This represents transaction 2 in the hydrogen power management application. The
data analyst requests the energy generation data for analysis. This involves performing
correlation analysis, box plot analysis, and feature ranking in the data analysis module.
This represents transaction 3 in the hydrogen power management application. The supply
management requests hydrogen delivery data tracking. This represents an nth transaction
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in the hydrogen power management application. All these transactions are recorded and
stored in the hydrogen blockchain ledger. The hydrogen power management application
communicates with the hydrogen blockchain service framework through a REST API server,
following a request and response fashion.

This article discusses the impacts of blockchain adoption on data access performance
within the context of hydrogen production and management. Blockchain enhances data
security by cryptographically securing data and reducing the risk of unauthorized access
and tampering. It improves data transparency, making information easily accessible to
authorized parties. The technology also streamlines data traceability, ensuring a clear
history of data changes. With decentralized data access, participants can directly retrieve
relevant data, eliminating delays from centralized systems. Smart contracts automate
access control, and data immutability guarantees integrity. Lastly, efficient compliance
reporting is facilitated, reducing the time and resources needed for regulatory tasks. These
improvements collectively create a more robust and efficient data access framework for
hydrogen production management.

Figure 2 showcases how each blockchain adoption impact improves data access per-
formance in hydrogen production. The technology secures data and streamlines access,
enhances transparency, and automates various aspects of data management, ultimately
bolstering data access efficiency and reliability.

Figure 2. Impacts of blockchain on data access performance in hydrogen production.

The hydrogen blockchain service framework ensures access control, integrity, ro-
bustness, transparency, irreversibility, security, and safety. It acts as the intermediary for
communication between the hydrogen power management application and the physical
assets in the green hydrogen asset network, including wind turbines, green ESSs (energy
storage systems), solar panels, hydrogen electrolyzers, hydrogen storage tanks, and hydro-
gen delivery units. Each asset, such as the wind turbine, green ESS, solar panels, hydrogen
electrolyzer, hydrogen storage, and hydrogen delivery, has its management within the
hydrogen blockchain framework.

The scenario diagram illustrates the interactions and transactions within the hydrogen
power management system, highlighting the role of blockchain technology in securing
hydrogen data analysis and enabling intelligent power management.
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3.2. Proposed Layered Architecture Design

Figure 3 explains the layered architecture for the secured data analysis (SDA) and intel-
ligent power management system (PMS) to investigate hydrogen data using
blockchain technology.

Figure 3. Layered architecture for secure hydrogen data analysis and intelligent power management
system using blockchain technology.

• Layer 1: Hydrogen Physical Layer. The bottom-most layer represents the system’s
physical components, including renewable energy sources, power converters, and
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energy storage systems. It incorporates an electrolyzer for green hydrogen production
through electrolysis. The produced hydrogen is compressed, stored in a hydrogen tank,
and distributed to various destinations within the green hydrogen asset network, such
as hydrogen housing, hydrogen turbines, and hydrogen pumps.

• Layer 2: Hydrogen Blockchain Virtual Layer. The virtual representation of each physical
asset’s data resides in this layer. It includes the virtual assets of the blockchain network,
such as wind turbine data, solar panel data, green ESS (energy storage system) data,
hydrogen electrolyzer data, and hydrogen delivery data.

• Layer 3: Hydrogen Blockchain Service Framework Layer. Sitting atop the Hydrogen
Blockchain Virtual Layer is the Hydrogen Blockchain Service Framework Layer. This
layer is further divided into two sub-layers: the Hydrogen Blockchain Services sub-
layer and the REST API Server sub-layer. The Hydrogen Blockchain Services sub-layer
comprises components such as a consensus manager, smart contracts, identity manage-
ment, access control, network configuration, real-time storage, and security. The REST
API Server sub-layer includes HTTP, API, and REST API methods for communication,
including POST, GET, PUT, and DELETE. This layer facilitates the connection between
the above layers and the hydrogen blockchain services.

• Layer 4: Hydrogen Application Layer. In this layer, two sub-layers are introduced.
The first sub-layer is the Power Management Application Layer, which includes func-
tionalities such as hydrogen fuel consumption prediction, residential level prediction,
commercial level prediction, industrial level prediction, load management monitoring,
energy storage reporting and visualization, and power distribution monitoring. The
second sub-layer focuses on hydrogen data analytics, including the use of a weighted
attention mechanism for hydrogen data predictive analytics and modules for box plot
analysis, correlation analysis, and feature ranking analysis.

• Layer 5: Hydrogen User Layer. The topmost layer represents the hydrogen user layer,
which includes the operational in charge, maintenance in charge, data analyst, and
supply management. These users interact with the system by generating transactions
and retrieving responses from the hydrogen blockchain service framework using the
REST API server.

The layered architecture provides a structured and organized approach to secure
hydrogen data analysis and intelligent power management. Each layer contributes to the
overall functionality and security of the system.

3.3. Hydrogen Power Management Architectural Based on Data Analysis Using Blockchain
Framework Overview

Figure 4 illustrates the architecture and data flow within the system. The partici-
pants, including operational in charge, maintenance in charge, data analyst, and supply
management, are connected to the system through a REST API that ensures secure commu-
nication using encrypted signatures. The blockchain network, built on Hyperledger Fabric,
consists of multiple peers that maintain the same chain codes and ensure the integrity of
the data. Within the blockchain network, there are MSP (Membership Service Provider)
definitions and organization certificate authorities (CAs) that facilitate the authentication
and authorization of participants. The network is connected to an off-chain data lake that
stores various data related to wind turbines, green ESS, solar panels, hydrogen production
electrolyzers, hydrogen delivery, and hydrogen storage. This off-chain data lake acts as a
repository for the data used in the analysis.
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Figure 4. Development model and data flow of blockchain-based secure hydrogen data analysis and
intelligent power management system.

