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Abstract: Satellite remote sensing data expedite crop yield estimation, offering valuable insights
for farmers’ decision making. Recent forecasting methods, particularly those utilizing machine
learning algorithms like Random Forest and Artificial Neural Networks, show promise. However,
challenges such as validation performances, large volume of data, and the inherent complexity and
inexplicability of these models hinder their widespread adoption. This paper presents a simpler
approach, employing linear regression models fitted from vegetation indices (VIs) extracted from
MODIS sensor data on the Terra and Aqua satellites. The aim is to forecast cotton yields in key
areas of the Brazilian Cerrado. Using data from 281 commercial production plots, models were
trained (167 plots) and tested (114 plots), relating seed cotton yield to nine commonly used VIs
averaged over 15-day intervals. Among the evaluated VIs, Enhanced Vegetation Index (EVI) and
Triangular Vegetation Index (TVI) exhibited the lowest root mean square errors (RMSE) and the
highest determination coefficients (R2). Optimal periods for in-season yield prediction fell between
90 and 105 to 135 and 150 days after sowing (DAS), corresponding to key phenological phases such as
boll development, open boll, and fiber maturation, with the lowest RMSE of about 750 kg ha−1 and
R2 of 0.70. The best forecasts for early crop stages were provided by models at the peaks (maximum
value of the VI time series) for EVI and TVI, which occurred around 80–90 DAS. The proposed
approach makes the yield predictability more inferable along the crop time series just by providing
sowing dates, contour maps, and their respective VIs.

Keywords: remote sensing; cotton production forecast; Brazil

1. Introduction

Cotton holds significant economic importance in Brazil, ranking as the world’s fourth
largest producer and the second largest exporter. In the 2022–2023 season, Brazil cultivated
cotton across 1.66 million hectares, resulting in a total lint production of 3.03 million tons [1].

The majority of the cotton cultivation occurs within the Brazilian Cerrado, character-
ized by flat and arable lands with favorable rainfall ranging from 750 to 2000 mm/year
across the biome [2]. This region employs a highly mechanized, rainfed production system,
with approximately 92% occurring without irrigation [3]. Typically, cotton is cultivated
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from January to July, following the soybean harvest [4]. The primary cotton producing
states are Mato Grosso and Bahia, jointly contributing to around 90% of Brazil’s total
output [5].

Estimating in-season cotton yield over large areas at a regional or national level pro-
vides critical information for farmers, policymakers, governments, crop insurers, and
commodity traders. Yield estimations involve a combination of field surveys, remote sens-
ing, statistical regression, and crop simulation models [6,7]. Mid-season crop forecasting is
particularly vital for farmers, as it informs management decisions regarding harvesting,
storage, transport logistics, and planning for subsequent crops [8,9]. Early forecasting
cotton yield, before 90–100 days after sowing, provides valuable management information
for implementing corrective interventions, such as adjusting input applications (e.g., top-
dressing fertilizer and growth regulators), and comparing predicted yields to historical or
expected yields for specific fields.

While crop yield models have demonstrated adequate performances at the field scale,
their applications across large areas face challenges due to the substantial data volume
and computational processing costs [10]. To address them, statistical regression models
such as multiple linear regression and machine learning techniques have been employed to
integrate spectral indices from satellite data with climate variables at regional or national
levels [10–12]. Table 1 presents various studies on cotton yield estimation utilizing statistical
regression models or crop models combined with remote sensing across the regional and
field scale under different platforms (satellite, airplane, unmanned aerial vehicle (UAV), and
ground sensors) in diverse countries. Three of these studies developed regression models,
including Random Forest, to forecast cotton yield at a regional scale in China [10], India [11]
and Australia [12], using satellite-derived vegetation indices (VIs) and climate variables
as covariates. The models incorporated precipitation, temperature, evapotranspiration,
vapor pressure, soil moisture, and other climate variables. They utilized hundreds of
data instances from thousands of hectares across different farm fields over multiple crop
years for training and testing, resulting in root mean square errors (RMSE) for seed cotton
yield of 157 kg ha−1 [10], 375 kg ha−1 [11], and 976 kg ha−1 [12] in China, India, and
Australia, respectively.

