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Abstract: The apple is a delicious fruit with high nutritional value that is widely grown around
the world. Apples are traditionally picked by hand, which is very inefficient. The development of
advanced fruit-picking robots has great potential to replace manual labor. A major prerequisite for a
robot to successfully pick fruits the accurate identification and positioning of the target fruit. The
active laser vision systems based on structured algorithms can achieve higher recognition rates by
quickly capturing the three-dimensional information of objects. This study proposes to combine the
laser active vision system with the YOLOv5 neural network model to recognize and locate apples
on trees. The method obtained accurate two-dimensional pixel coordinates, which, when combined
with the active laser vision system, can be converted into three-dimensional world coordinates for
apple recognition and positioning. On this basis, we built a picking robot platform equipped with
this visual recognition system, and carried out a robot picking experiment. The experimental findings
showcase the efficacy of the neural network recognition algorithm proposed in this study, which
achieves a precision rate of 94%, an average precision mAP% of 92.86%, and a spatial localization
accuracy of approximately 4 mm for the visual system. The implementation of this control method in
simulated harvesting operations shows the promise of more precise and successful fruit positioning.
In summary, the integration of the YOLOv5 neural network model with an active laser vision system
presents a novel and effective approach for the accurate identification and positioning of apples.
The achieved precision and spatial accuracy indicate the potential for enhanced fruit-harvesting
operations, marking a significant step towards the automation of fruit-picking processes.

Keywords: agricultural automation; fruit detection; artificial intelligence; neural networks; YOLOv5;
laser vision system; three-dimensional recognition; precision agriculture

1. Introduction

Apples are rich in vitamins C and E [1], offering a wealth of nutritional value with
a low fat content and high carbohydrates. Their delightful, sweet taste has made them a
favorite among consumers. They stand as one of the world’s most extensively cultivated,
highest-yielding, and globally traded fruits. However, in current practical production,
apple harvesting remains largely reliant on manual labor, which can impact both efficiency
and quality. There is an urgent need for automated picking robots due to the high demand
for labor during harvest seasons [2]. The rising cost of manual harvesting, driven by the
aging population and decreasing agricultural workforce, underscores the necessity for
cost-effective alternatives. Harvesting robots, operating continuously, offer heightened
efficiency and lower costs.

Harvesting robots comprise two primary subsystems: the vision system and the
actuator system [3]. The vision system guides the robot’s actuators in detecting and
localizing apples on trees [4]. Target localization stands as a critical aspect of apple-
harvesting robots. In recent years, researchers have delved deep into utilizing machine
vision for target localization. Depending on the method of obtaining depth information,
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three main categories emerge: binocular stereo vision, structured light, and time-of-flight [5].
Binocular stereo vision is sensitive to ambient lighting and is unsuitable for monotone and
textureless scenes. Its high computational complexity and baseline limitations also constrain
the measurement range, and these drawbacks should be acknowledged [6]. Time-of-flight
technology may encounter measurement errors and failures under external interference
and high illumination conditions [7]. Scattered structured-light technology, distinguished
by its compact size, low resource consumption, active measurement, high precision, and
resolution, has garnered substantial attention [8]. With a smaller camera baseline and lower
resource requirements, it exhibits potential for widespread application [9].

Feng et al. designed a structured-light vision system for a tomato-harvesting robot. As
demonstrated by the field test results, the measurement error for the fruit radius is less than
5 mm, the center distance error between the fruit and camera is less than 7 mm, and the
single-axis coordinate error is less than 5.6 mm [10]. Jimenez et al., in their developed citrus-
harvesting robot, implemented a laser-based active vision system, achieving an accuracy of
approximately 10 mm in three-dimensional fruit positioning, with an estimated average
error in fruit radius of under 5 mm. This system solves the challenging task of identifying
target fruits in unstructured operational environments [11]. Setting up an orchard is a
crucial aspect and a focal point in our agricultural automation efforts, emphasizing the
integration of agricultural machinery with agricultural technology. An efficient orchard
layout is essential for the successful implementation of robotic harvesting. This involves
strategically positioning fruit trees and regularly pruning them to optimize their suitability
for robotic harvesting tasks. Considering the influence of complex natural conditions and
equipment costs, the structured-light localization method was chosen for this experiment.

