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Abstract: Plants respond to biotic and abiotic pressures by changing their biophysical and biochemical
aspects, such as reducing their biomass and developing chlorosis, which can be readily identified
using remote-sensing techniques applied to the VIS/NIR/SWIR spectrum range. In the current
scenario of agriculture, production efficiency is fundamental for farmers, but diseases such as target
spot continue to harm soybean yield. Remote sensing, especially hyperspectral sensing, can detect
these diseases, but has disadvantages such as cost and complexity, thus favoring the use of UAVs
in these activities, as they are more economical. The objectives of this study were: (i) to identify the
most appropriate input variable (bands, vegetation indices and all reflectance ranges) for the metrics
assessed in machine learning models; (ii) to verify whether there is a statistical difference in the
response of NDVI (normalized difference vegetation index), grain weight and yield when subjected
to different levels of severity; and (iii) to identify whether there is a relationship between the spectral
bands and vegetation indices with the levels of target spot severity, grain weight and yield. The field
experiment was carried out in the 2022/23 crop season and involved different fungicide treatments
to obtain different levels of disease severity. A spectroradiometer and UAV (unmanned aerial vehicle)
imagery were used to collect spectral data from the leaves. Data were subjected to machine learning
analysis using different algorithms. LR (logistic regression) and SVM (support vector machine)
algorithms performed better in classifying target spot severity levels when spectral data were used.
Multivariate canonical analysis showed that healthy leaves stood out at specific wavelengths, while
diseased leaves showed different spectral patterns. Disease detection using hyperspectral sensors
enabled detailed information acquisition. Our findings reveal that remote sensing, especially using
hyperspectral sensors and machine learning techniques, can be effective in the early detection and
monitoring of target spot in the soybean crop, enabling fast decision-making for the control and
prevention of yield losses.

Keywords: disease monitoring; classification analysis; machine learning; precision agriculture;
remote sensing

1. Introduction

The monitoring and mapping of crops on a large scale are essential to assist in man-
agement and decision-making in various crops, thus improving production efficiency in
a more technological way [1,2]. In this context, remote sensing is an effective strategy,
allowing better precision in agricultural monitoring, especially in the health of crops, such
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as soybeans, which are regularly affected by foliar diseases [3], which lead to irreversible
economic damage.

One of the diseases that affects the soybean [Glycine max (L.) Merril] is target spot
(Corynespora cassiicola), which has become increasingly prominent since 2010 due to the
use of sensitive cultivars and loss of sensitivity to regulated fungicides. Several resistant
strains of the fungus have emerged in recent years, increasing its spread and making
control difficult, generating economic losses in several soybean production areas [4]. Some
recent studies have reported yield losses of up to 24%. Among the factors that increase its
importance, its ability to survive in crop residues has a major impact [5]. Another aspect
of great importance for this disease is its host range, of which 530 plant species have been
reported [6–9].

Plants respond to biotic and abiotic pressures by changing their biophysical and
biochemical aspects, such as reducing their biomass and developing chlorosis, which can
be readily identified using remote-sensing techniques applied to the visible, near-infrared
and shortwave infrared spectrum range (VIS/NIR/SWIR) [10]. The early identification of
crop diseases offers adequate time to control potential epidemics and minimize yield losses.
In view of this, professionals in precision agriculture persist in the search for innovative
and economical solutions that easily and effectively address disease detection [11]. Due
to advances in technology, increasingly smaller, lighter and cheaper sensors have become
available for remote-sensing drone applications. In the literature, it is possible to find
detailed introductions to various drone remote-sensing systems [12,13].

A more sophisticated imaging technique, called hyperspectral imaging, uses re-
flectance data collected over a wide spectral range, usually between 350 and 2500 nm,
in order to reconstruct a spatial representation of the plant leaf under analysis through
highly specialized image processing procedures. Although the use of hyperspectral data
is an extremely informative approach that enables the detection of a wider range of plant
diseases compared to RGB imaging, it does have some disadvantages, including high costs,
longer data acquisition periods and complex data analysis, especially in situations where
rapid responses or extensive assessment of large areas are required [14]. In this sense, using
machine learning techniques allied to remote sensing enables technological advances in
the agricultural environment in crop monitoring, especially in phytosanitary aspects. The
authors of [15] recommend the processing of sensor data by using machine learning for
fast and accurate classification in crop diseases.

The hypothesis of this study is that it is possible to diagnose the occurrence of target
spot on soybean leaves using hyperspectral and multispectral sensors, and to analyze the
relationship between these spectral characteristics and the crop yield. The objectives of
this study were: (i) identify spectral differences between target spot disease severity levels;
(ii) investigate the relationship between disease severity levels and multi- and hyperspectral
data; (iii) identify the best input that guarantees the best performance of machine learning
algorithms between multi- and hyperspectral data.