Simple linear regression models have also been developed to predict cotton yield using
solely satellite-derived vegetation indices as independent variables [13–16], unmanned
aerial vehicle (UAV) [17–20], airplane [21], and ground sensor [22]. While vegetation
indices alone have limitations in capturing the complex relationships among production,
plant physiology, climate, soil nutrition, soil water parameters, pest and disease infestation,
and crop management characteristics [10], several studies have demonstrated their ability
to predict crop yield with reasonable accuracy [7,23,24]. On average, the RMSEs for
seed cotton yield for the linear regressions were comparable to those assessed by using
machine learning techniques and crop model approaches (Table 1), indicating the potential
advantages of linear regression models. These models operate with a smaller set of well-
defined independent variables, require less data manipulation, and utilize smaller data
instances compared to other approaches. Moreover, the greater mathematical explainability
inherent in linear equations for specific satellite products, vegetation indices, and crop
phenological stages allows for direct transferability and easy adaptation to other locations,
facilitating clearer understandings and comparisons among different models.

The current study assesses the feasibility of employing simple linear models to corre-
late cotton yield with VIs derived from satellite data obtained from the Moderate-Resolution
Imaging Spectroradiometer (MODIS) sensors aboard the Terra and Aqua satellites. The
aim is to forecast in-season cotton yield within the Brazilian Cerrado region. Reflectance
time series data from multiple MODIS spectral bands were extracted to assess 15-day
interval averages spanning from sowing to harvest of widely recognized VIs. These VI av-
erages, computed over various 15-day intervals, were accessed as predictors (independent
variables) within linear regression models to estimate cotton yield.
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Table 1. A review of previous studies for estimation of seed cotton yield using remote sensing.

Reference Country Plot
Area Model

RS Source
Regression RMSE

R2
ha Aproach Model kg ha−1

[10] China 355 - CV/RS Modis/Sentinel LSTM, SVM, RF 375 0.65
[25] EUA 12 150 CM/RS Spectroradiometer 468 -
[13] USA 3 188 RS Modis/Landsat LR 673 0.52
[14] USA - - RS Modis LR - 0.16
[11] India - - CV, RS Modis RF 157 0.69
[12] Australia 253 - CV, RS Landsat RF 976 -
[17] USA 1 5 RS UAV MLR 261 0.87
[26] USA 805 0.65 RS UAV ANN, RF - 0.72
[27] USA 1 57 RS Modis/Landsat 463 0.84
[28] USA - - EM/RS Sentinel - -
[18] USA 2550 6 RS UAV LR 550 0.92
[29] Brazil 1 90 RS Optical sensor decision trees - 0.81
[30] USA - 73 RS Landsat ANN 375–470 0.71
[31] USA 2 120 RS Landsat exponential 481 0.81
[19] Australia 90 7 RS UAV LR and quadradic - 0.75
[15] USA 949 - RS Modis LR - 0.48
[16] USA 24 0.2 RS NASA data LR - 0.85
[21] USA 48 1.5 RS Airborne LR - 0.47
[22] USA 44 5.3 RS Spectroradiometer LR - 0.89

CV: Climate Variables, RS: Remote Sensing, CM: Crop Model, EM: Ecosystem Model, RS: Remote Sensing,
UAV: Unmanned Aerial Vehicle, LSTM: Long Short-Term Memory, SVM: Support Vector Machine, RF: Random
Forest, LR: Linear Regression, MLR: Multiple Linear Regression, ANN: Artificial Neural, Network, RMSE: Root
Mean Square Error of seed cotton yield, R2: Coefficient of determination.

2. Materials and Methods
2.1. Experimental Areas and Dataset

The regression models utilized data from 281 commercial cotton farm fields (here-
inafter referred to as plots) across the states of Mato Grosso (125 plots), Goiás (83 plots),
and Bahia (73 plots) during the growing seasons from 2016 to 2022. Data from 2016–2018
seasons were gathered from surveys conducted by the Mato Grosso Cotton Institute [32,33]
and the Brazilian Agricultural Research Corporation [34], while data from the 2019 to
2022 seasons were obtained directly from cotton farmers. Figure 1 illustrates the spatial
distribution of the 281 plots. Most plots in Mato Grosso, Goiás, and Bahia were situated at
the western, southern, and western parts of the states, respectively.