The data from the off-chain data lake are then passed as input to the data analytics
module, which includes correlation analysis, box plot analysis, and feature-ranking tech-
niques. These analytics techniques help derive insights and patterns from the data. The
output of the data analytics module is then fed into the predictive data analytics module,
which employs a weighted assisted BI-LSTM (Bidirectional Long Short-Term Memory)
prediction algorithm. This algorithm uses historical data and weighted factors to predict
future hydrogen-related parameters. Finally, the output of the predictive analytics module
is incorporated back into the blockchain network, ensuring the secure and transparent
storage of the prediction results. The architecture presented in the figure demonstrates how
blockchain technology is leveraged to securely analyze hydrogen-related data and support
intelligent power management within the system.

The figure provides an overview of the system’s components, including the partic-
ipants, blockchain network, off-chain data lake, data analytics module, and predictive
analytics module. It showcases how the secure analysis of hydrogen data is integrated
into the blockchain-based power management system. The proposed blockchain-based
framework used the Practical Byzantine Fault Tolerance (PBFT) consensus algorithm. PBFT
is a consensus mechanism that ensures consensus among a set of nodes in a network even
if some nodes are malicious or faulty. It provides a high level of fault tolerance and ensures
that the agreed-upon transactions are added to the blockchain consistently and securely.

3.4. Blockchain Framework for Secure HDA

In this paper, we propose a hydrogen history management blockchain-based frame-
work for analyzing green hydrogen data securely. The proposed Single-Channel Blockchain
Framework for Secure Hydrogen Data Analysis is designed to manage and analyze his-
torical data in a green hydrogen asset network. This network comprises various physical
assets, such as wind turbines, solar panels, green energy storage systems (ESSs), hydrogen
electrolyzers, hydrogen storage units, and hydrogen delivery units, which play vital roles
in green hydrogen production, storage, and distribution.

The Single-Channel Blockchain Framework consists of three key components: the
Green Hydrogen Asset Network, the Hydrogen Blockchain Service Network, and the
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Hydrogen Off-Chain Data Lake. The Green Hydrogen Asset Network forms the founda-
tion for green hydrogen operations. At the same time, the Hydrogen Blockchain Service
Network ensures the secure and confidential management of hydrogen data using a single-
channel blockchain. The Hydrogen Off-Chain Data Lake acts as a centralized repository,
housing historical data from each asset in the network enabling valuable insights into the
system’s performance.

The functioning of the Single-Channel Blockchain Framework follows a systematic
process. Physical assets in the green hydrogen network continuously generate data on
their operations and performance, which is integrated and stored in the off-chain data
lake. The hydrogen data analytics and prediction modules utilize this data lake to conduct
various data analysis techniques, extracting insights and predicting future trends. These
modules interact securely with the hydrogen blockchain service network through encrypted
channels and chain-code, accessing data from the off-chain data lake and storing analysis
results on the distributed ledger.

Furthermore, the hydrogen blockchain service network facilitates interactions with
hydrogen user participants, including the operational in charge, maintenance in charge,
data analyst, and supply management. Each user’s role is defined in the organization
MSP, granting specific access rights and permissions for conducting transactions on the
blockchain network.

Several essential components play vital roles in the Hyperledger Fabric-based hy-
drogen production blockchain network. The chain-code acts as the "smart contract,"
governing interactions between the hydrogen data analytics module, hydrogen data pre-
diction module, and the distributed ledger. The organization certificate authority ensures
user authentication, allowing only authorized participants to access specific data. The
distributed ledger serves as an immutable record of all transactions and analysis results,
promoting transparency and security. This framework guarantees secure, reliable, and
authorized operations in hydrogen data analysis and prediction, facilitating intelligent
power management in green hydrogen systems.

3.5. Interection Model of the Proposed Blockchain-Based HMA of Green Hydrogen Production
and Consumption

This section outlines the workflow of our proposed blockchain and ML-based RIVH-
PMA (Renewable Integrated Virtual Hydrogen Power Management Application). The
platform serves as both a technical infrastructure and a user service framework, offering
a smart contract and blockchain ledger as services to the front-end application. Figure 5
illustrates the workflow diagram of our RIVHPMA, building upon the integrated IoT and
blockchain flow model .

The front-end application provides a user-friendly interface to interact with the
blockchain system. Users can access intuitive services like enrolling and authenticating
their identities, requesting data, managing participant profiles, and generating data analyt-
ics reports. Our RIVHPMA operates on a permissioned chain of networks, necessitating
user enrollment and authentication to generate private keys used for transaction signing.
Transactions involve reading and writing hydrogen production and prediction analysis
data to/from the blockchain ledger across the entire network. Hydrogen user participants
can submit requests related to power management control, hydrogen storage, hydrogen
data analysis, and hydrogen delivery to hydrogen power management applications.

An integrated inference engine analyzes and discovers hidden knowledge from re-
newable energy generation, green hydrogen production, hydrogen storage, and hydrogen
delivery data fetched from the ledger, with data analytics results stored back to the dis-
tributed ledger. A predictive analytics module also builds a prediction model based on
mined patterns, fetching input data from the data analytics module and storing prediction
results in the ledger.
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Figure 5. Digital flow of transactions in blockchain-based secure hydrogen data analysis and intelli-
gent power management system.

We utilize an off-chain data lake to ensure the efficient storage and retrieval of the
current values of participants and assets from the blockchain ledger. This independent
data storage maintains up-to-date sets of various data, such as the latest records of re-
newable energy generation, green hydrogen production, hydrogen storage, and hydrogen
delivery data.

Lastly, an event manager sends notification alerts to the client application, informing
users about the successful execution or status of their submitted transactions. Our pro-
posed blockchain and ML-based RIVHPMA streamline green hydrogen production and
consumption operations, providing secure and transparent access to data analytics and
predictive insights for efficient intelligent power management in green hydrogen systems.