The recognition of target fruits is a crucial component of harvesting robot technol-
ogy. In response to the challenges of target fruit recognition, domestic and international
researchers have proposed various methods. Initially, single-feature analysis methods were
employed, but they proved to be inaccurate and unstable. These methods primarily relied
on color features to determine whether a fruit is a target, but they suffered from drawbacks
such as low recognition accuracy, limited robustness, and poor adaptability. Building
upon single-feature analysis, researchers introduced multi-feature fusion approaches (color,
geometric shape, texture) to enhance recognition success rates. Fusing information from
these different types of data can improve the successful identification of target fruits. In
addition to multi-feature fusion analysis methods, approaches based on neural networks
have also proven effective for target fruit recognition. Compared to these traditional detec-
tion methods, deep learning techniques exhibit a more promising performance in the field
of object detection. They offer higher accuracy, surpassing conventional image-processing
approaches [12]. The study by Koirala et al. [13] indicates that deep learning algorithms
have been recommended for fruit tree detection. Sa et al. [14] employed the Faster R-CNN
(Faster Regional Convolutional Neural Network) algorithm [15] to detect multi-colored
(green, red, yellow) pepper fruits. Chen et al. [16] used fully convolutional networks [17]
to count fruits in apple and orange orchards. Bargoti and Underwood [18] utilized Faster
R-CNN and transfer learning to estimate yield in apple, mango, and almond orchards.
Gao et al. employed Faster R-CNN (Regional Convolutional Neural Network) for the
detection of apples, achieving an average precision (AP) of 0.879 [19]. Xiao et al. utilized
a backpropagation neural network to train an apple color recognition model, effectively
identifying apples on fruit trees [20]. Fu et al. used ZFNet to detect apples from segmented
RGB images, achieving an AP of 0.805 [21]. Neural networks can learn from extensive data
to extract features for tasks such as classification or regression automatically. The YOLO
(You Only Look Once) algorithm is a typical example of this approach [6]. In 2019, Wang
et al. [22] introduced a mango fruit detection method based on deep learning algorithms.
This method utilizes a deep learning algorithm based on the YOLO model to identify target
fruits in each frame of an image. The experimental results indicate that the algorithm can
accurately identify fruit targets when processing tracking videos. These findings suggest
that by applying deep learning technology, detecting and localizing fruits is feasible.
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This study employs an improved structured-light localization method based on
YOLOv5. Building upon the original neural network model, optimizations were made
specifically for apple detection. After obtaining the 2D coordinates of the targets, these
coordinates were transformed and input into the calibrated structured-light camera’s world
coordinate system to derive the 3D world coordinates of the apples. The performance of
the model was assessed using the mean average precision (mAP) metric. The standard
deviation of depth and localization precision were calculated to evaluate the accuracy of
apple localization.

2. Materials and Methods
2.1. Image Acquisition

The apple orchard image data used in this study were obtained from the Guoku
Orchard in Changping District, Beijing, China. To simulate the actual harvesting process,
the images were collected during the apple-harvesting season in mid to late October.
The spacing between the apple trees is typically between 3 m and 5 m. The formula for
calculating the number of plants per hectare is 10,000/(plant spacing × row spacing) (unit:
meters). Due to the uneven distribution of row spacing in the orchard images collected
for this experiment, precise figures cannot be provided. However, based on an average
spacing of 4 m between rows and trees, the number of apple trees per hectare is estimated to
be around 625. Factors such as soil fertility limitations and actual orchard usage may result
in the actual plant density per hectare being lower than this calculated value. Regarding the
thickness of the plant canopy, it varies for different tree forms, mainly ranging from 0.5 to
2.0 m within the canopy. A single-lens reflex (SLR) camera, Sony α6000L, Brand: SONY, Japan,
Origin: Wuxi, China, equipped with a fixed macro lens, was used for image acquisition. The
camera operated in automatic mode, adjusting the appropriate capture parameters, including
the white balance, ISO speed, and exposure time. Multiple samples were taken at different
times, under various weather and lighting conditions, in the apple orchard to capture a large
number of images of mature apples of different types. A total of 1000 images were selected
as the research materials based on image quality and apple distribution. The development
process of the apple picking robot in this study is shown in Figure 1.
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Figure 1. This study is centered around the development of an apple-picking robot. We have engi-
neered an enhanced YOLOv5 object detection model and pioneered an innovative computer vision
localization technique. By integrating a depth camera ranging module, we embedded depth measure-
ment functionality into the neural network model. The fusion of this depth measurement functionality
with the object detection capability achieves the seamless integration of apple recognition and three-
dimensional spatial positioning. The * symbol in the graph represents the convolution operation.
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2.2. Deep Learning Model

Deep learning, which has gained significant breakthroughs in the field of machine
learning, is based on the construction of multi-layer artificial neural networks. It possesses
powerful learning capabilities and computational performance, with its key advantage
being the ability to learn features automatically (automatic feature learning). Among
them, YOLOv5 is a high-precision and high-speed object detection model that can process
140 frames per second. Compared to the YOLOv4 model, YOLOv5 reduces the training
weights by nearly 90%, making it highly suitable for real-time object detection deployment
on small devices [20]. Therefore, this study adopts YOLOv5 as the foundation, combining
it with other advanced neural network model modules in the field of deep learning. It
optimizes these models based on the specific requirements of the apple-picking robot
to further improve the recognition performance of apple targets and construct an apple
recognition network for the apple-picking robot.