The dataset contains information on seed cotton yield (kg ha−1), plot area (ha), cultivar,
plant line spacing (m), seed population (seed ha−1), sowing date, and water management
(irrigated vs. rainfed) for 281 plots. The average seed cotton yield was 4209 kg ha−1,
ranging from 694 kg ha−1 to 7361 kg ha−1. Low-yield plots occurred in rainfed plots
located in Mato Grosso and Goiás during the 2016 and 2022 seasons, likely due to drought
or irregular rainfall [35]. Conversely, most of the high-yielding plots were found in Bahia
under central pivot irrigation and in Mato Grosso and Goiás during seasons with favorable
rainfall distribution (2017 and 2018). Only 12% (34) of the plots were irrigated, all located in
Bahia (21) and Goiás (13). The remaining 88% (247 plots) were rainfed, with plots in Mato
Grosso (125), Bahia (52), and Goiás (70) relying solely on rainfall. Plant line spacing was
predominantly 0.9 m, with an average seed linear density of 10 seed m−1, resulting in an
average population of 111,111 seed ha−1. The average plot area was 188 ha and the average
cotton cycle lasted 196 days. Cultivars FM975WS, FM944GL, FM913GLT, and FM940GLT
(FiberMax, Basf, São Paulo, SP, Brazil), TMG42WS, TMG47B2RF, and TMG81WS (Tropical,
Melhoramento e Genética, Londrina, PR, Brazil), DP1243B2RF and DP1536B2RF (Deltapine,
Bayer, São Paulo, SP, Brazil), and IMA8405 (Instituto Matogrossense do Algodão, Cuiabá,
MT, Brazil) were the dominant choices for cotton growers in this study, representing
approximately 80% of all planted varieties.
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Figure 1. Spatial location of the 281 plots cultivated with cotton in the states of Mato Grosso (MT), 
Goiás (GO), and Bahia (BA) (typical Brazilian Cerrado biome) used to train (yellow dots) and test 
the models (blue dots) and three cotton plots zoomed (Plots 1, 2, and 3). 
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(acronym in Portuguese for: Tropical, Melhoramento e Genética, Brazil), DP1243 and 
DP1536 (DuPont, USA), and IMA8405 (acronym in Portuguese for: Instituto 
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study, representing approximately 80% of all planted varieties. 

Daily accumulated precipitations and extreme air temperatures (maximums and 
minimums) data were obtained for each plot by mean of the Brazilian agrometeorological 
monitoring system (web application) AGRITEMPO [36], which collects data from 
conventional and automatic weather stations, by taking the closest station to each plot and 
downloading the daily climate data from 0 to 180 days after sowing (DAS). The data were 
then averaged for month 1 (0–30 DAS) to 6 (150–180 DAS) and then correlated to the 
observed yield only to evaluate the effects of the climate variables on yield and to help 
explain possible bias between observed and predicted yields. 

2.2. Satellite Data Acquisition and Preprocessing 
With geographic co-ordinates of all plots, contour maps (kml format) were generated 

using the Google Earth Pro (Google, Mountain View, CA) and then converted to shapefile 
format using the QGIS software [37]. Spectral reflectance data and VIs were obtained as 
time series from the EOS-MODIS MCD43A4 V6.1 product [38]. This product provides 
daily surface reflectance data (NBAR) adjusted for Nadir bidirectional reflectance 
distribution function (BRDF) effects. It offers smoothed data with a 500 m spatial 

Figure 1. Spatial location of the 281 plots cultivated with cotton in the states of Mato Grosso (MT),
Goiás (GO), and Bahia (BA) (typical Brazilian Cerrado biome) used to train (yellow dots) and test the
models (blue dots) and three cotton plots zoomed (Plots 1, 2, and 3).

Daily accumulated precipitations and extreme air temperatures (maximums and min-
imums) data were obtained for each plot by mean of the Brazilian agrometeorological
monitoring system (web application) AGRITEMPO [36], which collects data from con-
ventional and automatic weather stations, by taking the closest station to each plot and
downloading the daily climate data from 0 to 180 days after sowing (DAS). The data were
then averaged for month 1 (0–30 DAS) to 6 (150–180 DAS) and then correlated to the
observed yield only to evaluate the effects of the climate variables on yield and to help
explain possible bias between observed and predicted yields.

