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Abstract: The estimation of pasture productivity is of great interest for the management of animal
grazing. The standard method of assessing pasture mass requires great effort and expense to collect
enough samples to accurately represent a pasture. This work presents the results of a long-term
study to calibrate a Grassmaster II capacitance probe to estimate pasture productivity in two phases:
(i) the calibration phase (2007-2018), which included measurements in 1411 sampling points in three
parcels; and (ii) the validation phase (2019), which included measurements in 216 sampling points in
eight parcels. A regression analysis was performed between the capacitance (CMR) measured by
the probe and values of pasture green matter and dry matter (respectively, GM and DM, in kg ha™!).
The results showed significant correlations between GM and CMR and between DM and CMR,
especially in the early stages of pasture growth cycle. The analysis of the data grouped by classes of
pasture moisture content (PMC) shows higher correlation coefficients for PMC content >80% (r = 0.775;
p < 0.01; RMSE = 4806 kg ha™! and CVRysg = 28.1% for GM; r = 0.750; p < 0.01; RMSE = 763 kg ha™!
and CVryisg = 29.7% for DM), with a clear tendency for the accuracy to decrease when the pasture
vegetative cycle advances and, consequently, the PMC decreases. The validation of calibration
equations when PMC > 80% showed a good approximation between GM or DM measured and GM or
DM predicted (r = 0.959; p < 0.01; RMSE = 3191 kg ha™1; CVrumsg = 23.6% for GM; r = 0.953; p <0.01;
RMSE = 647 kg ha™! and CVrpmsg = 27.3% for DM). It can be concluded that (i) the capacitance probe
is an expedient tool that can enable the farm manager to estimate pasture productivity with acceptable
accuracy and support the decision-making process in the management of dryland pastures; (ii) the
more favorable period for the use of this probe in dryland pastures in a Mediterranean climate, such as
the Portuguese Alentejo, coincides with the end of winter and beginning of spring (February-March),
corresponding to PMC > 80%.
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1. Introduction

The ability to monitor and map pasture biomass in extensive grazing systems provides farmers
with vital information for making timely livestock management decisions, such as daily pasture
allocation, set stocking rates or rotation interval through the various fields [1]. Estimation of pasture
productivity at various stages of the growth cycle is an important element for planning and to calculate
forage needs and supplementary feeding [2], an essential pathway to increasing the efficiency of
grazing systems [1].

Measurement of pasture productivity can be carried out through direct or indirect methods.
The conventional (direct) method is based on harvesting biomass at specific sampling areas, which is a
lengthy and expensive process given the large number of samples necessary to accurately represent a
field [3], and farmers cannot make this effort in day-to-day management [4]. Since this methodology
is not practical at the farm level, other indirect techniques have emerged that provide an estimate
of productivity and its spatial variability in large areas in a timely manner, fulfilling one of the
important prerequisites of implementing innovative Precision Agriculture strategies [5,6]. With recent
advancements in information technologies, remote and proximal sensing and geospatial analyses
supported by global positioning systems, it is increasingly possible to identify and analyze the temporal
and spatial variability within fields, to maximize the yield and protect the environment [7].

One of the methods proposed for quantifying and mapping the pasture production variability is
based on the measurement of spectral vegetation indices, mainly the NDVI (normalized difference
vegetation index and Equation (1), calculated by measuring the reflectance of the radiation emitted by
the plants at certain wavelengths, using satellite images [1,8-10]. This information can be collected by
satellite remote sensing imagery (RS), unmanned aerial vehicles (UAV) or by means of ground-based
vehicle mounted proximal sensors [7].

NIR - Red
NDVI = Se—F5 @
where NIR is near infrared radiation; and Red is visible red radiation.