2. Materials and Methods
2.1. Study Area

The study was carried out in the 2022/2023 crop season at Fazenda Nova França, at
the geographical coordinates of 53◦06′40.09′′ W, 18◦16′06.01′′ S, in the municipality of Costa
Rica, State of Mato Grosso do Sul, Brazil (Figure 1). According to Koppen classification, the
region’s climate is tropical humid (Aw), with a rainy season in summer and a dry season in
winter. The soil is classified as dystrophic Red Latosol with a very clayey texture [16].

Figure 2 shows the climatic conditions of the experiment throughout the soybean crop
cycle. The average temperature throughout the cycle was 21.39 ◦C and the average rainfall
was 26.22 mm. There was a higher rainfall rate close to 40 days after plant emergence and
mild temperatures, which favored the incidence of the disease and, as desired, provided
suitable conditions for the treatments.
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a previous crop. Data obtained from the chemical analysis of the soil are shown in Table 
1. Fertilization together with sowing was carried out by applying 171 kg ha−1 of NPK 
formulate 06-35-06 and 83 kg ha−1 of potassium chloride before sowing. Sowing was 
carried out on 15 October 2022, using the M 5947 IPRO soybean cultivar, which has 
INTACTA RR2 PRO technology and a relative maturity of 5.9, considered super early 
(3Tentos, Bárbara do Sul, Brazil). The sowing density adopted was eighteen plants m−1 and 
an initial population of 377,774 plants ha−1. The seedlings emerged on 20 October 2022. 
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Figure 1. Location of the study area (A), equipment used in hyper (B) and multispectral (C) imagery,
and diagram of the map of target spot severity obtained from NDVI index (D).
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Figure 2. Average rainfall and temperature conditions during the experiment.

The experiment was carried out in an area that had cotton (Gossypium hirsutum L.) as a previ-
ous crop. Data obtained from the chemical analysis of the soil are shown in Table 1. Fertilization
together with sowing was carried out by applying 171 kg ha−1 of NPK formulate 06-35-06 and
83 kg ha−1 of potassium chloride before sowing. Sowing was carried out on 15 October 2022,
using the M 5947 IPRO soybean cultivar, which has INTACTA RR2 PRO technology and a
relative maturity of 5.9, considered super early (3Tentos, Bárbara do Sul, Brazil). The sowing
density adopted was eighteen plants m−1 and an initial population of 377,774 plants ha−1. The
seedlings emerged on 20 October 2022. During the experiment, all the cultural treatments and
phytosanitary management were carried out according to recommendations for the crop, except
for the application of fungicides, which was carried out according to the treatments [17]. The
plots were composed of seven rows spaced 0.45 m apart and 5.5 m long, giving a total area of
17.3 m2. The useful area used for data collection was 4.0 m of the two central rows of each plot,
totaling 3.6 m2.
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Table 1. Chemical properties of the soil in the experimental area.

pH H + Al Ca Mg Al CEC B Cu Fe Mn Zn K P OM Clay V m

cmolc dm−3 mg dm−3 g dm−3 %

5.3 4.6 5.5 1.7 0.05 12.0 0.33 1.4 45.0 16.6 5.2 97.0 37.4 36.1 67 60.2 0.8

pH CaCl2; H + Al: potential acidity; Ca: calcium; Mg: magnesium; Al: aluminum; CEC: cation exchange capacity;
B: boron; Cu: copper; Fe: iron; Mn: manganese; Zn: zinc; K: potassium; P: phosphorus (Mehlich); OM: organic
matter; Clay: soil clay content; V: base saturation; m: aluminum saturation.

2.2. Experimental Design

Four experimental plots were set up per treatment, in which the plants were treated with
different fungicides, where we considered Treatment 1 to be 50% of the leaf area damaged
by the disease where no fungicide was applied. We chose Treatment 2 with 25% of the leaf
area damaged, where Pyraclostrobin + Fluxapiroxad (116.55 + 58.45 g of active ingredient
per ha−1) was applied, and Treatment 3 with healthy leaves, without symptoms of the
disease, obtained by spraying Azoxystrobin + Prothioconazole + Mancozeb (75 + 1050 + 75 g
of active ingredient per ha−1). These sprayings were carried out at intervals (15 days after
application—DAA) starting at 30 days after emergence (DAE), adding up to 3 applications
over the crop cycle. The spraying of each treatment was carried out with the aim of inducing
the onset of the disease for spectral measurement of severity levels.