YOLOv5 is a popular object detection model that can be divided into four architectures,
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, based on the number of feature extraction
modules and convolutional kernel sizes [23]. When selecting the optimal object detection
model, multiple factors such as speed, accuracy, user-friendliness, and developer experience
need to be considered. YOLOv5, being more user-friendly, has gained favor among many
developers. Despite being an older version, YOLOv5 has achieved widespread adoption in
the community. Its popularity can be attributed to factors such as user familiarity, extensive
documentation, and a robust user base, making it a reliable and well-supported choice for
various applications, significantly aiding in model optimization. Considering the real-time
requirement and lightweight network structure for apple recognition in this study, the
YOLOv5m architecture was chosen as the base network. The network model was then
optimized and upgraded to meet this specific requirements of apple recognition in this
study. The YOLOv5m model mainly consists of the backbone, neck, and detect networks.
Based on the YOLOv5m architecture, this study made improvements and designs tailored
to the requirements of the apple-picking robot, considering real-time performance and
lightweight demands. By optimizing the model’s architecture and parameter settings, the
accuracy of apple recognition for the apple-picking robot was improved.

The model training was conducted using the PyTorch deep learning framework in
Python 3.8. The configuration included an NVIDIA GeForce GTX 1650, PyTorch 1.10.1,
NumPy 1.21.2, CUDA Toolkit 11.3.1, and other relevant libraries. The labeled dataset was
divided into training and test parts and placed in their respective folders. The number of
epochs, which determines the training iterations, was set. The model was then trained
on either the GPU of the local computer or a cloud-based GPU provided by Google.
Throughout the training process, metrics such as recall, accuracy, precision, and average
precision were evaluated, and adjustments were made to hyperparameters based on the
actual performance. Eventually, experimentation and parameter tuning allowed us to
obtain a relatively ideal and stable set of training parameter weights. The loss function
converged, and the average precision was relatively high.

The entire model training and validation process was performed on a computer with
an Intel(R) Core(TM) i5-9300H CPU @ 2.40 GHz processor, 16 GB RAM, and a 64-bit
Windows 10 operating system. The training speed was optimized using the graphics
processing unit (GPU) of the device, which was an NVIDIA GeForce GTX 1650 with 8 GB
of dedicated memory.

2.3. Dataset Labeling and Preparation

The Python 3.8 OpenCV module was used to label the dataset. The apple images were
in RGB format. A portion of the images was selected, and their RGB values were recorded,
normalized, and used to calculate color feature indices.

In this study, a total of 1000 images with a resolution of 6000 × 4000 pixels were
selected from the previously mentioned image data as experimental materials for apple
segmentation. These images were further filtered, compressed, and cropped, resulting in
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722 apple orchard images for feature extraction and segmentation experiments. Manual
labeling was performed on the apple regions in the high-throughput apple images from
the orchard to detect target apple regions. A total of 3569 apples were labeled, with
approximately 3 to 7 apples per image. Then, 648 randomly selected images were used
as the training set, and 72 images were used as the validation set (with a 9:1 ratio) for
model training and validation. Additionally, 50 images were randomly selected as a test
set to evaluate the training results of the model. For model construction in the apple target
detection task, some modeling parameters used in this study are as follows: pretrained:
True; batch_size: 20; max_epoch: 350; Init_lr: 0.001; min_lr: 0.0001; optimizer: Adam;
weight_decay: 0; warmup_lr_ratio: 0.1; no_aug_iter_ratio: 0.3; lr_decay_type: cos; Number
of classes: 2.

All of the image labeling and processing mentioned above were performed using
the Baidu Paddle EasyDL AI platform. In this study, the platform was primarily utilized
to assist in annotating the target apples in the images. The process involved two steps.
The first step was to annotate the apple regions in the images (apple dataset) by selecting
and marking them. The second step was to upload the labeled images to the platform for
training. The platform autonomously labeled additional images based on the learned pat-
terns, and human evaluation and adjustment were performed to calibrate the annotations.
This process could be repeated to improve the segmentation accuracy until the training
requirements were met.

Various data augmentation methods were employed in this study to supplement and
expand the image dataset, facilitating better model fitting and computation. The “resize-
image” module was used to generate new orchard apple images by applying operations
such as rotation, flipping, translation, and scaling, thereby increasing the number of images
in the dataset. The “place-image” module handled the dataset by performing cutout
operations, replicating image content, and swapping, aiming to prevent overfitting and
address the issue of imbalanced samples. In a large dataset, images with disproportionately
large or small apple pixel ratios could lead to imbalanced positive and negative samples
during training and result in overfitting to the dominant samples. The “distort-image”
module modified image parameters such as the brightness, contrast, saturation, and hue to
enhance the model’s robustness and generalization capability, reducing the influence of
environmental factors on the images and making the model less sensitive to environmental
changes. The collected image dataset was mainly captured in the same scene type, so the
images had some noticeable and similar features. These data augmentation operations
improved the model’s fitting and computational abilities, enriched the image information,
and helped to enhance model performance.