Although the use of satellite imagery is a very promising, low-cost and non-destructive technique,
it has its own limitations. The restrictions known for applications of remote sensing systems in
farm management include the following: (a) the gathering and delivery of images in an exceedingly
timely manner; (b) the shortage of high spatial resolution, image interpretation and data extraction
issues; and (c) the combination of those data with agronomic knowledge into expert systems [7].
Handcock et al. [11] highlight the difficulties of RS resulting from of spatial resolution and the presence
of clouds, as well as the spatial and temporal specificity of the associated algorithms. The limitation
imposed by the presence of clouds can be overcome by using UAV equipped with the appropriate
sensors [7]. In either case, whether using satellites or UAV, an important limitation persists in the
case of montado agro-silvo-pastoral system: it is not possible to access information about the pasture
under tree canopy, and this has led to the use of proximal sensors [11]. In the last few years, many
such sensors have been developed and marketed, such as Crop Circle (Holland Scientific, Lincoln, NE,
USA & Agleader, Ames, IA, USA), Yara N-Sensor (Yara, Oslo, Norway & Agricon, Ostrau, Germany),
GreenSeeker (N-Tech, Ukiah, CA, USA & Trimble, Sunnyvale, CA, USA) and OptRx (AgLeader, Ames,
IA, USA) [7,12]. Despite the growing use of optical sensors for monitoring the vegetation cover of
the globe (either through remote or proximal detection), NDVI tends to saturate for high values of
plant leaf area indices, which is when productivity has reached high values [1,9]. Figure 1 shows
the evolution pattern over the year of NDVI, measured by an active optical sensor (OptRx), of green
matter (GM) and dry matter (DM) of a pasture in Mitra farm, Alentejo, mean of three years, 2015/2016,
2016/2017 and 2017/2018, based on work published by Serrano et al. [2]. It is evident that there is a
drop in NDVI from February to March, while GM still increases in April and DM increases until June.
This behavior confirms the limitations resulting from the use of NDVI to estimate pasture productivity.
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Figure 1. Evolution pattern over the year of normalized difference vegetation index (NDVI), of green
matter (GM) and dry matter (DM) of a pasture in Mitra farm, Alentejo, mean of three years, 2015/2016,
2016/2017 and 2017/2018, based on work published by Serrano et al. [2].

Another specific proposal for estimating pasture productivity has been introduced by Novel
Ways Electronic, a New Zealand company that has developed a capacitance probe (Grassmaster 1I;
Figure 2), which was described by Serrano et al. [5,12]. This probe is based on the pioneering work
of Vickery and Nicol [13], who described the theory and the operating principles of such equipment.
Capacitance instruments are generally composed of an electronic circuit, which generates a signal of a
certain frequency and then carries out a measurement of the capacitance of the air-herbage mixture.
The probe produces an electric field that is modified by the pasture close to it. The modified field is
detected as a change in capacitance by the electronic circuit within the probe. This capacitance change
is proportional to the water content of the grass. Because the dry matter content is highly correlated
with the water content, the probe capacitance change is calibrated to the pasture yield, with linear
calibration equations used to correlate readings taken on a pasture over a short seasonal time, with
measured dry matter production [4,5]. The manufacturer has presented an equation with which the
computer module automatically calculates pastures’” productivity based on the readings from the
probe (Equation (2)). Nonetheless, this equation was calculated for New Zealand pastures, which are
composed of legumes and grasses, with an average dry matter of 14-16%.

DM = 0.72 x CMR — 2200 @)

where DM is the estimated productivity of the pasture, in kg of dry matter per hectare; and CMR is the
capacitance measured by the Grassmaster II probe.