On 18 January 2023, when the crop was in phenological stage R5.5 (grain filling—76 to
100% graining—in one of the four upper nodes on the main stem), the leaves were collected
from the plots of the different treatments, where 100 healthy leaflets, 100 leaflets with 25% sever-
ity and 100 leaflets with 50% severity were obtained (Figure 3), based on the diagrammatic
scale drawn up by [18]. These samples were identified and transported in a polystyrene box
from the field to the laboratory so that the turgidity of the leaflets was maintained.
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2.3. Spectral Analysis

The hyperspectral sensor analyses of each soybean leaf sample were carried out in
the laboratory of the Federal University of Mato Grosso do Sul (campus of Chapadão
do Sul), Brazil, using the FieldSpec 4 HRes spectroradiometer from Analytical Spectral
Devices (ASD, London, UK). This equipment can carry out spectral measurements over
a wide range from 350 to 2500 nm. Readings were recorded with an interval of 1.4 nm
in the 50 to 1050 nm range and 2 nm in the 1000 to 2500 nm range. The samples were
measured using the optional ASD Plant Probe reader (ASD, London, UK). One of the main
advantages of this option is that the spectral reading is not affected by the ambient light.
Using recommendations from [19], the spectral reading peaks related to the main plant
physiological characteristics and are described in Table 2.
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Table 2. Spectral band center as a function of plant characteristics.

Spectral Band Center (nm) Plant Physiological Characteristics

370 Phototropism
420 a-carotene
425 b-carotene
430 Chlorophyll absorption
440 a-carotene
445 xanthophyll
445 Chlorophyll synthesis
450 b-carotene
453 Chlorophyll b
470 a-carotene
475 Chlorophyll b
480 a-carotene
650 Chlorophyll synthesis
960 Chlorophyll absorption
1100 Chlorophyll absorption
1400 Water absorption
1930 Water absorption
2200 Al-OH, Mg-OH and CO3 peak

Ref [19].

The spectral bands of the repetitions in each treatment were extracted in order to
assess the best characterization of the disease in relation to spectral characteristics (whether
by spectral bands, vegetation indices [VIs], or by the direct reflectance of the sensor) and
phenological characteristics. The spectral bands were defined based on the reflectance peaks
of the electromagnetic spectrum in the identification of plant physiological characteristics
(Table 2). The spectral bands were calculated according to the methodology described
by [19] using the values obtained by calculating the difference between the reflectance
values at the point of least inflection and the point of greatest subsequent range. The ranges
of the bands used are described in Table 3.

Table 3. Intervals of the electromagnetic spectrum in each band analyzed.

Band Spectral Range (nm)

B1 390–420
B2 435–470
B3 480–550
B4 555–670
B5 680–750
B6 755–970
B7 1070–1120
B8 1270–1430
B9 1460–1650
B10 1850–1930
B11 2130–2460

On 20 January 2023, at 90 DAE, with the crop at reproductive stage R5.5, spectral
images were acquired by a remotely piloted aircraft (RPA) used as an aerial platform for
the multispectral sensor. RPA XFly X800 was equipped with a Micasense multispectral
camera, model Red-edge MX with 1280 × 960 pixels and with a spatial resolution in the
scene corresponding to 0.06 m (in each band). The system mapped images in the blue (B)
(475 nm center, 20 nm bandwidth), green (G) (560 nm center, 20 nm bandwidth), red (R)
(668 nm center, 10 nm bandwidth), red edge (RE) (717 nm center, 10 nm bandwidth), and
near-infrared (NIR) (840 nm center, 40 nm bandwidth) bands. The overflight was carried
out at a 60 m altitude. The images were orthorectified using the Pix4D program version
1.55 Radiometric correction was carried out based on a standard reflective target. The maps
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were manipulated and the vegetation indices extracted from the respective plots using the
ArcGis software version 10.5. The characterizations of these vegetation indices are shown
in Table 4.

Table 4. Vegetation indices calculated from reflectance values in the red (668 nm), green (560 nm), red
edge (717 nm), Nir (840 nm) and blue (475 nm) spectral bands collected by the multispectral camera.

Abbreviation Vegetation Index Equation Reference

NDVI Normalized difference
Vegetation index

(Nir−R)
(Nir+R)

[20]

NDRE Normalized difference Red
edge index

(Nir−RE)
(Nir+RE)

[21]

SAVI Soil-adjusted Vegetation
index (1 + 0.5)× (Nir−R)

(Nir+R+0.5)
[22]

GNDVI Green normalized Difference
vegetation

(Nir−G)
(Nir+G)

[23]

EVI Enhanced vegetation Index (Nir−R)
((Nir+(6×R)−(7.5×B)+1)))

[22]

MCCI Modified canopy
Chlorophyll content index

NDRE
NDVI [24]

Nir: near-infrared reflectance; R: red reflectance; RE: red edge reflectance; G: green reflectance; B: blue reflectance.

