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Abstract: This study proposes an integrated approach to developing a Microservice, Cloud Comput-
ing, and Software as a Service (SaaS)-based Real-Time Storm Sewer Simulation System (MBSS). The
MBSS combined the Storm Water Management Model (SWMM) microservice running on the EC2
Amazon Web Services (AWS) cloud platform and an Internet of Things (IoT) monitoring device to
prevent disasters in smart cities. The Python language and Docker container were used to develop
the MBSS and Web API of the SWMM microservice. The IoT comprised a pressure water level meter,
an Arduino, and a Raspberry Pi. After laboratory channel testing, the simulated and IoT-monitored
water levels under different flow rates indicate that the simulated water level in MBSS was such as
that monitored by the IoT. These findings suggest that MBSS is feasible and can be further used as a
reference for smart urban early warning systems. The MBSS can be applied in on-site stormwater
sewers during heavy rain, with the goal of issuing early warnings and reducing disaster damage.
The use case can be the process by which the SWMM model parameters will be optimized based
on the water level data from IoT monitoring devices in stormwater sewer systems. The predicted
rainfall will then be used by the SWMM microservices of MBSS to simulate the water levels at all
manholes. The status of the water levels will finally be applied to early warning.

Keywords: SWMM; cloud computing; microservice; IoT; Docker container; SaaS

1. Introduction

The frequency of extreme precipitation events in urban areas has increased with
climate change, which inevitably affects the design capacity of existing storm sewer systems.
Governments worldwide are paying more attention to establishing real-time urban flooding
simulation and forecasting systems; the objective is to improve urban storm sewer flooding
early warning mechanisms based on sustainable development to reduce flood losses in
urban areas caused by such changes. Based on the non-engineering method of sustainable
development, forecasting systems can be established in advance. These systems can plan
for disaster prevention in real-time, give early warnings for evacuating people, and reduce
losses. The flow rate and corresponding water level of storm sewers during rainstorms are
key factors in achieving this goal. It is essential for adequate flooding warnings to use the
model of storm sewers to forecast the water condition of storm sewers when rain occurs in
the future.

The Storm Water Management Model (SWMM) developed by the U.S. Environmental
Protection Agency (USEPA) has been widely used in simulating urban storm runoff and
storm sewer water management [1–3]. In the past 10 years, relevant studies have proposed
to optimize SWMM model parameters and integrate urban hydrological models to apply
SWMM more effectively to solve hydrological problems in urban areas. For example,
Lin et al. [4] used a genetic algorithm to select the hydrological parameters needed for
the RUNOFF and EXTRAN modules in SWMM. It has reduced the time required for
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parameter selection and adjustment through manual experience in the past. The SWMM
was optimized by Sadler et al. [5] to be capable of parallel computing. Liao et al. [6] used
the Open Modeling Interface (OpenMI) framework to integrate the RUNOFF and EXTRAN
models in SWMM, effectively solving the hydrological data exchange problem during flood
simulations.

In recent years, SWMM simulation alone has not solved the complex hydrological
problems in urban areas. Researchers have since combined SWMM with other technologies
for the secondary development of SWMM. Lin et al. [7] integrated Google Map technology
to display SWMM simulation results on mobile apps, providing a real-time reference
for urban flooding warnings. Warsta et al. [8] developed an automated sub-catchment
generator tool for SWMM to automate tedious stages in the model construction process.
Xiao et al. [9] and Zeng et al. [10] designed a SWMM-based web service framework. Riaño-
Briceño et al. [11] developed a tool for real-time control of urban drainage systems based on
Matlab and Python. Allende-Prieto et al. [12] combined GIS and SWMM and incorporated
them into urban design.