The relation between pasture productivity and capacitance measured by the probe is influenced
by factors such as the mixture of plant species and their phenological stage [4,12,14,15]. Seasonal
adjustments to calibration equations are necessary, as the moisture content of pasture vegetation varies
with phenological stages and live/dead material ratio [12,16]. This variability requires the calibration
and validation tests to span the diversity of parameters related to permanent dryland pastures of
Alentejo area of Portugal. The growth and development of these pastures is conditioned by a series of
factors, such as soil fertility, the grazing strategy and, mainly, by the rainfall pattern, which introduces
an interannual variation in terms of both growth and development. Thus, it is difficult to conceive that
a generic equation can adequately portray the seasonal variability associated with the Mediterranean
climate, which is accentuated by the complexity of the montado ecosystem [6]. In this context, this
work presents the results of tests carried out in a long-term study between 2007 and 2019 to calibrate
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and validate a capacitance probe (Grassmaster II) to estimate pasture productivity in the montado
Mediterranean ecosystem and to determine the most suitable time to use this probe.

m@ Console
O

— PVC Sensor

Figure 2. Grassmaster II: electronic interface (console) and probe (PVC Sensor).

2. Material and Methods

2.1. Characteristics of the Experimental Sites

The experiments were carried out in two phases (Figure 3): (i) calibration phase, between 2007
and 2018, included measurements at three fields located in the Evora District (Figure 3); (ii) validation
phase, between February and June 2019, included measurements at eight parcels located predominantly
in Alentejo region (Figure 4). The characteristics of these eleven sites are presented in Table 1.

These annual or permanent biodiverse pastures (composed of different botanical species: legumes,
grasses, composites and other species) are representative of the regional dryland pastures, with
common characteristic in terms of a Holm oak or Cork oak montado, grazed by sheep or cattle in
a rotational or permanent system. The fact that they are located on soils that are poor, relatively
acidic and deficient in phosphorous leads some farmers to try to improve the productivity through
application of dolomitic limestone amendments and phosphorous fertilizers [11].

2.2. Pasture Sampling

Pasture sampling in the calibration phase was carried out at each location, with repetitions through
the growth cycle (between February and June), totaling 1411 samples, representative of the three fields:
“Mitra” (4.3 ha; 726 samples, taken during six years: 2007, 2013 and between 2015 and 2018); “Revilheira”
(6.1 ha; 199 samples, taken during two years, 2007 and 2013) and “Silveira” (7.2 ha; 486 samples, taken
during four years, between 2013 and 2016). Pasture sampling in the validation phase was carried
out between February and June 2019, in eight experimental fields with area of approximately 25 ha
(“Azinhal”, “Cubillos”, “Grous”, “Mitra B”, “Murteiras”, “Padres”, “Quinta Franca” and “Tapada”).
In each of these eight fields, nine samples that were representative of the pasture spatial variability
were taken at three different times, for a total of 216 samples (8 fields X 9 samples X 3 times).
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The sampling process consisted of measuring pasture capacitance with the Grassmaster II probe,
followed by placing a metal quadrat with an area of 0.1 m? (0.25 m x 0.40 m in size) over the pasture.
The pasture contained in this area was cut with electric shears and preserved in numbered plastic bags.
Once in the laboratory, the pasture sample was weighed to establish total biomass produced by unit
area (GM in kg ha™!), dried in an oven (72 h at 65 °C) and weighed again to establish productivity
in terms of dry matter per unit of area (DM in kg ha~') and PMC (pasture moisture content or green
matter moisture content wet basis, in %).

Calibration phase (3 sites; n=1411; 2007-2018; February-June)

‘i.l

e .
“Revilheira” “Silveira”

Grasses/Legumes Composites Grasses

General equations for PMC classes: GM = f(CMR) and DM = f(CMR)

Validation phase (8 sites; n=216; 2019; February-June)

“Azinhal” “Cubillos” “Grous” “Mitra B”

Composites Grasses/Legumes Composites Grasses/Legumes

« . ”
Murteiras “padres”

“Quinta Frang¢a”

Grasses/Legumes Legumes

Composites Grasses/Legumes

General equations for PMC classes: GM = f(CMR) and DM = f(CMR)