3.6. TPM of the Proposed Blockchain-Based HMA of GHP and Consumption

Figure 6 depicts the transaction process management of the proposed HDA for Intel-
ligent PMS. The participants include the Operational in Charge, Maintenance in Charge,
Data Analyst, and Supply Management. Blockchain smart contracts are utilized, namely
the Power Management System Smart Contract, Hydrogen Storage Smart Contract, and
Hydrogen Data Analysis Smart Contract. The assets involved are Solar Panels, Wind
Turbines, a Hydrogen Electrolyzer, Hydrogen Storage, a Green Energy Storage System, and
Hydrogen Delivery Data. The sequence diagram showcases the interactions and message
flow between participants, blockchain smart contracts, and asset involvement. The diagram
provides an overview of the process steps and interactions. The Operational In Charge
initiates a power management system control request, which is verified by the Power
Management System Smart Contract. The Solar Panels and Wind Turbines interact with
the Power Management System Smart Contract to collect energy generation data. The Data
Analyst retrieves these data for analysis from the Secure HDA Based on Blockchain For
Intelligent PMS Power Management System Smart Contract. The Data Analyst then gener-
ates insights from the analysis and shares them with the Operational in Charge for decision
making. The Maintenance in Charge initiates a request for asset maintenance, interacting
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with the Hydrogen Storage Smart Contract to assess storage status and maintenance needs.
Similarly, the Supply Management initiates a request for hydrogen delivery data, and the
Hydrogen Data Analysis Smart Contract verifies the authority of the Supply Management
before retrieving relevant information from the Hydrogen Delivery Data.

Figure 6. Sequence diagram of the proposed blockchain-based HDA for intelligent PMS.

3.7. Hydrogen Consumption Data Prediction

This section presents an overview of our proposed weighted Bidirectional Long Short-
Term Memory (BILSTM) scheme for hydrogen consumption prediction data in the context
of the “Secure Hydrogen Data Analysis Based on Blockchain for Intelligent Power Man-
agement System” paper. Our scheme utilizes an attention-assisted BI-LSTM model, which
combines the power of Bidirectional LSTM (BILSTM) with an attention mechanism to cap-
ture long-term dependencies and enhance prediction accuracy. The attention mechanism
allows the model to focus on the most relevant features within the hydrogen consumption
data, dynamically assigning weights to different elements based on their importance. By
incorporating this attention-assisted BI-LSTM model into our framework, we aim to im-
prove the precision and reliability of hydrogen consumption predictions, enabling more
effective power management and resource optimization in the intelligent power manage-
ment system.

In this paper, we present the model flow of the suggested weighted BILSTM-CNN
algorithm, as depicted in Figure 2, for hydrogen consumption prediction in the context of
the “Secure Hydrogen Data Analysis Based on Blockchain for Intelligent Power Manage-
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ment System”. The weighted BILSTM model is a deep learning architecture that analyzes
sequential data. It builds upon the classic LSTM model by enabling bidirectional analysis,
incorporating forward and backward hidden states to enhance performance. The proposed
model utilizes a weighted sum of the forward and backward hidden states at each time
step, leading to improved feature extraction and increased prediction accuracy for hydro-
gen consumption. The model architecture consists of three main components: the input,
BILSTM, and output layers.

The input layer receives data from various sensors, including temperature, humidity,
and hydrogen consumption, which are categorized accordingly. For hydrogen consump-
tion prediction, the input data are structured as a sequence of vectors with each vector
representing a specific time step in the sequence. Each vector contains features used for
predicting the output.

The BILSTM layer processes the input sequence in forward and backward directions.
At each time step, the BILSTM layer produces a concatenated vector that combines the
forward and backward hidden states. A weighted attention mechanism is employed to
enhance the model’s performance further. This mechanism assigns varying importance
to specific hidden states based on their relevance to the prediction task at hand. In the
weighted BILSTM model, the forward hidden state is denoted as h f (t), and the backward
hidden state is denoted as hb(t).

The concatenated vector at each time step, represented as h(t), is computed by com-
bining h f (t) and hb(t). This process ensures that the model captures information from both
past and future time steps, facilitating a comprehensive understanding of the sequential
data and enabling accurate hydrogen consumption predictions.

By adopting the weighted BILSTM-CNN algorithm and incorporating attention mech-
anisms, our proposed model offers a robust approach to analyzing sequential data and
accurately predicting hydrogen consumption. This model architecture, comprising the
input layer, BILSTM layer with bidirectional analysis, and attention mechanism, forms
the foundation of our research in secure hydrogen data analysis for intelligent power
management systems.

h(t) = [h f (t); hb(t)] (1)

where [; ] denotes vector concatenation.
The concatenated output h(t) is subjected to the attention mechanism, which functions

as follows:
u(t) = tanh[Wh ∗ h(t) + bh] (2)

The intermediate vector u(t) is used to compute the attention vector e(t) by applying
the softmax function as follows:

e(t) = so f tmax[wu ∗ u(t) + bu] (3)

c(t) = ∑[e(t) ∗ h(t)] (4)

The intermediate vector u(t) is used to compute the attention vector e(t), with Wh and
bh representing the weight matrix and bias vector for the hidden state h(t), respectively. The
attention mechanism’s weight matrix and bias vector are denoted as wu and bu, respectively.
The resulting attention vector e(t) is then used to calculate the context vector c(t) from the
output of the BILSTM layer at each time step. The intermediate vector u(t) is normalized
and assigned weights to each hidden state based on its relevance to the task by applying the
softmax function to compute the attention vector e(t). The context vector c(t) is calculated
as a weighted sum of the hidden states. The attention vector e(t) determines the weights
assigned to each hidden state. The summary of the hidden states at time step t is represented
by the context vector c(t), which assigns higher weights to the more relevant hidden states
through the attention mechanism.

The output of the attention mechanism passed to the 1D-CNN to learn the essential
spatial features from enhanced temporal features data efficiently. The 1D-CNNs can identify
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patterns in the time-series data regardless of location. This is because the convolution
operation slides a filter over the entire time series, capturing patterns at all time steps. The
layerwise explanation of the 1D-CNN is discussed below.