The hydrological environment is becoming increasingly complex under climate change.
Urban areas are affected by the heat island effect, and extreme, short-duration heavy
rainfall often leads to more severe disasters. The short duration of such hefty rainfall poses
more challenges regarding early warning for urban storm prevention, such as conducting
immediate urban storm sewer management operations and issuing information to inform
the public. Traditional simulation is based on a single machine. Since computing power in
this form is inadequate, long simulation times are necessary, and the transmission of real-
time messages is restricted, which is not conducive to real-time early warning mechanisms.
Suppose the high computing power of cloud services is used for hydrological simulation.
In that case, the simulation efficiency can be improved, and messages can be transmitted
in real-time more effectively [13,14]. However, to enable the SWMM model to be used for
real-time simulation and messaging on cloud computing platforms, the following must be
addressed: (1) dependencies on the execution environment (such as an operating system
and library version) and (2) problems in network messaging (such as an operating system,
programming language, library, and communication protocol). The microservice concept
and Docker container technology make solving problems (1) that have persisted easier
and more convenient for deploying cloud programs. The technology is easy to develop
and maintain. Wan et al. [14] used microservices and Docker containers to encapsulate
programs, which minimized deployment and execution costs. Pérez et al. [15] deployed
Docker in the AWS (Amazon Web Services) cloud, processing many images. The results
indicate that AWS could still work stably with a high computing workload. The Web API
uses the standard HTTP communication protocol for a Remote Procedure Call to provide a
solution to the problem (2) consistency.

Additionally, IoT technology is becoming increasingly mature and is often used for
monitoring. For example, Fang et al. [16] suggested an integrated approach to examining
snowmelt floods. Early caution has centered on RS (Remote Sensing), GIS (Global Informa-
tion Systems), IoT, and cloud services. Edmondson et al. [17] connected the sewage pipe
network with IoT to monitor the condition of the sewage system in real-time. For urban
news and early warning disaster prevention, apart from the real-time SWMM simulation
on a cloud platform, if IoT can be combined with real-time monitoring of water levels and
data transmission, it will help to grasp the water management characteristics of storm
sewers instantly.

Since SWMM simulation, cloud computing, and IoT are rarely applied to urban
rainstorm disaster prevention and early warning systems, this study developed the real-
time storm sewer simulation system (MBSS). It integrates the water management core of
urban storm sewer simulation analysis based on the SWMM model, IoT, and front-end
app. This study used a Docker container to encapsulate the water management core based
on a microservice architecture. It further developed microservices combining the water
management core (called SWMM microservice), drawing, and database. The microservices
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were deployed on the AWS cloud platform, and a Web API was provided to front-end
developers. The front-end app was developed by calling a Web API. Users can use the app
to simulate SWMM anytime and anywhere and upload the measurement data of the on-site
measurement equipment to the cloud through IoT technology for comparison and analysis
with the SWMM simulation results. This study includes an assessment of the feasibility
of artificial channels in the laboratory, which can be used as a reference for subsequent
disaster prevention and early warning-related applications. In practical applications, real-
time water level monitoring data from on-site IoT devices in urban stormwater sewer
systems is employed to optimize the SWMM model parameters. The SWMM microservice
is then applied to simulate and predict the water levels at sewer manholes, which are
important for early warning based on the forecasted rainfall. The MBSS with SWMM
microservices and IoT monitoring can be applied to practical applications for effective early
disaster warnings and loss reduction.

2. Methodology
2.1. Cloud Computing Service Platform

The cloud computing service used in this study was Platform as a Service (PaaS),
which provides infrastructure services, including hardware and operating systems. PaaS
is between Infrastructure as a Service (IaaS) and Software as a Service (SaaS) and can be
upgraded and expanded in the future. When using PaaS, operating systems, underlying in-
frastructure, middleware services, and other complex software and hardware are left to the
vendors, while developers only need to address software deployment and implementation.

Currently, the mainstream cloud computing service platforms are Microsoft Azure,
Google Cloud Platform (GCP), and Amazon AWS. Amazon Elastic Compute Cloud (Ama-
zon EC2) is a web service developed by Amazon to provide developers with secure and
reliable cloud computing services. Amazon EC2 encompasses Linux, Windows, and MacOS
operating environments, as well as a variety of processors and storage capacities to meet
different computing needs. It can optimize the virtualization system, manage and allocate
hardware, improve server performance, availability, and security, and reduce operating
costs. Meanwhile, the 400 Gbps-enhanced Ethernet network used by AWS can maintain
high-speed transmission, reduce network fluctuation, reduce network delay, and respond
to user requests in high I/O instances when mass access and data exchange occur. When
conducting a real-time simulation of SWMM over a large area, EC2, with its excellent per-
formance, allows the simulation to be completed quickly; high-speed network connections
can instantly return simulation results to the front end, ensuring that the information is
sent back in time.