2.2. Satellite Data Acquisition and Preprocessing

With geographic co-ordinates of all plots, contour maps (kml format) were generated
using the Google Earth Pro (Google, Mountain View, CA, USA) and then converted to
shapefile format using the QGIS software [37]. Spectral reflectance data and VIs were
obtained as time series from the EOS-MODIS MCD43A4 V6.1 product [38]. This product
provides daily surface reflectance data (NBAR) adjusted for Nadir bidirectional reflectance
distribution function (BRDF) effects. It offers smoothed data with a 500 m spatial reso-
lution. The product uses 16-day compositions with the best pixel selection (maximum
value composite) to create daily time series. The product includes spectral bands for
blue (0.459–0.479 µm), green (0.545–0.565 µm), red (0.62–0.67 µm), near infrared (NIR)
(0.841–0.876 µm), short-wave infrared (SWIR1) (1.23–1.25 µm), SWIR2 (1.628–1.656 µm),
and SWIR3 (2.105–2.155 µm). Google Earth Engine (GEE) platform [39], and its JavaScript
code editor, was used to extract these time series. The GEE code selects pixels within
each plot contour area, excluding those within 250 m of the boundary using a buffer com-
mand. This step ensured focus on the core area of each plot. Finally, the code calculated
and exported average reflectance values for each band across the entire growing season
(from sowing to harvest). The reflectance image and the time series graph were visually
inspected before exporting the representative time series for each plot in comma-separated
values (csv).

Spectral bands were then combined in an Excel®, (Tokyo, Japan) worksheet and the
VIs were calculated, averaged in 15-day intervals from 0 to 240 DAS, and correlated to
cotton yield for the each mutually exclusive interval. Reflectance data are plotted in a
logarithmic scale for better comparisons among the spectral bands. In Table 2 is shown a list
of the VIs and their definitions. A subset of plots (167) was randomly selected (balanced by
yield) and used for generating the regression models (training set). The remaining dataset
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(114 plots) was used for the independent model validation (test set), employing a well-
known cross-validation method set as 60–40% (train–test). Linear regression were fitted for
each combination of VI (Table 2) and time interval. Models’ accuracies were measured by
the Root Mean Square Error (RMSE) and determination coefficient (R2) estimated from the
test set. Linear regressions were performed, and the RMSE, R2, and statistical significance
(Analysis of Variance—ANOVA, New Providence, NJ, USA) of the fittings were calculated
using a spreadsheet program (Microsoft® Excel® 2019, version 2403).

Table 2. Vegetation indices used in this study.

Vegetation Indices Formulation Reference

Green Index (GI) GI = G/R [40]
Ratio Vegetation Index (RVI) RVI = NIR/R [41]
Chlorophyll Vegetation Index (CVI) CVI = (NIR × R)/G2 [42]
Soil-Adjusted Vegetation Index (SAVI) SAVI = 1.5 × (NIR − R)/(0.5 × NIR + R) [43]
Chlorophyll index—green (CIG) CIG = (NIR/G) − 1 [40]
Triangular Chlorophyll Absorption Ratio Index (TVI) TVI = 60 × NIR − G − 100 × (R – G) [44]
Green NDVI (GNDVI) GNDVI = (NIR − G)/(NIR + G) [45]
Enhanced Vegetation Index (EVI) EVI = 2.5 × (NIR − R)/(1 + NIR + 6 × R − 7.5 × B) [46]
Normalized Differential Vegetation Index (NDVI) NDVI = (NIR − R)/(NIR + R) [47]

G: green, R: red, NIR: near infrared, B: blue.