2.4. Data Analyses

By sowing with an early-cycle cultivar, we were able to isolate the target spot factor
without the presence of other diseases. Data obtained from reflectance bands and vegetation
indices were submitted to machine learning analysis (Table 5); the algorithms were selected
because they are most used in agriculture for various tasks. The parameters were adjusted
according to the default settings in the Weka 3.8.5 software. The ANN used was of the
multilayer perceptron type using a backpropagation algorithm to adjust the weights of
the neural network connections with learning rates equal to 0.3, moment rates equal to 0.2
and 500 epochs, containing 10 neurons in the first layer and 10 neurons in the second. The
J48 algorithm is an adaptation of the C4.5 classifier and can be used in various classification
and prediction tasks, with a pruning procedure being adopted and the minimum number
of instances allowed in a leaf node adopted was equal to 4. REPTree is a model similar
to the decision tree, which generates several trees in different interactions, selecting the
best tree using information gain and performing error reduction pruning such as split
classifications. RF produces multiple prediction trees for the same dataset and uses a voting
scheme among all learned trees to predict new values. SVM performs classification tasks
by building hyperplanes in a multidimensional space to distinguish different classes.

Table 5. Machine learning models used in classification.

ML Machine Learning Model Reference

ANN Multilayer perceptron artificial neural network [25]
J48 J48 decision tree [26]
RL Logistic regression [27]
DT REPTree decision tree [28]
RF Random forest [29]
Rt Random tree decision tree [30]

SVM Support vector machine [31]

The effectiveness of the machine learning model was evaluated using performance
metrics, including the correct classification percentage (CC), F-score and the Kappa co-
efficient (Table 6). The performance of the models was then subjected to an analysis of
variance to determine whether there were significant differences between the variables and
the machine learning models, as well as to assess the interaction between them.
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Table 6. Accuracy of the algorithms and their respective equations.

Abbreviation Accuracy Equation

CC Correct classifications CC = (number of correct predictions)
(total instances)

F-score F-score 2×(Precision × recall)
(Precision + recall)

Kappa Kappa coefficient Kappa = (observed agreement− agreement expected by chance)
(1− agreement expected by chance)

The metrics were subjected to analysis of variance, and when significant differences
were obtained, boxplots were generated to visualize the means, grouped by the Scott–Knott
test at 5% significance level. All the bands, vegetation indices and yield data obtained from
plots with healthy leaves and 25 and 50% severity levels were subjected to multivariate
canonical analysis. The grouping of means by Scott–Knott and canonical variables were
carried out using the Rbio software [32], while the boxplots were generated using the
ggplot2 and ExpDes.pt packages on the R software version 4.1.0.

3. Results

Disease severity levels showed different hyperspectral curves (Figure 4). It is remark-
able that the highest reflectance in the visible region occurred in the highest severity leaves
(50%), while the lowest reflectance was in the healthy leaves, especially in the 508–700 nm
wavelengths corresponding to bands B3, B4 and B5.
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Figure 4. Spectral signature for each level of target spot severity in soybean.

Healthy leaves showed similar reflectance at a severity level of 25% in the wavelength
range from 725 to 863 nm, from which point there was a decrease in reflectance up to
the short-wave infrared (SWIR) region. In the near-infrared (NIR) region, 50% severity
showed low reflectance between the wavelengths from 725 to 794 nm, with a subsequent
increase in reflectance from this point up to the SWIR bands. This behavior was notably
represented by bands B6, B7 and B8, corresponding directly to the water content in the
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leaves. Meanwhile, the 25% severity level revealed an increase in reflectance in the 725 to
1346 nm range, showing intermediate reflectance in the SWIR region.

Canonical analysis revealed a closer relationship between healthy leaves and NDRE
and GNDVI (Figure 5A). Leaves with 25% severity were close to the 680–750 nm, and
1460–1650 nm bands. More severely attacked leaves were close to the 435–470 nm,
2130–2460 nm, and 1850–1930 nm ranges, where the wavelengths presented an increase in
reflectance at these levels of severity (Figure 4).
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Figure 5B shows that healthy leaves and yield were closest to the SAVI, EVI, 840 nm
and grain weight vectors. Leaves with 25% severity were close to 475 nm, 560 nm, 668 nm,
and 717 nm wavelengths.