Zero padding layer: The zero padding layer adds zeros to the beginning and end of
the input sequence to ensure that the convolutional layer can process the entire sequence.
The output of this layer is the padded sequence. Let x be the input sequence of length L,
and let p be the amount of padding applied to each end of the sequence. Then, the output
of the zero padding layer follows:

x(padded) = [0, . . . , 0, x1, . . . , xL, 0, . . . , 0] with 2p + L elements. (5)

The purpose of the batch normalization layer is to standardize the input data so that
the mean and variance of the input features remain uniform across all the samples in a
batch. Assuming x is a sequence of input data with a length of L and µ and σ are the mean
and standard deviation of the input features across the entire batch, the batch normalization
layer transforms the input data to ensure the mean and variance of the input features are
consistent across all samples in the batch. The output of the batch normalization layer can
be expressed as shown below:

x(norm) =
(x− µ)√
(σ2 + ε)

(6)

To ensure numerical stability, the equation is modified with a small constant epsilon.
The 1D convolutional layer utilizes a set of learned filters to process the input data,

enabling it to extract local features from the input sequence. Let W be the set of filters,
each with a length of K, and let b be the bias term. Then, the output of the convolutional
layer follows:

z = W ∗ xnorm + b (7)

where ∗ represents the convolution operation, and the output z is a sequence of length
L− K + 1.

The output of the convolutional layer is processed by the ReLU activation layer, which
applies the rectified linear unit (ReLU) activation function. The ReLU function sets all
negative values in the output to zero, which introduces non-linearity into the model and
helps to prevent overfitting. The output of the ReLU layer is shown below:

a = max(0, z) (8)

The output of the second batch normalization layer is obtained by normalizing the
output of the ReLU activation layer in the same manner as the input data. The resulting
output is given by the following:

a(norm) =
(a− µ)√
(σ2 + ε)

(9)

During training, the dropout layer randomly drops out a fraction of the output units
from the previous layer. Let pdropout be the probability of dropping out each unit. Then, the
output of the dropout layer is shown below:

a(dropout) = a(norm)∗d (10)

where d is a dropout mask, which is a binary matrix of the same shape as anorm with values
of 1 with probability 1− pdropout and 0 with probability pdropout.

The purpose of the average pooling layer is to decrease the dimensionality of the
previous layer’s output by computing the average value of each feature map. If the size of
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the pooling window is denoted as k, then the output of the average pooling layer can be
expressed as follows:

y = [mean(adropout[i:i+k]) f oriinrange(0, L− K + 1, k)] (11)

where mean is the mean function, and the output y is a sequence of length (L− K + 1)/k.
Overall, the 1D-CNN architecture allows the model to extract informative features from
the enhanced temporal features data and increase the HDL activity classification accuracy.
The training of the BILSTM model employs the Adam optimizer, which is a variation of
the stochastic gradient descent algorithm. For multiclass classification, the categorical
cross-entropy loss function is utilized as the loss function. Using backpropagation, the loss
function is optimized by minimizing the difference between the predicted and true output.

The output layer is responsible for producing the final output of the model. The output
layer includes a fully connected layer with a softmax activation function for recognizing
the activity in HDL’s multiclass time-series data. The output obtained from the softmax
layer denotes the probability of each class concerning the given input sequence.

The model for contextual and local feature extraction, i.e., the weighted BILSTM-CNN
model, is a highly capable and adaptable machine learning model for sequential data-
processing tasks such as HDL activity recognition, which offers significant advantages over
other models in terms of accuracy and flexibility.

4. Experiment and Implementation

The Power Management Smart Contract in Table 2 is the main smart contract con-
trolling power. It interacts with the asset data to handle the physical assets in the green
hydrogen asset network. The Participants’ data represent the participants in the green
hydrogen blockchain framework. The Transactions data structure defines the different
types of transactions that can be performed for power management, and the corresponding
functions (updatePowerGeneration, updatePowerConsumption, calculatePowerBalance,
distributePower, and transferPower) handle the specific actions for power management.
Additionally, there are functions to retrieve specific assets’ current power balance, power
consumption, and power generation data (getPowerBalance, getTotalPowerBalance, get-
PowerConsumption, and getPowerGeneration). These functions enable participants to
access relevant information for decision-making and analysis.

Furthermore, the experimental setting for the proposed blockchain-based green hy-
drogen production and consumption history management is expressed in Table 3.

Table 4 shows the services offered using PyCharm and Python-based programming
implemented using the TensorFlow framework and the Flask web server application
platform. The following core Python libraries are utilized: Keras 2.6, TensorFlow 2.6,
Flask 2.2.2, Numpy 1.19.5, Request 2.28, Seaborn, and MatplotLib. Additionally, MS Excel
is utilized to store both the raw and final hydrogen production and consumption data
analysis data. Moreover, 11th Gen Intel(R) hexa-Deca-Core (TM) i9-11900 @ 2.50 GHz,
64-bit OS, and 63.8 GB usable random access memory to perform experiments.
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Table 2. Smart contract modeling for proposed blockchain-based green hydrogen production and
consumption history management.

Type Component Description

Assets

Wind Turbines Wind turbines are REAs that convert wind energy into electrical power. Wind turbines are essential for
harnessing wind power and generating green energy.

Solar Panels Solar panels are a key asset in the green hydrogen asset network, as they utilize solar energy to produce
clean and sustainable electrical power.

Green Energy
Storage System

The green energy storage system is a crucial asset that stores excess renewable energy generated by wind
turbines and solar panels. It helps balance energy supply and demand, ensuring a stable and reliable power
output.

Hydrogen
Electrolyzer

The hydrogen electrolyzer is a critical asset used for the production of green hydrogen through the process
of electrolysis.

Hydrogen
Storage

Hydrogen storage units are responsible for storing the produced green hydrogen securely. They ensure that
the hydrogen is readily available for utilization during peak demand or when renewable energy generation
is low.

Hydrogen
Delivery Units

Hydrogen delivery units are involved in transporting hydrogen to various destinations such as hydrogen
housing, hydrogen turbines, and hydrogen fuel pumps. These units facilitate the distribution of hydrogen
throughout the system.

Participants

Operational in
Charge

The operational in charge is responsible for overseeing and managing the day-to-day operations of the
power management system. They have the authority to request adjustments to the power management
system control and initiate transactions related to the system’s operation and performance.