2.4. Model Optimization
2.4.1. Replacement of Convolution Kernel with Convolution Kernel Group

Since apple images are captured in complex outdoor natural scenes with the partial
occlusion of apples, leaves, and branches, YOLOv5 struggles to extract clear apple fea-
tures in such complex backgrounds. The backbone network is improved by replacing the
convolution kernel with a convolution kernel group to address this issue. The convolu-
tion kernel group consists of three parallel convolution kernels that perform convolutions
on the input image with the same stride, producing feature maps of the same size and
channels. The corresponding feature maps are summed to obtain the output feature map,
as shown in Figure 2. This improvement enhances the network’s ability to extract apple
features, reduces the influence of complex backgrounds, and improves the accuracy of
object detection.
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2.4.2. Addition of Attention Module

An attention module is added to the YOLOv5m network, consisting of three parts,
segmentation, fusion, and selection, as shown in Figure 3. In the segmentation part, the
input feature map (i) is convolved with three different convolution kernels (K1, K2, K3) to
generate feature maps (X1, X2, and X3). In the fusion part, the segmented feature maps (X1,
X2, and X3) are combined and processed to obtain matrices (a and b). In the selection part,
the feature maps X2 and X3 are weighted and selected based on matrices a and b, while
the feature map X1 is weighted using the output of a fully connected layer (z), resulting in
feature maps Y1, Y2, and Y3. Finally, the feature maps (Y1, Y2, and Y3) are combined to
obtain the output feature map of the attention module (Y). By adding the attention module,
this research effectively extracts global information about apples, reduces the impact of
small and non-uniformly shaped apples, and enhances the performance of the YOLOv5
detection algorithm.
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2.4.3. Improved Initial Anchor Box Sizes

YOLOv5m uses three initial detection anchor box sizes for each multi-scale detec-
tion layer to identify small, medium, and large objects, better addressing the recognition
requirements of different-sized objects. However, for apple tree images obtained by the
robotic vision system, apples located in the distance rows of the image and far away from
the picking robot are not considered valid targets. Therefore, this research modifies the
initial anchor box sizes in the YOLOv5m network to accurately identify fruit targets within
the close picking range. The modified anchor box sizes are set as 60 × 70, 45 × 90, 85 × 65;
60 × 122, 130 × 90, and 120 × 240. Experimental tests show that the improved anchor box
sizes can better identify small and medium-sized objects, thus improving the accuracy of
object detection.

2.4.4. Optimization of Object Detection Model Based on Transfer Learning

To address the slow convergence and overfitting issues of apple fruit recognition and
object detection algorithms under limited sample conditions, this research adopts transfer
learning based on deep learning models [24] to transfer existing knowledge structures
from different auxiliary domains, reducing the impact of insufficient apple fruit datasets.
To utilize existing domain knowledge for apple fruit recognition tasks, considering the
similarity in recognition features between multi-object apple images and single-object
apple images, this research uses the VOC2012 dataset as the source domain and treats the
single-object apple image dataset as the auxiliary domain for knowledge transfer. The
improved YOLOv5m model is trained on the source domain dataset to obtain the source
domain knowledge model [25]. The auxiliary domain knowledge model is trained on
the single-object apple image dataset and then loaded into the multi-object apple image
recognition task for training, achieving parameter transfer.

Experimental tests demonstrate that transferring knowledge from the multi-object
apple image dataset as the auxiliary domain can effectively improve the accuracy and
convergence speed of apple recognition tasks while alleviating overfitting phenomena.

2.5. Detection Performance

Detection performance in this study was evaluated using the mean average precision
(mAP). Among them, the AP, as shown in formula (4), was calculated based on precision
and recall, which are defined in Equations (1) and (2), respectively.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Predictions are categorized into four scenarios: true positive (TP), where the actual
state and the predicted state are both positive, indicating a correct prediction; false negative
(FN), where the predicted state is negative while the actual state is positive, signifying a
prediction error; false positive (FP), where the predicted state is positive while the actual
state is negative, indicating another type of prediction error; and true negative (TN),
where both the predicted and actual states are negative, demonstrating a correct negative
prediction. Precision represents the proportion of true positive predictions among the
predictions labeled as positive. It can be perceived as the model’s ability to accurately
identify positive instances among its predictions. Conversely, recall is the ratio of true
positive predictions to the total number of actual positive samples in the dataset. It reflects
the model’s capacity to detect instances of the target type within the dataset. Accuracy, as
shown in formula (3), is determined based on the ratio of true positive predictions and true
negative predictions to the total number of samples. It provides an overall indication of the
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model’s ability to predict both positive and negative cases across the entire dataset. The
mAP (mean average precision) is calculated as the average of individual average precision
(AP) values. It serves as a primary evaluation metric in object detection algorithms. Object
detection models are often evaluated based on the dual metrics of speed and accuracy
(mAP). A higher mAP value signifies the superior performance of the object detection
model on the given dataset, indicating more effective object detection.