3. Results and Discussion

Examples of MODIS images (NIR band) and time series of all spectral reflectance
bands are shown in Figure 2 for a plot with very low cotton yield (1665 kg ha−1 in season
2016; Figure 2a, left) and high yield (4965 kg ha−1 in season 2017; Figure 2a, right). The
original smoothed daily time series are shown in Figure 2b and 15-day averaged time series
in Figure 2c. Reflectance data are plotted in a logarithmic scale for better comparisons
among the spectral bands. In general, lower reflectance values (greater absorption of
electromagnetic radiation) are observed for the blue, red, and green bands due to the
absorption of these light wavelengths by leaves through photosynthesis. Higher reflectance
in this range can be associated to plant stresses caused by biotic and/or abiotic factors.
The spectral range between 0.4 and 0.7 µm (visible region) is the photosynthetically active
radiation (PAR) that is the most efficient portion of the electromagnetic spectrum used by
the plant for photosynthesis. Healthy plants present high light absorption in the visible
range (0.4–0.7 µm) mainly by the leaf pigments like chlorophyll and carotenoids, relatively
high reflectance in the NIR range (0.7–1.1 µm) due to leaf and cell structure scattering effects,
and relatively low reflectance in the SWIR range (1.1–2.5 µm) due to water and chemicals
into the leaf structure [48,49]. For an actual instance, the low cotton yield (left graph in
Figure 2) was mainly caused by low precipitation (water stress) in the 2016 season [35],
which is noted by slight increases in red and blue reflectance (lower absorbance by cotton
plants), especially between 70 and 170 DAS, and decreasing NIR reflectance, as compared
to the high-yield plot (right).

Figure 3a shows the average time series of the seven MODIS spectral bands for
five classes of cotton yield (lower than 3, 3–3.75, 3.75–4.5, 4.5–5.25, and greater than
5.25 ton ha−1). As expected, the reflectance of NIR and SWIR1 bands increased with higher
cotton yield. Conversely, reflectance in the red, blue, SWIR2, and SWIR3 decreases as yield
increases, particularly from around 60–80 DAS until harvest. This trend is confirmed by
the correlation coefficients (r) between cotton yield and reflectance displayed in Figure 3b.
Notably, the green band reflectance, while higher than red and blue as expected, exhibits
no clear visual relationship with yield in Figure 3a. Figure 3b highlights the strongest
correlations between spectral reflectance bands and cotton yield. Positive correlations are
observed for NIR and SWIR1 bands, while negative correlations are found for SWIR3, red,
SWIR2, and blue bands. These findings, obtained using broadband satellite sensors, are
consistent with studies employing narrow-band ground measurements with spectrora-
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diometers. For example, Thenkabail et al. [50] reported a negative correlation between
cotton biophysical parameters (leaf area index, wet biomass, plant height, and crop yield)
for reflectance in the visible light range (350 nm to 700 nm) and positive correlations in the
near-infrared to short-wave infrared range (730 nm to 1050 nm).
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Cotton yield prediction for each 15-day interval during the growing season was at-
tempted using simple linear regression models. The nine vegetation indices listed in Table 2
were used as independent variables and the training dataset (167 plots) was employed for
model fitting. Figure 4b displays the determination coefficients (R2) achieved for these
VIs across DAS intervals. The highest R2 values were obtained for the TVI (0.69), EVI
(0.68), SAVI (0.67), and NDVI (0.61) during intervals between 120 and 165 DAS. This period
corresponds to the cotton late-season stage, encompassing boll opening and defoliation.
Figure 4a presents the average time series of these VIs for different cotton yield classes. A
general trend of saturation was observed for all VIs at the peak in the time series for the
highest yield classes. This effect was most pronounced for NDVI, which is consistent with
previous studies reporting NDVI saturation at high levels of green biomass or leaf area
index [51,52].
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The results suggest that TVI, EVI, and SAVI hold promise for in-season cotton yield
estimation within the training dataset, as they yielded the highest determination coeffi-
cients for yield prediction. Table 3 presents the linear regression models for the four VIs
with the highest R2 and statistically significant overall fit (analysis of variance, ANOVA,
p-value < 0.05) of the adjusted models for different 15-day intervals, ranging from 75–90 to
180–195 DAS. The table also includes models for the average VI from 75 DAS to harvest
(75–195 DAS) and the peak of the observed VI values throughout the season. Figure 5
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illustrates the relationships between cotton yield and TVI for different DAS intervals. While
the highest R2 (0.73) was achieved for the 75–195 DAS interval for TVI (Figure 5) and
the other VIs (Table 3), these equations would only be practical at the very end of the
season since they require data accumulation until 195 DAS for averaging. For in-season
forecasting, models derived from VI data between 105–120 DAS and 165–180 DAS yielded
the most promising results. However, intervals like 150–165 and 165–180 DAS are too close
to harvest and may not provide sufficient lead time for farmers to implement manage-
ment interventions effectively. Peak VI values have been explored in various studies for
in-season yield estimation [14,53]. In this study, the peak models exhibited lower R2 values
compared to those obtained between 105–120 and 165–180 DAS (Table 3) but remained
higher than those for 90–105 DAS interval. This suggests potential for earlier in-season
forecasts considering that peak VI values for TVI, EVI, SAVI, and NDVI typically occur
around 80 to 100 DAS, as seen in Figure 4.