Maintenance in
Charge

The maintenance in charge is in charge of monitoring and maintaining the various assets in the green
hydrogen asset network. They can request maintenance for the assets as needed and interact with the
hydrogen storage smart contract to check the status and maintenance requirements of the hydrogen storage
units.

Data Analyst

The data analyst plays a vital role in the power management system as they are responsible for performing
data analysis on the energy generation data obtained from wind turbines and solar panels. They use various
data analysis techniques to extract insights and patterns that can aid in decision making and optimization of
the power management system.

Supply
Management

The supply management participant is involved in tracking and managing the delivery of hydrogen to
various destinations within the system, such as hydrogen housing, hydrogen turbines, and hydrogen fuel
pumps.

Transactions

Adjust Power
Management
System Control

The operational in charge initiates this transaction to request adjustments to the power management system
control. This could involve optimizing the power distribution, adjusting energy storage settings, or
managing renewable energy sources based on real-time data and system requirements.

Retrieve Energy
Generation
Data

The power management system smart contract interacts with wind turbines and solar panels to retrieve
real-time energy generation data. These data are crucial for making decisions regarding power distribution
and storage.

Perform Data
Analysis

The data analyst requests energy generation data from the power management system smart contract to
perform data analysis. This transaction involves extracting insights, identifying patterns, and generating
data analytics reports.

Request
Maintenance

The maintenance in charge initiates this transaction to request maintenance for specific assets in the green
hydrogen asset network. The smart contract verifies the maintenance requirements and schedules necessary
maintenance activities.

Retrieve
Hydrogen
Delivery Data

The supply management participant requests hydrogen delivery data from the hydrogen data analysis
smart contract. This transaction provides information on hydrogen delivery to various destinations within
the system.

Approve or
Cancel
Maintenance
Request

After receiving the maintenance request, the smart contract allows the operational in charge or maintenance
in charge to approve or cancel the maintenance request based on the system requirements and priorities.

View Data
Analytics
Report

The operational in charge and data analyst can view the data analytics report generated by the data analyst
through this transaction. The report includes insights on energy generation, power distribution, and system
performance.

Hydrogen
Consumption
Prediction

The power management system smart contract may include a transaction for hydrogen consumption
prediction. This involves leveraging the hydrogen data prediction module to forecast hydrogen usage for
various applications, such as hydrogen housing, turbines, or fuel pumps.
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Table 3. Experimental setting of the proposed blockchain-based green hydrogen production and
consumption history management.

Component Description

CPU Intel Core i9-8500 @ 3.00 GHz

Memory 20 GB

Operating System Ubuntu Linux 18.04.1 LTS

Docker Engine Version 18.06.1-ce

Docker-Compose, Simulink Version 1.13.0, Version 10.7

Node v8.11.4

Python, Matlab v2.7.15, R2023a

Hyperledger Fabric v1.2

IDE composer-playground

CLI Tool composer-cli, composer-rest-server

DBMS CouchDB

Programming Language JavaScript

Table 4. Implementation environment of the proposed approach.

Component Description

Operating System Windows 10 Professional

Hardware Anemometers, Temperature Sensors, IMU-6050, and
Humidity sensors

CPU/Memory Intel(R) Core(TM) i5-5800 CPU @ 3.00 GHz, 32 GB

External Libraries geodesy-2.0.0, slf4j-api-1.7.2, achartengine-1.1.0,
EJML-core-0.26, and MidasconSDK_android_1.0.0.

Programming Language Java, Python (for pre-trained LSTM model)

Integrated Development Toolkit PyCharm

In the experimental setting of the proposed blockchain-based green hydrogen pro-
duction and consumption history management system, the components and descriptions
are as follows. The system utilizes an Intel Core i9-8500 @ 3.00 GHz CPU with 20 GB
of memory, running on Ubuntu Linux 18.04.1 LTS. Docker Engine (Version 18.06.1-ce)
and Docker Compose (Version 1.13.0) are used for containerization. Node.js (v8.11.4) and
Python (v2.7.15) are the programming languages employed, while Hyperledger Fabric
(v1.2) serves as the blockchain framework. The development environment is facilitated
by Composer-Playground IDE, and Composer-CLI acts as the command–line interface
tool. The database management system employed is CouchDB, and JavaScript is used for
implementing various functionalities within the system.

Figure 7 illustrates a hybrid energy system with voltage signals from both the battery
and the grid represented on the x-axis. The hybrid energy system integrates two energy
sources, the battery and the grid, to optimize energy utilization and enhance overall
efficiency. The x-axis represents the voltage levels of both energy sources, which can vary
over time depending on factors such as energy demand and supply. The hybrid energy
system is designed to work seamlessly by intelligently switching between the battery and
the grid as needed. When the energy demand is low, the system may draw power from
the battery, which is typically charged during off-peak hours or when renewable energy
sources like solar panels generate excess electricity. This helps reduce reliance on the grid
and allows for more efficient energy utilization.
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Figure 7. Green hydrogen production from the hybrid green renewable energy system.

Furthermore, the figure depicts a comprehensive view of the hybrid energy system,
including various current measurements and battery charge status, which are crucial for
understanding and optimizing the system’s performance.

On the y-axis, the currents (in amperes) for different system components are repre-
sented. Specifically, these include the following.

• Solar Current: This line indicates the current generated by the solar panels, which
convert sunlight into electricity.

• Energy Storage System Current: This line represents the current flowing to or from the
energy storage system (e.g., batteries), which stores excess electricity generated by the
solar panels or other renewable energy sources.

• Electrolyzer Current: This line shows the current used by the electrolyzer, which is a
critical component responsible for producing hydrogen through electrolysis.

On the x-axis, the timeline is displayed, indicating different time intervals during
which the system operates.

Additionally, the figure includes a plot of the battery charge (in ampere-hours) over
time. The battery charge indicates the amount of electricity stored in the battery at a
given moment. When renewable energy sources produce more electricity than needed, the
excess power is used to charge the battery, increasing its charge level. Conversely, when
energy demand exceeds the renewable energy generation, the battery discharges to meet
the demand.