Amazon EC2 has considerable service capabilities and data centers worldwide. EC2
can cluster containers using Amazon Elastic Container Service (Amazon ECS) without
additional installation or maintenance. It provides a good foundation for the functional
extension of the system. When new functions are developed and multiple containers
are available, ECS will be used for container management. Therefore, Amazon EC2 was
selected as the cloud computing service platform for this study.

2.2. Hydrological Simulation Kernel

This study used SWMM, which is a hydrologic model developed by the United States
Environmental Protection Agency for urban rainfall-runoff and water quality simulation [8].
This model primarily simulates single events or long-term continuous events. SWMM
applies to a variety of hydrologic environments. It can achieve good simulation effects for
urban or non-urban areas and small or large watershed regions and is widely used in urban
drainage system design. SWMM was first developed in 1971 and has undergone several
significant upgrades to the present version, SWMM5.1. The SWMM surface runoff module
(SWMM-RUNOFF) calculates the runoff formed by rainfall. The runoff is used as input to
the storm sewer module (SWMM-EXTRAN) to calculate the water level and discharge of
manholes and pipelines.
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SWMM-RUNOFF simulates runoff and pollutant production from rainfall in a catch-
ment. SWMM-EXTRAN uses numerical methods to solve the dynamic wave model of
one-dimensional Saint-Venant Equations, as shown in (1) and (2). Equation (1) is the equa-
tion of mass conservation, and Equation (2) is the momentum conservation equation of
water transfer.

∂A
∂t

+
∂Q
∂x

= 0 (1)

∂Q
∂t

+
∂
(
Q2/A

)
∂x

+ gA
∂H
∂t

+ gAS f = 0 (2)

where,
x: Storm sewer length (m)
t: Time (s)
A: Channel cross-sectional area (m2)
Q: Flow (cms)
H: Hydraulic head (m)
S f : Friction slope
g: Acceleration of gravity (m/s2).
SWMM5.1 provided the source code and binary execution installation file. The SWMM

source program was rewritten in the C language. It can be compiled and executed on
Windows and Linux operating systems, while the binary execution installation file is based
on the Windows system as the execution platform. Additionally, it is a Graphical User
Interface (GUI) application, which does not meet the needs of the MBSS developed in
this study. Therefore, secondary development was necessary for the SWMM to enhance
and expand its functions. Its secondary development includes Python, C++, Matlab, and
other commonly used languages. Python, with its advantages of simplicity, efficiency, and
low learning threshold, provides a suitable development environment for the secondary
development of SWMM and provides more expansion functions.

OpenSWMM is an open-source computing engine module based on EPA SWMM
5.1.012. Developers worldwide can secondary-develop SWMM through OpenSWMM.
PySWMM, developed by McDonnell et al. [18] in the Python language, is an example of its
secondary development. PySWMM can execute the SWMM model, set different parame-
ters, and generate custom simulation results. For instance, it can set rainfall time series,
pollutants, canal, flow, and other parameters. The output and report files are automatically
generated, which are combined with various Python modules for further analysis and
visualization of the simulation results. Thus, it has exceptionally high scalability. This study
used the PySWMM module as the basic module for developing the hydrologic kernel.

2.3. Docker Container

Docker was first released as an open-source platform in 2013 under the name dotCloud.
It is an advanced container engine based on LXC (Linux container) kernel virtualization
technology and written in the GO language. Docker uses a client/server architecture. As
shown in Figure 1, the Docker client uses a remote API to call and execute the Docker.
Docker Daemon receives requests from users and performs corresponding operations
according to those requests. Images are read-only templates for creating a new Docker
container. A graph is used for image management and storage. Users can use local
GraphDB or a cloud-based Docker HUB to obtain Docker images. Finally, the Docker image
is executed to complete the creation of the Docker container.
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Figure 1. Architecture of Docker.