Overall, the levels of disease severity differed from each other and formed different
spectral signatures. Thus, data were submitted to machine learning (ML) analysis in or-
der to find the best algorithm for classifying target spot severity levels in soybean. Six
ML algorithms and three different input configurations were used, resulting in a signifi-
cant interaction between them for the three accuracy metrics tested: correct classification
percentage (CC), F-score, and Kappa.

For the CC and Kappa metrics (Figure 6), when using the bands as input configuration,
the best performance was achieved by LR and ANN. When using VIs as input, ANN
outperformed the other algorithms. Using all the reflectance values provided by the sensor,
LR and SVM showed the highest accuracies. When comparing the three inputs within the
algorithms, all had the best performance when using all the reflectance information from
the sensor.

Considering the F-score metric using bands as input, the best performances were
achieved by the RF, LR, ANN and SVM algorithms (Figure 6). Using VIs as input, LR and
ANN showed the best responses. Using all the information provided by the sensor, LR and
SVM had the best results. Comparing the three inputs within each algorithm, J48, RF and
RNA were better using the bands. REPtree and LR had similar performances using bands
or reflectance. SVM achieved better accuracy using reflectance as input.
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Figure 6. Boxplots for the accuracy metrics correct classification percentage (CC), Kappa, and F-score
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reflectance ranges provided by the hyperspectral sensor. Averages followed by the same uppercase
letters for the different inputs and the same lowercase letters for the different ML algorithms do not
differ by the Scott–Knott test at 5% probability.

4. Discussion

The biophysical and biochemical behavior of plant tissue can be altered due to ex-
ternal environmental factors such as diseases, causing changes in tissue color, leaf shape,
transpiration rate, leaf morphology and density, which leads to modified optical properties
in the leaf tissue, altering its spectral response [33,34]. The composition and content of
pigments are modified when leaves are exposed to pathogens that cause chlorotic and
necrotic symptoms [34], such as target spot.

In the visible range (VIS) between wavelengths 400 and 700 nm, there is low reflectance
of the canopy due to the absorption of chlorophyll and other pigments [35], as shown in
the reference table, where the visible region is more closely related to photosynthesizing
pigments such as chlorophyll, anthocyanins, and carotenes. Therefore, this range can be
used to detect changes in leaf color caused by diseases and stress in plants [36]. The low
reflectance in the visible spectrum range is indicative of the efficiency of these photosynthe-
sizing pigments in absorbing light to sustain the essential metabolic activities of plants and
the higher reflectance of the plants affected by the disease is due to the damage caused to
the pigments, negatively affecting their function in the plant and altering their reflectance
in this range [37]. This relationship between reflectance and photosynthetic pigments
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provides important information for understanding the physiological conditions and the
state of the health of the plants.

In the visible range, reflectance increases in proportion to the severity of the disease.
However, in the near-infrared (NIR) region, higher reflectance is observed in healthier
leaves [38]. Overall, healthy plants have low reflectance in the visible and mid-infrared re-
gions and high reflectance in the NIR [39], This pattern of reflectance in the spectral regions
provides valuable indications of the plant’s phytosanitary condition, and is particularly
relevant for plant health assessments and early detection of diseases. This behavior was
partially observed in the hyperspectral signatures in Figure 3, with the exception of the
725–863 nm band, where there was a peak of reflectance in healthy leaves similar to leaves
with a 25% severity level.

Changes observed in the spectral signature at 25% severity when compared to healthy
leaves can provide early information on the biochemical changes in the leaf caused by
the disease, and the use of a hyperspectral sensor is essential for implementing effective
strategies to diagnose target spot and prevent major crop losses [36]. Furthermore, VIs
calculated from the reflectance of the VIS and NIR bands can provide more accurate esti-
mates of chlorophyll content, ensuring accurate results regarding the plant’s photosynthetic
activity [40].

In the SWIR region, a higher reflectance is remarkable at the highest level of disease
severity, as this band is associated with the leaf’s chemical composition and water con-
tent [41,42]. Several studies have reported an increased reflectance in the SWIR region in
leaves with a higher severity of diseases such as powdery mildew, grapevine leafroll virus
and rust as a result of water loss through the lesions [42–44].

Detecting, identifying and quantifying plant diseases using sensors allows more ap-
propriate management, as the sensors are sensitive, accurate and easy to use for evaluating
diseases [45]. Choosing the sensor to use will depend on the resources available, since
multispectral sensors are easier to acquire from an economic point of view. By canonical
analysis, it can be seen that the multispectral sensor had a higher relationship between
healthy leaves and grain weight, both close to the VIs SAVI and EVI, and the 840 nm
wavelength. Thus, using this sensor for obtaining these VIs is more sensitive for estimating
possible yields in healthy plants due to its higher proximity to grain weight.