Figure 3. Schematic representation of the experimental methodology used in this work.
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Figure 4. Location of experimental farms in Alentejo region of Southern Portugal.
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Table 1. Characteristics of the eleven experimental fields used in this study.
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Site (Number . Predominant . . Sampling
of Samples) Coordinates Pasture Type Trees Animal Species Years
“Mitra” 38°322' N; (iflrgjrr;egft k;;"s‘ige;;z Holm oak Sheep in 2007; 2013;
(n =726) 8°01.1" W 8 permanent grazing 2015-2018
legumes)

“Revilheira” 38°27.9’ N; Permanent; biodiverse Holm oak and Sheep in rotational 2007: 2013
(n=199) 7°25.77 W (predominance of composites) Cork oak grazing !
“Silveira” 38° 62.2” N; Permanent; biodiverse Olive, Holm Sheep in

o , . oak and . 2013-2016
(n = 486) 7°94.8' W (predominance of grasses) Mulberries permanent grazing
“Azinhal” 38°6.2" N; Permanent; biodiverse Holm oak and Sheep in rotational 2019
(n=27) 8°26.9' W (predominance of composites) Cork oak grazing
“Cubillos” 39°10.0’ N; Annual; biodiverse (mixture Holm oak and  Cattle in rotational 2019
(n=27) 6°44.6’ W of grasses and legumes) Cork oak grazing
“Grous” 37°52.3' N; Permanent; biodiverse Holm oak Cattle in rotational 2019
(n=27) 7°56.7 W (predominance of composites) grazing
“Mitra B” 38°31.8' N; Pe.rmanent,' biodiverse Holm oak and  Cattle in rotational
o or (mixture of grasses and . 2019
(n=27) 8°0.9° W legumes) Cork oak grazing
“Murteiras” 38°23.4' N; Annual; biodiverse (mixture Holm oak and Sheep in 2019
(n=27) 7°52.5" W of grasses and legumes) Cork oak permanent grazing
“Padres” 38°36.4' N; Permanent; biodiverse Holm oak Cattle in 2019
(n=27) 8°8.77 W (predominance of composites) permanent grazing
Qumtﬁ 40°16.4" N; Pe.r manent; biodiverse Sheep and cattle in
Franca onE o (mixture of grasses and Eucalyptus . . 2019
(n=27) 7°25.9' W legumes) rotational grazing
“Tapada” 39°9.5" N; Permanent; biodiverse Holm oak and Cia;tilz’rs()};:fﬁ) r?;l 2019
(n=27) 7°31.9 W (mixture of legumes) Cork oak P&

grazing
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2.3. Statistical Analysis

The statistical analysis of the results included a descriptive analysis with calculation of average
and standard deviation (SD) of each dataset. An analysis of the linear correlations between capacitance
(CMR) measured by the probe and values of pasture productivity (pasture green matter and pasture
dry matter, respectively, GM and DM, in kg ha™!) was carried out with the MSTAT-C software, with
a significance level of 95% (p < 0.05). The data were organized and analyzed by pasture moisture
content (PMC) classes. The Pearson (r) correlation coefficient was used to measure the degree of
correlation or the linear dependence between variables and the coefficient of determination (R?), to
measure the proportion of the total variation of the dependent variable explained by the variation of
the independent variable. The rigor of the resulting regression models was evaluated by the absolute
value of the root mean square error (RMSE; Equation (3)) and its relative value (CVrmsg; Equation (4)).
This statistical parameter measures the average magnitude of the error resulting from the estimate.

RMSE =

®)

CVRMSE = RI\;SE x 100 (4)

where n is the number of observations; E; and M; are the estimated and observed (measured) values,
respectively; and y is the average value of each measured parameter.

3. Results and Discussions

3.1. Variability Pattern of the Measured Parameters
Tables 2 and 3 present the average values and the standard deviation of the parameters measured in

the monitored pastures, in each PMC class considered, in calibration and validation phases, respectively.

Table 2. Mean + standard deviation of the parameters measured in the pastures of the three fields used
in the calibration phase.