AP =
n−1

∑
i=1

(ri+1 − ri)pinterp(ri+1) (4)

The function pinterp(r) represents the smoothed precision–recall (PR) curve, where r
denotes the recall. The PR curve is a graphical representation of a classifier’s performance,
with recall on the horizontal axis and precision on the vertical axis. The number of positive
samples is denoted as n, ri represents the recall of the ith positive sample, and Pi represents
the precision of the ith positive sample. The calculation of pinterp(r) involves smoothing the
PR curve, where, for each point on the curve, the precision value is taken as the maximum
precision value to its right. APi signifies the average precision for the ith category, and
K denotes the total number of categories. Let r1, r2, . . ., rn represent the recall values
corresponding to the first interpolated point of each precision–recall curve segment, sorted
in ascending order. Given a total of K categories, where K > 1, the formula for calculating
the mAP is as follows:

mAP =
∑K

i=1 APi

K
(5)

2.6. Principle of Structure Light Localization

Structured-light technology is a three-dimensional measurement technique that em-
ploys infrared lasers or other light sources as illumination. By projecting specific encoded or
random patterns onto the object and subsequently decoding the patterns, the positional and
depth information of the object is extracted. Through an analysis of pattern deformations,
distances from every point on the object’s surface to the camera can be calculated, thereby
generating a three-dimensional point cloud or model.

As shown in Figure 4, a laser of a specific wavelength, after being encoded through a
chip, is projected onto the object’s surface. The camera, equipped with a filter, captures the
reflected light. The filter restricts the camera from receiving only that specific wavelength of
light. The chip then processes the encoded image received to perform decoding operations,
yielding the depth data of the object. Depth information for various points on the object’s
surface can be obtained by comparing the offsets in the same direction.

This study ultimately chose the Astra S IR structured-light depth camera from Orbbec.
Scope of work: 0.4–2 m; Field Angle: H58.4◦–V45.5◦; Data interface: Usb2.0; Support
system: Android/Linux/Windows7/Windows10; Power dissipation < 2.4 w; dimension:
164.85 × 48.25 × 40 mm3; Operating temperature: 10–40 ◦C. Due to factors such as inher-
ent sensor noise, variations in ambient lighting, and uncertainties in-depth image data
processing, there often arise instances of missing depth information. This phenomenon is
particularly pronounced in regions such as object edges. To address this, bilateral filtering
was applied to the depth images, as shown in Figure 5. This technique eliminates noise and
preserves the details and edges of the depth images, thereby achieving improved image
processing outcomes.
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2.7. Localization
2.7.1. Software Structure and Hardware Layout of Computer Vision System

The computer vision system in this study consists primarily of neural network object
detection and depth algorithm spatial localization, as shown in Figure 6. And the hardware
components and device communication of the target detection and localization system,
as shown in Figure 7. RGB color images and RGBD depth images are acquired using an
industrial camera and a depth camera, respectively. After the neural network model recog-
nizes the objects and obtains the 2D image coordinates, these coordinates are transformed
via a predefined callback function and applied to the environment point cloud obtained
from the depth algorithm. This process allows us to obtain 3D spatial coordinates in the
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camera coordinate system. After performing coordinate calculations and transformations,
the coordinates are converted into 3D spatial coordinates in the robotic arm coordinate
system. Subsequently, the coordinate information is wirelessly transmitted via WiFi to the
robotic arm for picking.
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The core of this coordinate transformation lies in hand–eye calibration, a commonly
used technique in the field of robotic vision. It is employed to achieve precise positioning
and grasping of objects by a robotic arm. The goal is to convert the three-dimensional
coordinates of a target detected in the camera coordinate system to the three-dimensional
coordinates in the robotic arm’s base coordinate system. This study adopts the “eye-
in-hand” hand–eye calibration approach, selecting the center of the robotic arm’s end
effector as a reference point for calibration. Throughout the motion of the robotic arm,
the camera coordinate system and the robotic arm’s base coordinate system remain fixed,
and their relative positions remain unchanged, resulting in a constant transformation
matrix. Assuming the robotic arm’s base coordinate system is denoted as {Base} and the
camera coordinate system as {Camera}, if the coordinates of several fixed points (P) in
both systems are known, the transformation matrix corresponding to the two coordinate
systems can be obtained using the coordinate transformation formula. In this study, the
“eye-in-hand” hand–eye calibration is employed, and the calibration process is carried out
following the tutorial of the Moveit-easy_handeye package in the robot operating system
(ROS). The calibration procedure involves launching relevant nodes for the robotic arm,
Realsense camera, Aruco marker detection, and the easy_handeye node. The parameter
“eye_to_hand” is set to true, indicating that the camera is positioned on the hand.
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Figure 7. The hardware components and device communication of the target detection and localiza-
tion system. The target detection and localization system in this study is mainly composed of neural
network object detection and depth algorithm spatial positioning. RGB color image and RGBD depth
image are obtained with an industrial camera and depth camera, respectively. After identifying the
target and obtaining the two-dimensional image coordinates, the neural network model converts
the coordinates into the environment point cloud image obtained by the depth algorithm through
the callback function set, thereby obtaining the three-dimensional space coordinates in the camera
coordinate system and converting the coordinates into the three-dimensional space coordinates in the
robot arm coordinate system through calculation. It is then transmitted wirelessly via WiFi to send the
coordinate information to the robotic arm for picking. The robotic arm used for apple picking is the
A1501 robotic arm from WHEELTEC (Dongguan) Co., Ltd. (Room 814, Building 9, No. 1 Xuefu Road,
Songshan Lake Park, Dongguan City, Guangdong Province, China). The servo motors employed are
the high-torque digital servo motors from the S20 series, with dimensions of 275 × 160 × 483.34 mm3.
The weight of the robotic arm itself is 1.6 kg, and it is capable of grasping objects within the weight
range of 200 to 300 g. The main control board utilized is the STM32_F103C8T6, and the operating
system is ubuntu18.04+melodic. The external communication interface supports communication
with an external controller through either CAN or serial communication.