By analyzing the current and battery charge status over time, system operators and
energy managers can gain insights into the efficiency and performance of the hybrid energy
system. They can identify periods of peak energy generation, monitor the battery charge
level, and assess the overall energy utilization to optimize the system’s operation and
ensure a reliable and sustainable energy supply.

Similarly, Figure 8 shows the standalone energy system based on solar arrays. It also
shows the required voltage for the electrolyzer and the produced voltage from renewable
energy sources. Moreover, the figure also expressed the pressure bar of produced hydrogen
and the consumed energy of the electrolyzer.

In a blockchain-based green energy production history management system, the
identification of organization members or participants can be updated using various
methods. One approach is utilizing cryptographic keys, such as public–private key pairs,
to uniquely identify and authenticate network participants. Each member would possess
their private key, which is securely stored and used for cryptographic operations, while
their corresponding public key serves as their identifier on the blockchain. Figure 9 in the
blockchain-based framework shows the data of three participants. The Figure 9a–c shows
the various participants. When a new organization member joins the network, they can
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go through a registration process where the network administrators verify their identity
and credentials.

Figure 8. Green hydrogen production from green renewable energy system.

This verification process may involve providing relevant information, such as legal
identification documents or certificates, to establish trust and compliance with the organi-
zation’s rules and regulations. Once verified, the new member’s public key can be added
to the blockchain, linking their identity to their cryptographic key pair.

(a) Participant 1 (b) Participant 2 (c) Participant 3

Figure 9. Representation of participants in hydrogen production unit based on blockchain ser-
vice framework.

In a blockchain-based green energy production history management system, the
identification of organization assets can be updated using various methods. Assets in
this context refer to the different components involved in producing and managing green
energy, such as solar panels, wind turbines, energy storage systems, and more.

A unique identifier can be assigned to each asset within the blockchain network to
update asset identification. This identifier can be a digital token, a smart contract, or a
specific code representing the asset, as shown in Figure 10. When a new asset is added to the
network, it goes through a registration process where its identity and relevant information
are recorded on the blockchain.
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(a) Asset 1 (b) Asset 2 (c) Asset 3

Figure 10. Blockchain-based green hydrogen production history management organization assets
(configuration) identification.

Changes to the asset’s information, ownership, or status can be made during asset
updates. This can include modifications to technical specifications, maintenance records,
operational data, or other relevant details. Like participant identification updates, asset
identification updates require a consensus among the network participants to validate and
approve the changes.

A unique identifier can be assigned to each record within the blockchain network
to update historian record identification. This identifier can be generated based on the
timestamp, transaction ID, or a combination of both to ensure uniqueness and traceability.
When a new historian record is added to the network, it is assigned a unique identification
that serves as a reference for future updates or retrieval.

Updating historical records involves making changes or additions to existing records.
This can include updating energy generation data with new readings, adding maintenance
records for equipment, or modifying consumption data based on real-time measurements.
Like participant and asset identification updates, updating historian records requires con-
sensus among the network participants to validate and approve the changes. In this regard,
Figures 11 and 12 show any events in the hydrogen blockchain service framework and all
the requests originated from the participants recorded in the form of transactions. Also,
Figure 13 refers to the transaction data in the green hydrogen blockchain service framework.
This figure is the ledger of the blockchain network. The content in the figure showed the
changes in the ledger.

(a) Event 1 (b) Event 2 (c) Event 3

Figure 11. Blockchain-based green hydrogen production history management organization
event identification.
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(a) Transaction 1 (b) Transaction 2 (c) Transaction 3

Figure 12. Blockchain-based green hydrogen production history management organization historian
record update (configuration) transactions identification.

Figure 13. Blockchainmanager/user development plan for managing green hydrogen
production history).

5. Performance of Secure Data-Driven History Management Analysis

Heatmap analysis of the hydrogen dataset involves visualizing the data using a
color-coded matrix representation, where different colors indicate the intensity or value
of a particular variable. In the context of the provided dataset, a heatmap analysis can
provide insights into the relationships and patterns between the different variables, such
as Date/Time, Temperature, Wind Speed, General Diffuse Flows, Diffuse Flows, and
Hydrogen Commercial Building consumption. Plotting the variables on the heatmap
makes it possible to observe correlations, trends, and variations within the dataset. For
example, the intensity of colors in the Temperature column can indicate temperature
fluctuations over time, with warmer colors representing higher temperatures and cooler
colors representing lower temperatures. Similarly, the Wind Speed column can show high
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or low wind intensity areas. Heatmap analysis allows for a quick visual identification of
patterns, such as high hydrogen fuel pump consumption periods coinciding with specific
temperature or wind speed conditions. It helps identify any dependencies or interactions
between the variables in the dataset.

The correlation heatmap analysis is a graphical representation of the correlation matrix,
which quantifies the relationships between variables in a dataset, as shown in Figure 14.
It helps to visualize the strength and direction of the linear relationship between pairs
of variables.

The correlation coefficient, often denoted by “r”, measures the strength and direction
of the linear relationship between two variables. It ranges between −1 and 1, where −1
represents a strong negative correlation, 0 represents no correlation, and 1 represents a
strong positive correlation. To calculate the correlation coefficient between two variables,
you can use the following mathematical formula:

r = ∑((X− X̄)(Y− Ȳ))√
∑(X− X̄)2 ·

√
∑(Y− Ȳ)2

(12)

where X and Y are the values of the two variables. X̄ and Ȳ are the means of X and Y,
respectively. ∑ denotes summation.

The resulting correlation coefficient ranges between −1 and 1, where a value close to
−1 or 1 indicates a strong correlation and a value close to 0 indicates no or weak correlation.
This formula quantifies the degree and direction of the linear relationship between the
variables X and Y.

In the context of the correlation heatmap analysis, this calculation is performed for
each pair of variables in the dataset, and the resulting correlation coefficients are visualized
in a heatmap, with colors representing the strength of the correlation.