A Docker provides operating system virtualization, while traditional virtual machines
provide virtualization from the underlying hardware. Therefore, the Docker does not
need to encapsulate the entire host, thus saving a lot of space. Since a Docker is based on
LXC, it has the advantage of being a lightweight virtual machine and is superior in startup
speed, memory occupation, and other aspects. A Docker usually takes up only a few dozen
megabytes of space. Since it occupies only a small space, it allows multiple containers to be
executed on one machine simultaneously. The same system kernel can be shared among
containers, thus reducing memory usage and improving execution efficiency.

Docker images encapsulate the program code and all its execution environments,
including the system environment, system settings, and software library. The program can
be easily migrated through images on multiple platforms with stable execution. Presently,
Docker is being applied more widely, especially in cloud services. Docker improves server
efficiency and reduces server execution costs with its security, lightweight, and portable
features. Therefore, this study used a Docker container to encapsulate the CHMS.

2.4. Web API

The Representational State Transfer (REST) protocol, proposed by Fielding [19], is
a standard architecture for web services and APIs that defines a set of constraints and
principles. In constructing microservices, REST can unify the way each API service is
written, making it easier for developers to maintain and manage. In REST rules, each URI
represents a resource. The interaction between the front and back ends is stateless between
requests, i.e., the server does not store any state about the front-end session. Therefore,
every request sent from the front end to the server must contain the information the server
needs to complete the request. Flask-RESTful is a module of Flask, and Resources are the
basis of this module. The module is constructed in Flask Pluggable Views. It enables users
to build microservices in Flask using a RESTful API that maps multiple HTTP modes into
the same category. The front end calls the API through GET, POST, PUT, and DELETE.
Specifically, GET means obtaining resources, POST means inserting new resources, PUT
means updating resources, and DELETE means deleting resources.

Flask has many advantages over other frameworks in microservice construction. REST
is used to compile services, facilitating subsequent upgrades and expansion of services.
Therefore, Flask-RESTful was used in the API development of the MBSS in this study.

2.5. IoT Technology for Water Level Gauges
2.5.1. Arduino

Arduino is an open-source electronics platform based on easy-to-use hardware (the
Arduino board, as shown in Figure 2a) and software (the Arduino IDE). Users can connect
various modules through the Arduino board, including environmental modules such as
temperature and humidity sensors, gas and smoke sensors, infrared sensors, and commu-
nication modules such as the GMS module, Bluetooth, and Wi-Fi. Programs are written
in the IDE, compiled into binaries, and created on the Arduino board. Arduino IDE can
run on most mainstream operating systems, including Windows, macOS, and Linux. The
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programming language used by the IDE is based on the programming language and can
be extended through C++ libraries. Arduino is open source, both in terms of hardware
and software. Due to its high scalability and flexibility, Arduino is becoming more widely
used. In the present study, Arduino was responsible for receiving the output signal of the
pressure water level meter, converting the voltage into the water level depth through a
program written by the Arduino IDE, and recording the real-time water level.
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2.5.2. Raspberry Pi

The Raspberry Pi is a tiny computer developed by the UK Raspberry Pi Foundation,
as shown in Figure 2b. Raspberry Pi is based on ARM architecture, uses an SD card as the
storage medium, and has input and output serial ports such as a USB, Ethernet port, and
HDMI. It can execute various Linux systems, including the official customized Raspberry Pi
OS, Arch Linux ARM, Ubuntu MATE, etc. The Raspberry Pi supports Java, Python, C, Perl,
and other programming languages, and the GPU supports OpenGL. As a credit-card-sized
computer, the Raspberry Pi is widely used in the development process of IoT for its rich
application scenarios and portability.

This study used the Raspberry Pi as a tool for water-level data processing and up-
loading. After the Raspberry Pi was connected to the Arduino, the water level data were
read, sorted, and saved with Python. Next, the Web API uploaded the data to the CHMS.
Although Arduino can transmit data directly to the cloud through the Wi-Fi module, be-
cause Raspberry Pi can preprocess data and then develop Edge Computing, Arduino was
combined with Raspberry Pi for IoT development.