2.7.2. Simulation Experiment Process for Computer Vision-Based Apple-Harvesting
Robot Control

The simulation experiment is conducted to validate the proposed control method for
apple harvesting. Models of ripe apples are suspended in the laboratory environment.
The robot follows the control to perform apple harvesting. The process may include the
following steps, as shown in Figure 8.

Experimental validation: The harvesting robot conducts simulated picking experi-
ments following the control process. During the experiment, metrics such as the harvesting
success rate, picking speed, and accuracy are recorded and evaluated to validate the
feasibility and effectiveness of the proposed method in apple-harvesting tasks.

Through this simulation experiment, the performance and feasibility of the computer
vision-based apple-harvesting robot control method can be assessed. Based on the ex-
perimental results, further optimization and improvement of the control method can be
pursued to enhance the harvesting efficiency and accuracy of the robot.
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Figure 8. (a) Image acquisition: the robot uses a camera or sensors equipped with a computer
vision system to capture images of the environment. (b) Object detection: through the application
of object detection algorithms, the robot identifies and locates apple targets in the captured images.
(c) Path planning: based on the target’s location information, the robot performs path planning to
determine the optimal harvesting path. (d) Motion control: the robot controls its movement according
to path planning results, maneuvering towards the target position. (e) Harvesting operation: the
robot executes the harvesting operation using a robotic arm or other harvesting devices to pick the
apples. (f) Result assessment: the robot assesses the success of the picking operation and records the
harvesting results.

2.8. Evaluation of Localization Accuracy

Different measurement distances, namely 100 mm, 200 mm, 300 mm, and 400 mm,
were selected to test the spatial localization accuracy. Ten random test points were set for
each distance, and the actual spatial coordinates of the test points (relative to the camera
coordinates) were known. The depth camera was used to measure the spatial coordinates
of the ten test points in each distance group. The computer vision errors were calculated
for each axis, and the norm of the errors for each axis was calculated using Equation (6) to
represent the computer vision error [26].

‖ (Xe, Ye, Ze) ‖=
√
(X2

e + Y2
e + Z2

e ) (6)

In Equation (6), Xe, Ye, and Ze represent the average values of the positioning errors
in the X-, Y-, and Z-axis directions, respectively, for each distance group. They can be
calculated using Equation (7):

Xe =
∑10

i=1 |exj |
10

Ye =
∑10

i=1 |eyj |
10

Ze =
∑10

i=1 |ezi |
10

(7)

Here, exj, eyj, and ezi represent the positioning errors in each axis for each test sample.
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3. Results
3.1. Training Assessment and Performance of the Network

The training loss curves of the YOLOv5 convergence are depicted in Figure 8. The
horizontal axis “Epoch” represents the number of times the training dataset passes through
the neural network and returns during the training process. The vertical axis “Loss value”
indicates the discrepancy between the model’s output and the actual values. The loss
function serves as a measure of the quality of model predictions, where smaller loss values
indicate the closer proximity of the model output to the ground truth. With increasing
iterations, the loss values gradually decrease.

Figure 9a shows that before model optimization, the model overfits the validation
set, leading to suboptimal performance. As shown in Figure 9b, after model optimization,
the training and testing loss curves exhibit minimal fluctuations and align well, indicating
that the model performs well on both the training and validation sets. After multiple
epochs, YOLOv5 stabilizes at a loss value of around 0.30. The converging loss curve
signifies YOLOv5’s effectiveness in accurately identifying objects and performing apple
image detection.
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Figure 9. Training and validation loss curves: (a) before model optimization; (b) after model opti-
mization. After model optimization, the training and testing loss curves exhibit minimal fluctua-
tions and align well, indicating that the model performs well on both the training and validation
sets. There are three main losses during training: rectangular frame loss (lossrect), confidence loss
(lossobj), and classification loss (lossclc). The loss function of the yolov5 network is defined as
Loss = a × lossobj + b × lossrect + c × lossclc. In other words, the total loss is the weighted sum of
the three losses, and the confidence loss is usually the largest weight, followed by the rectangular
frame loss and the classification loss.
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3.2. Comparison between before and after Optimization

By introducing convolutional kernel groups and attention modules into the YOLOv5m
network and applying transfer learning, significant performance improvements have
been achieved in the object detection task. The convolutional kernel groups allow the
model to extract apple features better and improve its ability to handle occluded apples
in complex backgrounds. The introduction of attention modules further focuses on apple
features, helping to reduce the impact of small-sized and irregularly shaped apples and
thus improving the recall rate.