PMC Classes, % n CMR GM, kg ha—1 DM, kg ha~1
>85 236 8772 + 2887 23,696 + 17,570 2923 + 2067
80-85 331 7523 + 2370 14,351 + 9374 2444 + 1564
75-80 231 6488 + 2354 11,587 + 8753 2561 + 1930
70-75 187 6428 + 2429 9950 + 6712 2729 + 1834
65-70 143 5727 + 2624 8645 + 9825 2775 + 1756
60-65 118 5645 + 1726 8389 + 5892 3119 + 2202
<60 165 4586 + 1143 7023 + 5089 4586 + 1143
>80 567 8043 + 2668 17,119 £ 11,341 2570 + 1657
70-80 418 6461 + 2385 10,854 + 7939 2636 + 1887
<70 426 5262 + 1631 7946 + 5509 3175 £ 2313

PMC—pasture moisture content; n—number of samples; CMR—Grassmaster II measurements; GM—green matter;
DM—dry matter.

Table 3. Mean + standard deviation of the parameters measured in the pastures of the eight fields used
in the validation phase.

PMC, % n CMR GM, kg ha—1 DM, kg ha~1
>80 47 6651 + 3130 13,516 + 8974 2364 + 1576
70-80 98 6268 + 3091 11,782 + 7814 2901 + 1737
<70 71 4962 + 1231 6154 + 3955 2310 £ 1334

PMC—pasture moisture content; n—number of samples; CMR—Grassmaster II measurements; GM—green matter;
DM—dry matter.
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The spatial variability, detected by the high coefficients of variation of the pasture productivity,
GM and DM (around 50-80%; Tables 3 and 4) and Grassmaster Il measurements (CV of around 30%),
indicates the suitability of employing differentiated management techniques, which fits in the Precision
Agriculture concept.

Table 4. Linear regression equations proposed to estimate pasture green matter yield (GM), based on
Grassmaster II measurements (CMR), for each pasture moisture content (PMC) class considered.

PMC Classes, % N Linear Equations r RMSE, kg ha—1 CVRMsSE, %
>85 236 3.3319 *CMR - 8225.4 0.759 ** 5855 24.7
80-85 331 3.0236 *CMR — 8395.7 0.765 ** 4597 32.0
75-80 231 2.3271 *CMR - 35124 0.626 * 6813 58.8
70-75 187 1.4044 *CMR + 922.48 0.508 * 5766 57.8
65-70 143 1.4915 *CMR + 103.8 0.477 * 4852 56.1
60-65 118 1.46 *CMR + 146.37 0.428 * 5303 63.2
<60 165 2.1234 *CMR - 2714.2 0.445* 4460 63.5
>80 567 3.2963 *CMR - 9392.7 0.775 ** 4806 28.1
70-80 418 1.9042 *CMR — 1449.2 0.572 * 6839 63.0
<70 426 1.5881 *CMR —411.24 0.470 * 4837 60.9

PMC—pasture moisture content; n—number of samples; CMR—Grassmaster Il measurements; GM—green matter;
DM—dry matter; r—correlation coefficient; RMSE—root mean square error; CVrysg—coefficient of variation of
root mean square error; * correlation significant at the 0.05 level; ** correlation significant at the 0.01 level.

The number of measurements performed in each PMC class in calibration phase is presented in
Figure 5. More than 40% of measurements were performed with PMC > 80%, i.e., in the early stages of
the pasture vegetative cycle, usually in the months of February and March [17]. This is the period when
the probe has the highest sensitivity, given its operating principle: Essentially, this device responds to
the wet biomass [16], and according to the manufacturer of the probe, water is, by far, the material that
has the greatest effect on the probe signal. On the other hand, the probe does not provide any readings
when the pasture is dry (during summer) or when the pasture is wet (rain, frost or dew) [17].