3. System Structure

Figure 3 shows the MBSS architecture proposed in this study. It is divided into a
Cloud hydrological microservice (CHMS or SWMM microservice), a Front-end APP, and
IoT devices. The CHMS architecture was built on the Cloud computing platform.

CHMS includes the water management simulation kernel, plotting, and database
functions. The Web API was constructed with the Flask framework, Python packages,
and RESTful format and was finally encapsulated by the Docker container. CHMS was
deployed to the AWS EC2 cloud computing platform in Docker container mode. The IoT
device comprised a Raspberry Pi, Arduino, and a pressure water level meter and sent the
water level data from the site to the cloud service through a Web API. The front-end APP
comprised a Web APP and a mobile app, which provided users with two ways to conduct
real-time SWMM simulation. They could view the simulation results through the web or a
mobile phone and monitor the water level with the in-situ IoT.
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4. System Implementation
4.1. Cloud Computing Platform Deployment

Cloud computing platform deployment can be divided into AWS EC2 and Docker
deployment.

(a) AWS EC2 configuration

In this study, Amazon Linux 2 AMI 64-bit (x86) was used as the image of the virtual
machine. The Linux 4.14 kernel and an Intel Xeon high-frequency CPU were used to
establish the virtual machine environment for executing Docker. The corresponding port
used by the API was opened in the security option to ensure normal communication
between the front and back ends.

(b) Docker deployment

In Docker deployment, we started the EC2 service, entered the server terminal, logged
in, and started the Docker service. Next, we input instructions to download the image
from Docker Hub to the server. After downloading and verifying the image, we input
instructions to start and execute the Docker image. After these steps, the Docker could be
deployed to the cloud and completed successfully.
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4.2. Construction of a Docker Container

Developers can bundle software and environment packages into a lightweight, portable
container through Docker. This study used Docker container virtualization technology to
encapsulate the storm water simulation kernel. The PySWMM water management core
basic module, Matplotlib module, SQLite module, and SWMM execution operating envi-
ronment (including the operating system and dependent library) were encapsulated into
the container. The PySWMM module mainly executed SWMM for hydrological simulation;
the Matplotlib module further analyzed and plotted the PySWMM output results; and the
SQLite module wrote simulation results as a database.

There were several necessary steps for constructing a Docker container: (1) First, the
execution environment for the Docker image was established; (2) construction instructions
using a Docker file were written. For example, we specified the execution environment of
the image, the path when the Docker was deployed to the server, executed commands when
the images were constructed, and executed automatically when the Docker was executed;
(3) Docker packing instructions were executed in the terminal console to construct a Docker
image; (4) We uploaded to the Docker hub cloud after construction and then deployed it on
the AWS server.

4.3. Development of Web APIs

In this study, the Web API of CHMS was developed using the Python language
Flask_Restful module. There are mainly five types of Web APIs, as shown in Figure 4:
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1. Upload_Data(): The SWMM input file in INP format and the water level gauge
measurement data were uploaded and saved to the cloud server as Excel files by POST.
Upload_Data() comprises two parts. The two parts were responsible for uploading
the SWMM input file and the Excel document, respectively.

2. Set_FlowRate(): The SWMM simulation parameters were defined, such as node flow,
by calling the PySWMM parameter setting module in POST mode.

3. Simulation(): The simulation request in GET mode was sent and simulated after the
service received the request.

4. Result2SQLite(): The simulation results were transformed in the SQLite database
based on the node IDs in GET mode. According to the user’s request, the SQL
instruction sent the node water level data back to the front end in JSON format.
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5. Plotting(): Based on the simulation results and the measured data of the water level
gauge in GET mode, we used the Matplotlib module to plot a pair of line graphs and
sent them back to the front end in PNG format.