Using transfer learning, existing domain knowledge structures from auxiliary domains
(such as the VOC2012 dataset) are transferred to the apple image recognition task. This
approach improves model convergence and prevents overfitting. Through transfer learning,
the model can learn general feature representations from the auxiliary domain and apply
them to multi-object apple image recognition tasks, thereby enhancing the model’s detection
accuracy and recall rate.

The results of the ablation test are shown in Table 1. Data augmentation and prepro-
cessing can improve network generalization and detection effects by a small margin. By
using the convolution kernel set to enhance the feature extraction of apples, the recall rate is
significantly improved, which is due to the complex background of the dataset and the large
morphological changes in apples, and the convolution kernel set and attention module can
effectively suppress their influence. The general attention module focuses on the whole
of an apple, reduces the class imbalance between the foreground and the background,
and reduces false detection. Therefore, the proposed method has fewer instances of false
detection and missing detection and obtains good detection results. The test results show
that the optimization method in this study improves the detection accuracy, recall rate, and
mAP of the model, and the average accuracy of the method is increased by 5.75 percentage
points compared with the baseline network.

Table 1. The results of ablation experiments.

Baseline
Network Augmentation Preprocessing Convolution

Kernel Group Attention Block Recall Precision mAP/%

YOLOv5m 0.89 0.84 87.11
YOLOv5m

√
0.89 0.86 88.16

YOLOv5m
√ √

0.90 0.87 89.56
YOLOv5m

√ √ √
0.92 0.91 90.87

YOLOv5m
√ √ √ √

0.95 0.94 92.86

(‘
√

’ indicates that this method is used).

3.3. Structured-Light Positioning Evaluation

The results of spatial positioning error for four sets of test distances are presented in
Table 2. In the X and Y planes of four different depths, the errors in the X and Y directions
fluctuate around 1 mm, which indicates that the determination of two-dimensional pixel
coordinates based on a neural network is accurate and reliable, and the improved YOLOv5
model can adapt to the changes in apple size at different depths. In the Z direction, as
the depth increases, the error reaches the minimum at 800 mm, about 3 mm. When the
plane of the target is closer to the laser vision system, the error is larger, which is caused
by the distance between the laser transmitter and the signal receiver. The experimental
findings of this study indicate that the precision of apple-harvesting robot control based
on computer vision is influenced by both the accuracy of the computer vision and the
distance measurement of the depth camera. The primary contributor to spatial positioning
error is observed in the Z-axis direction, specifically stemming from depth measurement
inaccuracies of the depth camera. Within the operational range of the apple-harvesting
robot, the error in computer vision-based apple recognition and localization is maintained
at approximately 4 mm, which satisfies the requirements of practical applications.
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Table 2. The results of spatial positioning.

Distance Axial Measurement Error Spatial Positioning Error

(mm) Xe (mm) Ye (mm) Ze (mm) (mm)

200 1.1 1.2 4.4 4.69
400 1.2 1.0 3.7 4.02
600 1.0 1.3 3.5 3.87
800 1.2 1.2 3.2 3.62

4. Discussion

Compared with the binocular positioning method based on the traditional image
algorithm, the active laser positioning method based on deep learning has higher detection
accuracy. Jiao et al. found the maximum value of the calculated minimum distance from
the inner point to the edge. Finally, the radius of the apple was obtained by finding the
minimum distance from the center to the edge. In this study, the maximum error of the
apple center reached 23.21 mm [27]. Li et al. used the Faster R-CNN to detect binocular
images of apples. Color difference and the color difference ratio were used to segment the
detected apple in the boundary frame quickly, and the three-dimensional coordinates of the
feature points were calculated. Finally, the average standard deviation of the positioning
results of 76 datasets was 51 mm [28]. Chen et al. built a fruit recognition model based on a
deep convolutional network, and spatially located the centroid of the fruit according to the
local point cloud information on the fruit’s surface [29]. Kang et al. introduced a vision
perception and localization strategy based on LiDAR–camera fusion, and used a one-stage
instance segmentation network to perform fruit localization [30]. Comparison with other
methods in this study are presented in Table 3

Table 3. Comparison with other methods in this study.

References Method Data Error

Jiao et al. [27]

Convert the color space to the lab color space for
K-means segmentation. Obtain the contour of
apples through morphological processing.
Utilize an algorithm to calculate the distance
between two points to find the center.

150 images 7.41–23.21 mm

Li et al. [28]

Detect binocular images using the Faster R-CNN.
Utilize color difference and color contrast to
quickly segment the detected apples in the
boundary frames, and compute the
three-dimensional coordinates of feature points.

76 datasets 51 mm

Chen et al. [29]

Built a fruit recognition model based on deep
convolutional network, and spatially located the
centroid of the fruit according to the local point
cloud information on the fruit surface.

452 fruits in the crown of
10 fruit trees 15 mm

Kang et al. [30]

Introduced a vision perception and localization
strategy based on LiDAR–camera fusion, and
used a one-stage instance segmentation network
to perform fruit localization.