500 -+
7]
c
e
o 400 -
8 331
@©
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Figure 5. Distribution of the number of measurements performed in each pasture moisture content

(PMC) class considered in the calibration phase.
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3.2. Correlations between Pasture Productivity and Grassmaster II Measurements

Tables 4 and 5 show, respectively, the linear regression equations between GM and CMR and
between DM and CMR, for each PMC class considered. For each regression equation, the correlation
coefficient (r) and the root mean error (RMSE) are presented in absolute value and in percentage

(CVRMSE)-

Table 5. Linear regression equations proposed to estimate pasture dry matter yield (DM), based on
Grassmaster II measurements (CMR), for each pasture moisture content (PMC) class considered.

PMC Classes, % n Linear Equations R RMSE, kg ha—1 CVRrMSE, %
>85 236 0.4592 *CMR — 1281.3 0.750 ** 844 28.8
80-85 331 0.4983 *CMR - 1304.5 0.755 ** 765 31.3
75-80 231 0.5065 *CMR — 725.1 0.618 * 1515 59.2
70-75 187 0.3819 *CMR + 274.19 0.506 * 1577 57.8
65-70 143 0.4829 *CMR + 9.1169 0.479 * 1562 56.3
60-65 118 0.5279 *CMR + 138.59 0.414* 1996 64.0
<60 165 0.7052 *CMR + 327.74 0.297 ns 2581 72.5
>80 567 0.4656 *CMR - 1174.8 0.750 ** 763 29.7
70-80 418 0.4483 *CMR — 260.57 0.567 * 1543 58.5
<70 426 0.4222 *CMR + 953.26 0.298 ns 2122 66.8

PMC—pasture moisture content; n—number of samples; CMR—Grassmaster Il measurements; GM—green matter;
DM—dry matter; r—correlation coefficient; RMSE—root mean square error; CVgysg—coefficient of variation
of root mean square error; * correlation significant at the 0.05 level; ** correlation significant at the 0.01 level;
ns—not significant.

Figure 6 shows the evolution of the correlation coefficient and coefficient of variation of the root
mean square error (CVgysg) of the green matter (GM) and dry matter (DM) prediction equations based
on pasture moisture content (PMC) classes considered in the calibration phase. The highest correlation
coefficients and the lowest CVyysg (better predictability) occur for PMC > 80%. As PMC decreases,
these indicators deteriorate: the correlation coefficient decreases, and the CVgpsg increases. For this
reason, the analysis of the data grouped by PMC classes (>80%; 70-80% and <70%) was also considered
(see Tables 2-5) in this study, which is in agreement with suggestions of several authors [18-21].
Figure 7 shows linear regression equations between CMR and pasture productivity (GM and DM) for
grouped class of PMC > 80%.

1.0 9 100 -
é — DM=f(CMR) @) = 901 — DM=f(CMR) ()
§ 081 — GM=f(CMR) E 80 — GM=f(CMR)
T 06 60
S 50 -
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021 20
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>85 8085 | 75-80 7075 6570 6065 <60 >85  80-85 | 75-80 7075 6570 60-65 <60
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Figure 6. Evolution of the correlation coefficient (a) and coefficient of variation of the root mean square
error (CVRrmsg; (b)) of the green matter (GM) and dry matter (DM) prediction equations, based on
pasture moisture content (PMC) classes considered in the calibration phase.
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Figure 7. Linear regression equations between Grassmaster II measurements (CMR) and pasture
productivity for pasture moisture content (PMC) > 80%: (a) green matter (GM) versus CMR; (b) dry
matter (DM) versus CMR.

According to Jamieson et al. [22], this estimate can be considered acceptable (CVrysg of 28.1% and
29.7%, respectively for GM and DM), especially considering that the application of sensor techniques to
evaluate the existing variability is difficult on permanent grassland with diverse species, plant spacing,
morphology and color [23]. Furthermore, the situation becomes more complex when grazing animals
are involved, which is the case, due to dynamic interactions between plants and animals [24]. This
degree of uncertainty associated with calibration and validation of this capacitance probe was also
quoted by other authors [3,14,25-27].