Heatmap analysis provides an intuitive and visually appealing representation of the
dataset, enabling users to gain insights into the relationships and trends between the
variables. It can aid in identifying patterns, making data-driven decisions, and optimizing
the performance of the green hydrogen power management system.

(a) Correlation analysis for commercial
consumption of hydrogen

(b) Correlation analysis for industrial
consumption of hydrogen

(c) Correlation analysis for residential
consumption of hydrogen

Figure 14. Correlation analysis of hydrogen consumption in different sectors for optimizing hy-
drogen production, distribution, and utilization strategies for each sector. (a) Correlation analysis
for commercial consumption of hydrogen. (b) Correlation analysis for industrial consumption of
hydrogen. (c) Correlation analysis for residential consumption of hydrogen.

Autocorrelation and partial autocorrelation are two important statistical tools used in
time-series analysis to identify the patterns and relationships between consecutive data
points. In this paper, we conducted experiments where PCA is applied to a hydrogen
fuel consumption dataset with nine features and six principal components retained. In
the given figure, we can analyze the dimensionality of the data of applying PCA. The
analysis computed the proportion of the total variance in the data that is explained by
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each principal component, which is called the explained variance ratio. This provides
insight into the relative contribution of each component toward the overall variance of
the data. Finally, the model performance was evaluated using the R2 score, and it was
observed that the score improved from 86.5 to 87.5 after applying Principal Component
Analysis (PCA). PCA is a dimensionality reduction technique that transforms a dataset
into a lower-dimensional space while preserving the data’s most important information or
patterns. The mathematical formulation for PCA suggests that the reduced-dimensional
representation captured by PCA was informative for the predictive task. Figure 15 shows
the PCA analysis for three considered factors.

(a) PCA analysis for commercial
consumption of hydrogen

(b) PCA analysis for industrial
consumption of hydrogen

(c) PCA analysis for residential
consumption of hydrogen

Figure 15. Principal Component Analysis on hydrogen consumption data to facilitate more effective
decision making in optimizing hydrogen production, distribution, and utilization strategies for each
sector. (a) PCA analysis for commercial consumption of hydrogen. (b) PCA analysis for industrial
consumption of hydrogen. (c) PCA analysis for residential consumption of hydrogen.

Consider a dataset X with n samples (data points) and m features (variables), where
X is an n × m matrix. Compute the mean of each feature, represented as a column vector
µ, by taking the average of the values across all samples. Center the data by subtracting
the mean vector from each sample in X, resulting in a centered data matrix Z, where Z =
X − µ. Compute the covariance matrix C of the centered data Z. The covariance matrix
measures the pairwise relationships between the different features.

C =
1

(n− 1)) ∗ ZT ∗ Z
(13)

where ZT represents the transpose of the centered data matrix Z. Perform eigenvalue
decomposition on the covariance matrix C to obtain its eigenvectors and eigenvalues.

C = V ∗ ∧ ∗ VT (14)

V is a matrix of eigenvectors, and ∧ is a diagonal matrix of eigenvalues.
Sort the eigenvalues in descending order and select the top k eigenvectors correspond-

ing to the largest eigenvalues to form a projection matrix P.

P = V1, V2, . . . , Vk (15)

where V1, V2, . . . , Vk represent the top k eigenvectors. Project the centered data Z onto the
new lower-dimensional space by multiplying Z with the projection matrix P.

Y = Z ∗ P (16)

where Y represents the transformed dataset with reduced dimensions; the resulting trans-
formed dataset Y captures the most important information or patterns in the original data
with the dimensions ordered by the significance of their contribution to the overall variance.
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Feature density analysis is a statistical technique used to identify important features
in a dataset, as shown in Figure 16. The goal of feature density analysis is to find a set of
features that can best explain the variation in the data. The following steps are used to
perform feature density analysis.

Density analysis can be used to understand the distribution of hydrogen production
data over time. It can provide insights into the concentration or variability of hydrogen
production rates within a given timeframe. The kernel density estimation (KDE) method
estimates the hydrogen production data’s probability density function (PDF) based on
observed values. It assigns a density value to each data point, representing the likelihood
of finding other hydrogen production values nearby.

Here, KDE(x) is the estimated density at value x of hydrogen production, n is the
number of data points, h is the bandwidth parameter that determines the width of the
kernel function, xi represents the individual hydrogen production data points, and K()
is the kernel function, which specifies the shape of the kernel. The choice of the kernel
function, such as the Gaussian (normal) distribution, Epanechnikov, or triangular kernel,
can affect the shape and characteristics of the density estimation.

KDE(x) = (1/(n∗h)) ∗ Σ[K((x− xi)/h)] (17)

Moreover, the benefit of applying feature importance analysis on hydrogen consump-
tion data in different sectors in this paper is identifying the most influential features that
significantly contribute to hydrogen consumption variations within each sector. Feature
importance analysis, often conducted using techniques like feature ranking, can help
understand the relative importance of different variables or factors affecting hydrogen
consumption. Figure 17 shows the result of feature importance for different sectors.

This paper performs prediction analysis on the hydrogen dataset by applying various
machine learning models to predict hydrogen consumption data in different sectors, as
shown in Figures 18 and 19. The significance of this analysis lies in its potential to offer
precise and dependable forecasts of future hydrogen consumption patterns. Machine learn-
ing models are robust tools capable of analyzing historical data and recognizing intricate
relationships between variables, enabling accurate predictions based on the patterns they
have learned. By harnessing machine learning models for prediction analysis on hydrogen
consumption data, the paper aims to achieve numerous benefits, including improved deci-
sion making, resource planning, risk mitigation, informed investment decisions, sustainable
growth, and real-time decision support.

(a) Density analysis for commercial
consumption of hydrogen

(b) Density analysis for industrial
consumption of hydrogen

(c) Density analysis for residential
consumption of hydrogen

Figure 16. Density analysis of hydrogen consumption data to gain insights into the distribution and
concentration of hydrogen consumption within each sector. (a) Density analysis for commercial
consumption of hydrogen. (b) Density analysis for industrial consumption of hydrogen. (c) Density
analysis for residential consumption of hydrogen.
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(a) Feature importance for commercial
consumption of hydrogen data.