There was a behavior in which healthy leaves had a higher association with NDRE
and GNDVI when the hyperspectral sensor was used. Using vegetation indices from
calculations on the VIS/NIR range can be efficient in agricultural disease monitoring, and
can detect changes in vegetation caused by disease attack [3].

Leaves with 25% severity were close to the 680–750 nm range, equivalent to B5, and
the 1460–1650 nm range, equivalent to B9. The stronger relationship between these spectral
bands and the lower severity of the disease enables early identification of target spot. The
hyperspectral sensor deserves to be highlighted in this relationship with lower disease
severity levels because plants with a 25% level are still unable to see symptoms in the upper
third, making it difficult for the multispectral sensor to capture differences.

The most severely attacked leaves were in the 435–470 nm, 1850–1930 nm, and
2130–2460 nm bands, where Figure 3 shows an increased reflectance in these bands in
the hyperspectral signature. The 435–470 bands belong to the visible region, which have
a higher relevance for classifying the disease, as they are directly related to the pigment
absorption regions, which suffer disturbances characterized by chlorosis when the
disease is present [10]. The SWIR region covering the 1850–1930 and 2130–2460 bands
tends to increase its reflectance when the leaf’s internal water content decreases, which
is directly related to a higher disease infection rate [46].

Once the disease severities had been distinguished spectrally, this information was
used in machine learning models to find accurate algorithms for classifying disease severity.
Overall, the algorithms showing the best results for the three metrics were LR and SVM
using reflectance, i.e., using all the information from the spectral range provided by the
sensor. The authors of [47] found high accuracy values in the classification of diseased
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and healthy leaves by using the SVM algorithm, similarly to [44], who used LR to find
a disease detection model. The SVM has been proven to be an effective algorithm in
several classification tasks, such as classifying soybean genotypes regarding the primary
macronutrient contents [48] and classifying soybean genotypes according to their content
of industrial grain parameters [10]. In both studies, using the raw information provided by
the sensor guaranteed better results for the algorithm. Here, both algorithms had better
accuracies using all the information provided by the hyperspectral sensors. Hyperspectral
data provide a detailed characterization of the object studied, allowing the assimilation of
specific spectral variations for detecting diseases and according to the specifications of each
severity level for each disease [49].

Using hyperspectral sensors allowed a more comprehensive acquisition of information
across the leaf spectrum, taking into account the different severity levels. This is because
hyperspectral sensors allow information about the chemical properties of what is being
evaluated to be obtained, enabling the identification, detection and analysis of the chemical
composition of the material, in our case related to the physiology of the plant, facilitating
various activities in agriculture and an essential role in harvest monitoring and planning [50].
In our study, this in-depth spectral analysis offers a more detailed understanding of leaf con-
ditions at different severity levels, contributing significantly to the accuracy and sensitivity
of plant-health assessments. Using this advanced approach represents remarkable progress
in monitoring and diagnostic abilities, with promising implications for management and
decision-making in agricultural and environmental contexts.

5. Conclusions

Applying the methodology used in this research and expanding it to other phy-
tosanitary problems in different crops is a promising perspective for advancing disease
monitoring in agriculture. In this way, the approach allows the development of broader
strategies for monitoring and controlling diseases in various agricultural crops using hy-
perspectral data and machine learning, thus enabling the expansion of these discoveries for
accurate and even early diagnosis of diseases. The discovery of the algorithm that deals
better with the task of classifying target stain severity levels makes it possible to use it in an
unsupervised way to classify the disease when its severity is unknown to the professional,
making the process more assertive for making decisions on the management strategy to be
carried out.

In addition to the relevant findings provided by hyperspectral data, the employment
of machine learning algorithms provided significant classification performance, achieving
high accuracy in identifying different levels of disease severity. This robust performance
suggests that both LR and SVM algorithms are effective, especially when using all available
information from the spectral range provided by the sensor to classify target spot severity
in soybeans.

Hyperspectral sensors allowed greater acquisition of information across the spectrum
of leaves with different levels of severity of the target spot disease. Our results reveal that
the LR and SVM algorithms provide high classification accuracy and are therefore best
suited for identifying disease severity levels in soybean using the entire reflectance range
of the plants.

Author Contributions: Conceptualization, J.D.d.Q.O. and D.C.S.; methodology, F.H.R.B.; software,
D.C.S. validation, F.H.R.B., P.E.T. and G.d.F.T.; formal analysis, D.C.S.; investigation, J.D.d.Q.O.;
resources, P.E.T. and L.P.R.T.; data curation, P.E.T.; writing—original draft preparation, J.D.d.Q.O.;
writing—review and editing, D.C.S. and F.H.R.B.; visualization, J.T.d.O., I.C.d.O. and C.A.d.S.J.;
supervision, F.H.R.B.; project administration, P.E.T.; funding acquisition, P.E.T. All authors have read
and agreed to the published version of the manuscript.