The class diagram of the Web API is shown in Figure 5. The class of API () con-
tained the above five types of API. API established the service and URL correspondence
through api.add_resource(). PySWMM, SQLite, and Malpotlib modules process simulation,
database reading and writing, and plotting steps, respectively.
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4.4. Real-Time Water Level Monitoring

In this study, the IoT device was used to monitor water levels. In the laboratory, a
pressure water level meter was used to convert the current of the liquid level sensor into
voltage through the electric flow voltage module. Arduino received the voltage signal
from the water level meter and converted it into the corresponding water level. Finally, the
Raspberry Pi was connected to read water level data and call the API to upload the data to
the cloud. The operation procedure of the IoT device is shown in Figure 6.
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The Raspberry Pi is connected to Arduino through a USB. It used a serial module to
read the serial port signal and set the serial port baud rate to 9600, consistent with Arduino,
using a Python script. The serial module reads serial port data line by line. The water level
data and time were recorded and imported into the xlrd tool to write the results into Excel
forms. Then, it called Upload_Data() to upload the water level file to the cloud.

4.5. Development of a Front-End App
4.5.1. Development of a Web App

This study used Django as the framework for the development of web apps. Django,
developed with MVC (Model View Controller) Design patterns, is a commonly used Web
framework in Python. The user sends a request through the browser, and the view executes
the corresponding function based on the request, such as inflow setting (inflow_setting()),
file uploading (upload_file()), simulation (simulation()), and result in download (down-
load_result()). The viewer accesses the database through the model. The template renders
the web page according to the model’s output data and sends the result back to the view
for the user.

4.5.2. Development of the Mobile App

The Swift language was used in this study for the development of mobile apps. Swift is
a programming language created by Apple in 2014 to provide developers with a powerful
language to develop programs on iOS and macOS platforms. Swift combines the best
features of Objective-C and C and is more compatible with the Cocoa framework and
Objective-C. Swift compiles code using the LLVM compiler, which provides extremely fast
compilation speed while ensuring consistent execution. Swift has a more concise syntax
than the Objective-C language widely used in iOS and macOS. Mobile apps use SwiftUI
to compile the UI interface, and SwiftUI’s declarative syntax dramatically simplifies the
programming difficulty. The app uses Alamofire, an API tool commonly used in Swift
development, as the API call module.

Mobile app development with the Swift language also adopts MVC architecture. The
Storyboard is the Model; the ViewController is the Controller, which contains the inflow,
performs the simulation, uploads the files, displays the simulation results, etc. The different
types of UI interfaces in the APP are the subcategories of the View, including tables, pictures,
text, and buttons. AppDelegate processes the communication between ViewController,
Storyboard, and UI_View according to the user requests, such as simulation requests and
page jumps. The class diagrams of web APPs and mobile APPs are shown in Figure 7.
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4.6. MBSS Operation Process

Figure 8 shows the sequence diagram of the MBSS. The IoT device uploaded the mea-
sured water level data using Measure_Data(). The middleware received the data, and the
controller saved the data to the database. Simultaneously, the controller requested the INP
format input file of SWMM from the user, and the user called “upload to API” to upload the
input file. After receiving the input file, the Controller executes Simulation(), which is used
to call the hydrologic simulation core for the SWMM simulation. Measure_Data_Select()
obtained water level measurements from the database and compared them with simulated
water levels. After the simulation analysis was completed, Output_Save() stored the results
in the database and Receive_Output() returned the results to the front end for display to
the user.
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5. Results

In this study, the laboratory artificial channel (Figure 9a) was taken as the case for
simulating the storm sewer flow. The total length of the artificial channel is 20 m, the section
width is 0.5 m, and the section depth is 0.5 m. The bottom of the channel is made of cement,
and the two sides are smooth glass. Manning’s n of the channel was set as 0.01, according
to the technical specifications of soil and water conservation and relevant specifications.
The channel was divided into four parts: three manhole nodes (Nodes 1–3) and one water
outlet (Node 4), as shown in Figure 9b.
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The pressure water level meter was calibrated before the simulation. The calibration
process is as follows: (1) The pump was started and waited for it to run for 15 min to
stabilize the water level; (2) The pressure water level meter was placed and needle water
level gauge; (3) Manning’s roughness (Manning’s n) for the channel; (4) Different flow
rates (Q = 0.01~0.05 cms) were adjusted and water level data were read and compared. The
pressure gauge was calibrated by adjusting the Arduino code.