Apple trees at 0.5 m, 1.2 m,
and 1.8 m

0.5 m:2.5 mm;
1.2 m:2.3 mm;
1.8 m:2.8 mm

This study

Rely on a neural network model to detect targets
by mapping two-dimensional pixel coordinates
from images to a laser point cloud, thereby
determining the position of apples.

40 test points 4 mm

In contrast to the above localization methods, the laser localization method in this
study relies on neural network models to detect targets. The position of the apple was
determined by substituting the 2D pixel coordinates in the image into the laser point cloud.
The principle of this method is simple and the equipment cost is low. The laser localiza-
tion method in this study relies on a neural network model to detect targets by mapping
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the two-dimensional pixel coordinates from images into the laser point cloud, thereby
determining the position of the apples. This method utilizes a neural network model
that has been optimized through training. The recognition of targets is simpler compared
to feature-matching algorithms with the same accuracy, as it does not require complex
matching computations. For localization, the approach leverages point cloud information
from laser sensors, which can be directly incorporated into coordinates, eliminating the
need for processes like stereo vision disparity calculation. This simplification in localization
enhances precision. In terms of cost, depth cameras equipped with laser sensors may be
slightly more expensive compared to other types of cameras at a similar level. However,
when considering the overall system cost, laser depth cameras do not require an additional
higher-performance processor. In contrast, for instance, stereo cameras, due to their sub-
stantial initial data volume, necessitate a more powerful processor to avoid sluggishness in
image computations.

Innovation in the apple spatial localization method using a laser depth camera
involved: The use of a neural network model for object detection, incorporating two-
dimensional image coordinates into the depth map from a laser depth camera, and em-
ploying a coordinate transformation algorithm for the spatial localization of target fruits
constitute innovative aspects. In the experiments, the computer vision system demon-
strated a spatial localization precision of approximately 4 mm, enabling the guidance of the
picking gripper to achieve accurate positioning within the working space.

To propel the advancement of harvesting robots in sync with contemporary trends,
avenues for innovation can be explored across various dimensions: Human–robot co-design
emerges as a pivotal trajectory in the evolution of agricultural robotics. Especially in realms
like target recognition, efficient picking, and remote control, the synergy between humans
and robots through co-design possesses the potential to profoundly amplify the operational
efficiency of harvesting robots. The integration with agricultural techniques assumes a
crucial role, wherein the seamless fusion of robots with cutting-edge agricultural practices,
encompassing standardized cultivation methods and orchard management, emerges as
a decisive factor influencing the efficacy of harvesting robots. The confluence of robotic
technology and agricultural techniques bears the capacity to exponentially augment their
productivity in agricultural operations. Leveraging online deep learning object detection
platforms proves indispensable. These platforms serve as reservoirs for real-time data
garnered from harvesting robots, facilitating the creation of augmented datasets. Through a
continuum of updates and iterative learning, the precision of target detection for harvesting
robots can be significantly elevated. Visual servo mechanisms coupled with feedback
control emerge as a strategy to heighten the precision of robotic grippers. This approach
entails harnessing visual sensors to gauge and regulate the position and orientation of the
robotic gripper, thus honing its control accuracy and stability.

In addressing false positives occurring outside the harvesting zone, besides incor-
porating laser ranging for assessment, this study also highlights the optimization of the
initial anchor box size within the target recognition algorithm to reduce the detection of
non-harvestable targets. Following this optimization, smaller targets, typically located
beyond the canopy, are excluded from recognition as harvestable targets. When working in
a specific position and completing the harvesting of all viable targets within that range, the
harvesting robot can be relocated to the next position, facilitating more suitable harvesting
for other targets. Due to constraints in experimental conditions, no research has been
conducted on selective harvesting. The study solely assumes that all fruits within the
working range of the robotic arm need to be harvested. Further investigation is required to
develop a selective harvesting strategy for apples. Additionally, algorithm optimization is
needed to address challenges such as fruit overlap and obstruction by branches and leaves.
Adverse weather conditions also need to be considered. At present, we cannot guarantee
with absolute certainty that the algorithm will function in all conditions or environments,
as our current experiments have certain limitations. It is known that the algorithm can
successfully perform target recognition and localization under clear weather conditions
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when apples are mature and meet harvesting criteria. However, under overcast skies or
low-visibility conditions, especially when apples are not sufficiently mature, and their
color and size are not distinct, improvements tailored to specific conditions are required.
This may involve adjustments to contrast between targets and the environment, as well as
threshold modifications for target size, to enhance performance.

5. Conclusions

This study focuses on the development of an improved structured-light-based object
detection and localization method using the YOLOv5 neural network model for an apple-
harvesting robot. The integration of apple recognition and three-dimensional spatial
localization was achieved. Experimental results reveal that the enhanced model achieved
a recognition rate of 92.86%, marking an increase of 5.75 percentage points in average
precision compared to the original model. During harvesting experiments, the average
spatial localization accuracy for 40 test points was approximately 4 mm. This experimental
result demonstrates that employing the localization method proposed in this study can
achieve accurate robotic harvesting operations under simulated conditions.
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