Funding: Universidade Federal de Mato Grosso do Sul (UFMS), Universidade do Estado do Mato
Grosso (UNEMAT), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)—Grant
numbers 303767/2020-0, 309250/2021-8, 306022/2021-4 and 304979/2022-8, and Fundação de Apoio
ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT)



AgriEngineering 2024, 6 341

TO numbers 88/2021, 07/2022, 318/2022 and 94/2023, and SIAFEM numbers 30478, 31333, 32242
and 33111. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior—Brazil (CAPES)—Financial Code 001.

Data Availability Statement: Data are available from the corresponding author on reasonable request.

Acknowledgments: The authors would like to thank the Universidade Federal de Mato Grosso do
Sul (UFMS), Universidade do Estado do Mato Grosso (UNEMAT), Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico (CNPq).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhao, M.; Dong, Y.; Huang, W.; Ruan, C.; Guo, J. Regional-Scale Monitoring of Wheat Stripe Rust Using Remote Sensing and

Geographical Detectors. Remote Sens. 2023, 15, 4631. [CrossRef]
2. Chen, H.; Li, H.; Liu, Z.; Zhang, C.; Zhang, S.; Atkinson, P.M. A Novel Greenness and Water Content Composite Index (GWCCI)

for Soybean Mapping from Single Remotely Sensed Multispectral Images. Remote Sens. Environ. 2023, 295, 113679. [CrossRef]
3. Arantes, B.H.T.; Martins, G.D.; Carvalho, E.R.; Nogueira, L.C.A. Identificação de Ferrugem Na Soja Por Meio de Imagens de Alta

Resolução Espacial. Rev. Bras. Geogr. Física 2019, 12, 1003–1016. [CrossRef]
4. Zhang, S.-L.; Sun, Q.; Cao, Y.; Ji, Y.-P.; Zhang, Y.-J.; Herrera-Balandrano, D.D.; Chen, X.; Shi, X.-C.; Wang, S.-Y.; Laborda, P.

Biocontrol of Corynespora Cassiicola in Soybean Using a New Phenethyl Alcohol-Producing Meyerozyma Caribbica Strain. Biol.
Control 2023, 184, 105287. [CrossRef]

5. Edwards Molina, J.P.; Paul, P.A.; Amorim, L.; Da Silva, L.; Siqueri, F.V.; Borges, E.P.; Campos, H.D.; Venancio, W.S.; Meyer, M.C.;
Martins, M.C. Effect of Target Spot on Soybean Yield and Factors Affecting This Relationship. Plant Pathol. 2019, 68, 107–115.
[CrossRef]

6. Dixon, L.J.; Schlub, R.L.; Pernezny, K.; Datnoff, L.E. Host Specialization and Phylogenetic Diversity of Corynespora Cassiicola.
Phytopathology 2009, 99, 1015–1027. [CrossRef]

7. Sumabat, L.G.; Kemerait, R.C., Jr.; Brewer, M.T. Phylogenetic Diversity and Host Specialization of Corynespora Cassiicola
Responsible for Emerging Target Spot Disease of Cotton and Other Crops in the Southeastern United States. Phytopathology 2018,
108, 892–901. [CrossRef]

8. Aguiar, F.M.; Vallad, G.E.; Timilsina, S.; Veloso, J.S.; Fonseca, M.E.N.; Boiteux, L.S.; Reis, A. Phylogenetic Network Analysis of
South and North American Corynespora Cassiicola Isolates from Tomato, Cucumber, and Novel Hosts. Eur. J. Plant Pathol. 2022,
163, 657–671. [CrossRef]

9. Yamamoto, S.; Nomoto, S.; Hashimoto, N.; Maki, M.; Hongo, C.; Shiraiwa, T.; Homma, K. Monitoring Spatial and Time-Series
Variations in Red Crown Rot Damage of Soybean in Farmer Fields Based on UAV Remote Sensing. Plant Prod. Sci. 2023, 26, 36–47.
[CrossRef]

10. Bajwa, S.G.; Rupe, J.C.; Mason, J. Soybean Disease Monitoring with Leaf Reflectance. Remote Sens. 2017, 9, 127. [CrossRef]
11. Shahi, T.B.; Xu, C.-Y.; Neupane, A.; Guo, W. Recent Advances in Crop Disease Detection Using UAV and Deep Learning

Techniques. Remote Sens. 2023, 15, 2450. [CrossRef]
12. Anderson, K.; Gaston, K.J. Lightweight Unmanned Aerial Vehicles Will Revolutionize Spatial Ecology. Front. Ecol. Env. 2013, 11,

138–146. [CrossRef]
13. Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm.