After calibration, different flow rates (Q = 0.01~0.05 cms) were set, respectively. Mean-
while, Arduino was set to record the measurement data of the pressure water level meter
every 5 min. SWMM of MBSS was also simulated with the same flow. The flow rate of
0.01 cms was taken as an example. The changes in the measured water level and simulated
water level of Nodes 1 to 4 over time are shown in Figure 10. The findings indicate that
the simulated water level had a significant error with the measured water level at the
beginning and end, and the water level error from the 4th minute to the 55th minute was
within 0.025 m. Figure 11 shows the distribution diagram of the measured and simulated
water levels when the flow rates ranged from 0.01 to 0.05 cm. The findings indicate that the
maximum error was about 0.025 m under the five flow conditions.
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Although the pressure water level meter had been calibrated, because of the laboratory
pump’s power limitation, the channel’s simulated flow rate was low. Under the conditions
of low water level and low water pressure, the pressure water level meter will still have
some errors in water level measurement. If the experiment is conducted under the condi-
tions of a high flow rate and a high water level at the site, the error will be further reduced.
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Please refer to the Supplement Material for the system presentation. The MBSS system
demonstration was shown in the Supplementary Material section at the end of this paper.

6. Conclusions

This study combined the SWMM model, cloud computing, and IoT technology to
develop the MBSS, a front-end Web APP, and an iOS mobile app. With CHMS of MBSS
as the cloud microservice, an IoT water level meter monitored the water level in real-
time. First, the water management simulation kernel was developed with the SWMM
model, and the Web API was written with the Flask framework. Subsequently, the API
was encapsulated and deployed to the AWS EC2 cloud server with a Docker container.
The artificial channel in the laboratory was taken as an example. Real-time water level
measurement was conducted through the pressure water level meter. The IoT device was
comprised of an Arduino and a Raspberry Pi. The data were uploaded to the cloud server.
The web APP and iOS mobile APP were simulated, and the following conclusions were
drawn after simulation analysis:

1. The water level simulated by SWMM Microservice was compared with that measured
by a needle water level gauge under different flow conditions. The error (+1.1 cm,
−0.45 cm) of the water level simulated by SWMM Microservice was smaller. This
indicates that SWMM Microservices could accurately simulate the water level of the
artificial channel.

2. The IoT device was used to measure the water level of the artificial channel in the
laboratory. The error between the device and the needle water level gauge was
small (+0.46 cm, −0.26 cm). Therefore, using the IoT device as an in-situ water level
measuring device is feasible.

3. MBSS provided a Web API for the front end to conduct a real-time SWMM simulation.
The simulation results were compared with the IoT device-measured data displayed
through a mobile app to achieve a real-time and convenient simulation.

4. MBSS was constructed through microservices. The simulation services were split
and implemented independently so that developers could maintain and upgrade
them independently. Then, it was encapsulated by a Docker, which saved space
occupied by deployment to the server and improved execution efficiency and follow-
up maintenance.

7. Suggestions and Limitations

The MBSS system developed in this study integrates the SWMM model as a microser-
vice, IoT technology, and cloud computing services. This system has been successfully
tested in artificial channels analogizing stormwater sewer pipelines. For future applications,
the proposed MBSS system can be implemented together with the operation of a real-world
urban stormwater sewer system. An example of an operational process may include the
following steps: (1) utilizing real-time water level measurements from the IoT devices in
the stormwater sewer systems, such that the SWMM model parameters can be dynamically
adjusted and optimized; (2) during the period of heavy rain, simulating the water levels at
each manhole and discharge in each conduct with the SWMM microservice of the MBSS;
(3) based upon the simulation results, issuing the early warnings via a front-end app. This
operational process could effectively reduce flood-related losses, contributing to the goal of
smart city stormwater disaster prevention.
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