Figures 8-10 show the relation between pasture productivity measured in 2019, in eight
experimental fields (“Azinhal”, “Cubillos”, “Grous”, “Mitra B”, “Murteiras”, “Padres”, “Quinta
Franca” and “Tapada”—validation phase) and pasture productivity prediction based on the equations
obtained in calibration phase for PMC > 80%, 70-80% and <70%, respectively. Figure 8, referring to the
PMC class > 80%, confirms the closest approximation between pasture productivity (GM and DM)
predicted and measured, proving a very acceptable degree of confidence (CVrmsg of 23.6% and 27.3%,
respectively to GM and DM).
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Figure 8. Relation between pasture productivity measured ((a) green matter; (b) dry matter (DM)) in
2019, in eight experimental fields (“Azinhal”, “Cubillos”, “Grous”, “Mitra B”, “Murteiras”, “Padres”,
“Quinta Franca” and “Tapada”—validation phase), and pasture productivity predicted based on the
equations obtained in calibration phase for pasture moisture content (PMC) > 80%. R2—coefficient
of determination; RMSE—root mean squared error; CVyyigg—coefficient of variation of root mean
squared error.

These results are very promising, especially given the heterogeneity of biodiverse pastures.
Each pasture is a different ecosystem, with specific characteristics, which vary according to the different
plantspecies and their vegetative states [18-20]. Deviations of approximately 25% between the measured
and the estimated productivity are, in practice, not impeditive to support precision management
decisions in grazing systems, in particular for calculation and dynamic organization of the number of
animals per hectare. We believe that better results will only be possible in monospecies pastures, for
example, only legumes (such as Trifolium subterraneum) or grasses (such as Lolium multiflorum Lam.),
but very unrepresentative of dryland pastures in the Alentejo region [28].
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GM Predicted (kg ha ™)

DM Predicted (kg ha %)

Figure 9. Relation between pasture productivity measured ((a) green matter; (b) dry matter (DM)) in
2019, in eight experimental fields (“Azinhal”, “"Cubillos”, “Grous”, “Mitra B”, “Murteiras”, “Padres”,
“Quinta Franca” and “Tapada”—validation phase), and pasture productivity predicted based on the
equations obtained in calibration phase for pasture moisture content (PMC) 70-80%. R?>—coefficient
of determination; RMSE—root mean squared error; CVgyigg—coefficient of variation of root mean

squared error.
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The importance of estimating pasture productivity was already justified in the introduction of this
paper. It was also reported that each of the presented sensors or techniques has its own advantages
and disadvantages, in the context of high variability conferred by strong spatially variable phenology,
morphology, species composition and green vs. dry fraction characteristics of biodiverse pastures [1].
Various techniques have been developed to take indirect measurements of pasture biomass; each of
these has strengths and weaknesses in certain situations [10]. Today, agriculture faces challenges
related to competitivity and sustainability, which demand from the farm manager an up-to-date
knowledge of the existing options for optimizing the productive process [12]. Therefore, it should be
noted that electronic capacitance meter Grassmaster II, in the same way as the rising-plate meter or
the sward stick for example, fits in the proximal or ground methods that require an operator to carry
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out manual point-to-point measurements, and thus cannot provide continuous estimates across large
spatially diverse pastoral landscapes without considerable effort [29]. In addition, even the current
version (Grassmaster Pro), with an acquisition cost of 1995 NZ $ (about 1100 € plus shipping costs), is
somehow limited by its inability to connect with a GNSS (Global Navigation Satellite Systems) receiver,
which would have been fundamental from the perspective of mapping spatial variability. These
negative aspects put this probe at a disadvantage compared to several other similar pieces of equipment
that are available and can potentially connect with GNSS receivers and be mounted on motorized
vehicles (agricultural tractors, all-terrain vehicles, etc.), including the optical sensors (referred in the
introduction), C-Dax Pasture Meter (Pasture Meter, C-Dax Ltd., Palmerston North, New Zealand) or
the Farmworks Ultrasonic Feed Reader (Department of Primary Industries, Orange, Australia) [30].
Figure 11a shows the desirable immediate development for this type of sensors from the perspective of
“smart sampling” services assured by agricultural consultancy enterprises: the possibility to install on
a mobile platform that can be used for automated measurements and connection to a GNSS antenna.
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Figure 10. Relation between pasture productivity measured ((a) green matter; (b) dry matter (DM)) in
2019, in eight experimental fields (“Azinhal”, “"Cubillos”, “Grous”, “Mitra B”, “Murteiras”, “Padres”,
“Quinta Franca” and “Tapada”—validation phase), and pasture productivity predicted based on the
equations obtained in calibration phase for pasture moisture content (PMC) < 70%. R?>—coefficient
of determination; RMSE—root mean squared error; CVgyigg—coefficient of variation of root mean
squared error.
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Figure 11. (a) Desirable development of Grassmaster probe device: portability and georeferencing;
(b) probe sensitivity pattern.