Remote Sens. 2014, 92, 79–97. [CrossRef]
14. Farber, C.; Mahnke, M.; Sanchez, L.; Kurouski, D. Advanced Spectroscopic Techniques for Plant Disease Diagnostics. A Review.

Trends Anal. Chem. 2019, 118, 43–49. [CrossRef]
15. Koc, A.; Odilbekov, F.; Alamrani, M.; Henriksson, T.; Chawade, A. Predicting Yellow Rust in Wheat Breeding Trials by Proximal

Phenotyping and Machine Learning. Plant Methods 2022, 18, 30. [CrossRef] [PubMed]
16. dos Santos, H.G.; Jacomine, P.K.T.; Dos Anjos, L.H.C.; De Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; De Almeida, J.A.;

de Araujo Filho, J.C.; De Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Embrapa: Brasília, Brazil, 2018;
ISBN 8570358172.

17. Soja, E.; Dinali, C.; Seixas, S.; Alvadi, N.N.; Balbinot, A.; Francisco, J.; Krzyzanowski, C.; Villas, R.M.; De, B.; Leite, C.; et al.
Sistemas de Produção 17 Tecnologias de Produção de Soja; Embrapa Soja: Londrina, Brazil, 2020.

18. Soares, R.M.; Godoy, C.V.; Oliveira, M.C.N.D. Escala Diagramática Para Avaliação Da Severidade Da Mancha Alvo Da Soja. Trop.
Plant Pathol. 2009, 34, 333–338. [CrossRef]

19. da Silva Junior, C.A.; Nanni, M.R.; Shakir, M.; Teodoro, P.E.; de Oliveira-Júnior, J.F.; Cezar, E.; de Gois, G.; Lima, M.; Wojciechowski,
J.C.; Shiratsuchi, L.S. Soybean Varieties Discrimination Using Non-Imaging Hyperspectral Sensor. Infrared Phys. Technol. 2018, 89,
338–350. [CrossRef]

20. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec.
Publ. 1974, 351, 309.

https://doi.org/10.3390/rs15184631
https://doi.org/10.1016/j.rse.2023.113679
https://doi.org/10.26848/rbgf.v12.3.p1003-1016
https://doi.org/10.1016/j.biocontrol.2023.105287
https://doi.org/10.1111/ppa.12944
https://doi.org/10.1094/PHYTO-99-9-1015
https://doi.org/10.1094/PHYTO-12-17-0407-R
https://doi.org/10.1007/s10658-022-02505-x
https://doi.org/10.1080/1343943X.2023.2178469
https://doi.org/10.3390/rs9020127
https://doi.org/10.3390/rs15092450
https://doi.org/10.1890/120150
https://doi.org/10.1016/j.isprsjprs.2014.02.013
https://doi.org/10.1016/j.trac.2019.05.022
https://doi.org/10.1186/s13007-022-00868-0
https://www.ncbi.nlm.nih.gov/pubmed/35292072
https://doi.org/10.1590/S1982-56762009000500007
https://doi.org/10.1016/j.infrared.2018.01.027


AgriEngineering 2024, 6 342

21. Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L.
and Acer Platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292.
[CrossRef]

22. Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
23. Gitelson, A.A.; Merzlyak, M.N. Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of

Chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [CrossRef]
24. Perry, E.M.; Goodwin, I.; Cornwall, D. Remote Sensing Using Canopy and Leaf Reflectance for Estimating Nitrogen Status in

Red-Blush Pears. HortScience Horts. 2018, 53, 78–83. [CrossRef]
25. Egmont-Petersen, M.; de Ridder, D.; Handels, H. Image Processing with Neural Networks—A Review. Pattern Recognit. 2002, 35,

2279–2301. [CrossRef]
26. Quinlan, J.R. C4. 5: Programming for Machine Learning. Morgan Kauffmann 1993, 38, 49.
27. Štepanovský, M.; Ibrová, A.; Buk, Z.; Velemínská, J. Novel Age Estimation Model Based on Development of Permanent Teeth

Compared with Classical Approach and Other Modern Data Mining Methods. Forensic Sci. Int. 2017, 279, 72–82. [CrossRef]
[PubMed]

28. Al Snousy, M.B.; El-Deeb, H.M.; Badran, K.; Al Khlil, I.A. Suite of Decision Tree-Based Classification Algorithms on Cancer Gene
Expression Data. Egypt. Inform. J. 2011, 12, 73–82. [CrossRef]
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