(b) Feature importance for industrial
consumption of hydrogen data.

(c) Feature importance for residential
consumption of hydrogen data.

Figure 17. Feature importance analysis to identify the most influential features that significantly
contribute to hydrogen consumption variations within each sector. (a) Feature importance for
commercial consumption of hydrogen data. (b) Feature importance for industrial consumption of
hydrogen data. (c) Feature importance for residential consumption of hydrogen data.

(a) Prediction results for commercial consumption of
hydrogen data.

(b) Prediction results for industrial consumption of
hydrogen data.

(c) Prediction results for residential consumption of
hydrogen data.

Figure 18. Prediction analysis to provide accurate and reliable forecasts of future hydrogen consump-
tion patterns. (a) Prediction results for commercial consumption of hydrogen data. (b) Prediction
results for industrial consumption of hydrogen data. (c) Prediction results for residential consumption
of hydrogen data.
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(a) Prediction error analysis for commercial
consumption of hydrogen data.

(b) Prediction error analysis for industrial
consumption of hydrogen data.

(c) Prediction error analysis for residential
consumption of hydrogen data.

Figure 19. Prediction error result evaluation of future hydrogen consumption patterns. (a) Predic-
tion analysis for commercial consumption of hydrogen data. (b) Prediction analysis for industrial
consumption of hydrogen data. (c) Prediction analysis for residential consumption of hydrogen data.

Three models—ABiLSTM, ALSTM, and ARNN—were used to assess the prediction
outcomes for the three scenarios of hydrogen consumption—commercial, industrial, and
domestic. All models had low prediction errors in the commercial scenario; ALSTM had
the highest R2 score, and ABiLSTM had the lowest MAE. With the lowest MAE and RMSE,
ABiLSTM performed better for industrial consumption than the other models, indicating
reliable predictions. All models performed similarly in the residential environment with
low MAE and RMSE values. With the greatest R2 value, ALSTM appears to provide a more
effective explanation for variance. Ultimately, the selection of a model could depend on
the particular scenario. For example, ALSTM demonstrated promise in commercial and
residential scenarios due to greater R2 scores, indicating better data variation, whereas
ABiLSTM excelled in industrial forecasts.

6. Discussion, Comparison, and Limitations

To forecast future hydrogen requirements, systems for analyzing and predicting hy-
drogen production gather information on hydrogen production, use, and storage. Without
blockchain, several security problems can arise in systems that analyze and anticipate
hydrogen production. The security risks related to hydrogen production analysis and
prediction systems without blockchain technology are outlined below:

• The possibility of data tampering, in which nefarious individuals try to alter the in-
formation gathered about hydrogen production, use, and storage. This could cause
erroneous forecasts and interfere with the system’s functionality [48].

• The manufacturing and storage systems for hydrogen are becoming more and more
vulnerable to hackers. These kinds of assaults can be used to harm equipment, interfere
with operations, or even steal data. Because blockchain creates a dispersed, decentral-
ized network that is more resilient to attacks, it can improve cybersecurity. Additionally,
it can be used to safeguard login information and prevent unauthorized changes [49].

• Security and safety risks might arise from supply chain weaknesses, such as tampering
with the transportation and storage of hydrogen. A supply chain-wide immutable
ledger can be produced using blockchain technology. It lowers the possibility of tam-
pering by guaranteeing the traceability of hydrogen generation, transmission, and
storage [50].

• Sensitive information may be present in predictive maintenance systems. Unauthorized
entry may result in data breaches and possibly harm essential equipment. Predictive
maintenance data can be secured using blockchain technology by encrypting it and
limiting access via smart contracts. Authorized personnel can access data while security
and privacy are preserved [2].

• Systems for energy trading and billing can be subject to fraud and conflicts in hydrogen
production. Blockchain-based smart contracts can automate energy trade and billing,
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guaranteeing tamper-proof and transparent transactions. Settlements become more
open and safer [51].

• Penalties, both monetary and legal, may arise from breaking environmental and safety
standards. Blockchain technology can securely store data on emissions, safety precau-
tions, and other regulatory requirements, which can automate compliance reporting.
Transparency and compliance are thus guaranteed [52].

Furthermore, the paper should address the limitations of the research. This includes
acknowledging any constraints or challenges faced during the implementation of the
proposed system, potential biases in the data collected, or limitations in the analytical
methods employed. By acknowledging these limitations, the authors demonstrate a critical
understanding of the study’s scope and provide directions for future research to overcome
these limitations.

Overall, the paper’s discussion, comparison, and limitations sections contribute to a
comprehensive understanding of the research, its implications, and its potential for real-
world applications. They provide researchers, practitioners, and policymakers with valuable
insights in secure hydrogen data analysis and intelligent power management systems.

7. Conclusions and Future Directions

The proposed research uses blockchain technology to present a four-layer architecture
for safe and effective green hydrogen data analysis. It highlights blockchain’s function
in maintaining data integrity and transparency within intelligent power management
systems and specializes in historical data analysis. By incorporating renewable energy
sources, applying statistical approaches, closely monitoring data, and facilitating power
management, this design substantially contributes to creating and distributing clean and
sustainable energy. Making decisions is further improved by the addition of machine
learning prediction models. With mean absolute error (MAE) values of 0.154 for commercial
consumption, 0.157 for industrial consumption, and 0.136 for residential consumption, the
prediction models specifically showed noteworthy accuracy, demonstrating the efficacy
of the suggested approach in forecasting hydrogen consumption. These findings endow
power management systems with the capacity to predict hydrogen requirements precisely.

Prospective avenues for development encompass enhancing scalability, tackling prag-
matic implementation obstacles, and investigating interoperability. Potential technical
difficulties and the requirement for scalability and processing efficiency are limitations.
As a result, this study provides a strong foundation for safe blockchain-based hydrogen
data analysis, promoting improved power control, the integration of green energy sources,
and accurate hydrogen consumption forecasting. More research should concentrate on
optimization and useful implementation to fully realize the promise.
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