The operating principle of the Grassmaster II probe, based on sensitivity to PMC [4,5], limits
its period of application, with greater accuracy at higher levels of PMC, not allowing, however,
precise readings during the final stage of the pasture growth cycle, which may constitute a limitation
for the management of animal grazing and food supplementation. This limitation is particularly
important because the focus on grazing management is becoming more critical, in an attempt to
reduce dependence on expensive imported supplements and to improve farm profitability [31]. Finally,
the same operating principle of the Grassmaster II probe (Figure 11b) showed, despite all of this,
the potential for accurate biomass estimation in an important time window of the vegetative cycle of
dryland pastures in the Mediterranean region. The geometry of the volume scanned by the probe, up
to 0.50 m in height and a radius of 0.10-0.15 m, provides this sensor with an important valence, that is,
the ability to integrate capacitance measurements of horizontal and vertical structure of pasture, which
overcome the limitations of only using pasture height measurements, or of solely using vegetation
indices [32]. This can also be an opportunity for improving biomass estimation accuracy from February
to March in the Mediterranean region, when pasture productivity reaches high values, leading to the
saturation of optical sensors [1]. This probe presents the profile for data integration or data fusion
approaches referred to by several authors [1,7,32,33], since it provides information related to physical
parameters such PMC and plant height, which can complement and refine the information obtained
from spectral reflectance measurements (by remote or proximal sensing) and increase the range over
which biomass can be estimated.

4. Conclusions

This long-term study (2007-2019) presents and validates equations for estimating pasture
productivity (green and dry matter) based on Grassmaster II capacitance probe measurements.
Considering the seasonal changes in pasture moisture content (PMC), it is clear that the more favorable
period for the use of the Grassmaster II probe in dryland biodiverse pastures in Alentejo region
of Southern Portugal coincides with the end of winter and beginning of spring (February—March;
PMC > 80%: r = 0.959; p < 0.01; RMSE = 3191 kg ha~!; CVrumsg = 23.6% for GM; and r = 0.953; p <0.01;
RMSE = 647 kg ha™!; CVrmsg = 27.3% for DM). From late spring onward (May-June), the rapid drop
in PMC adversely affects the measurements and the probe accuracy. The estimate of productivity
is crucial for the management of the animal grazing, in terms of animal stocking in each field, of
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animal rotation through the different fields, the calculation of the supplementary feed and forage needs
for the animals. It can be concluded that the capacitance probe is an expedient tool to support the
decision-making process in the management of dryland pasture and its respective dynamic grazing.
The results of this work open up good perspectives for an approach in future studies that evaluate if
pasture productivity estimation accuracy throughout the growing season could be further improved by
combining spectral reflectance measurements (obtained by RS or proximal sensing) with capacitance
probe measurements.
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