Table 3. Linear regression models for predicting cotton yield from averaged 15-day TVI, EVI, SAVI,
and NDVI vegetation indices, averaged 75–195 DAS and peak (maximum value in the time series),
using the training dataset.

DAS Linear Model (TVI) R2
RMSE p-Value

DAS Linear Model (EVI) R2
RMSE p-Value

kg ha−1 (α = 0.05) kg ha−1 (α = 0.05)

75–90 Y = 111.96 TVI + 794.22 0.31 1088 3.3 × 10–15 75–90 Y = 5133.1 EVI + 315.9 0.28 1119 4.1 × 10–13

90–105 Y = 139.78 TVI − 90.918 0.47 953 9.5 × 10−25 90–105 Y = 6863.1 EVI − 1066.8 0.46 966 9.0 × 10−24

105–120 Y = 152.11 TVI − 269.52 0.58 856 1.7 × 10−32 105–120 Y = 7316.1 EVI − 1249.5 0.55 879 1.4 × 10−30

120–135 Y = 152.87TVI + 166.22 0.67 752 7.6 × 10−42 120–135 Y = 7013.0 EVI − 608.5 0.65 778 2.3 × 10−39

135–150 Y = 148.0 TVI + 878.89 0.69 735 1.8 × 10−43 135–150 Y = 6484.9 EVI + 292.1 0.68 778 2.7 × 10−42

150–165 Y = 147.88 TVI + 1553.7 0.64 783 6.5 × 10−39 150–165 Y = 6170.2 EVI + 1127.9 0.65 776 1.5 × 10−39

165–180 Y = 162.65 TVI + 1957.8 0.59 843 1.4 × 10−33 165–180 Y = 6456.5 EVI + 1636.5 0.59 842 1.1 × 10−33

180–195 Y = 195.06 TVI + 2130.5 0.49 941 1.1 × 10−25 180–195 Y = 7602.2 EVI + 1801.6 0.48 947 3.2 × 10−25

75–195 Y = 196.28 TVI − 189.77 0.72 690 5.9 × 10−48 75–195 Y = 8891.9 EVI − 1026.2 0.73 688 3.9 × 10−48

Peak Y = 150.52 TVI − 634.87 0.53 900 7.4 × 10−29 Peak Y = 7813.9 EVI − 1996.1 0.53 901 8.4 × 10−29

DAS Linear Model (SAVI) R2
RMSE p-value

DAS Linear Model (NDVI) R2
RMSE p-value

kg ha−1 (α = 0.05) kg ha−1 (α = 0.05)

75–90 Y = 6804.1 SAVI − 543.3 0.25 1140 8.2 × 10−12 75–90 Y = 6111.6 NDVI − 1057.4 0.12 1232 4.5 × 10−6

90–105 Y = 9495.4 SAVI − 2479.4 0.45 977 5.8 × 10−23 90–105 Y = 11,059 NDVI − 5334.6 0.31 1089 4.3 × 10−15

105–120 Y = 10,008 SAVI − 2696 0.55 1132 6.1 × 10−30 105–120 Y = 11,093 NDVI − 5287.1 0.35 1058 3.3 × 10−17

120–135 Y = 9164.3 SAVI − 1712.5 0.64 784 8.2 × 10−39 120–135 Y = 9500.8 NDVI − 3674.2 0.46 966 8.7 × 10−24

135–150 Y = 7937.6 SAVI − 415.88 0.67 753 9.7 × 10−42 135–150 Y = 7473.6 NDVI − 1618 0.55 884 3.6 × 10−30

150–165 Y = 7729.7 SAVI + 624.53 0.66 809 5.6 × 10−40 150–165 Y = 6243.6 NDVI − 80.36 0.61 816 6.0 × 10−36

165–180 Y = 7244.4 SAVI + 1251.7 0.59 840 7.9 × 10−34 165–180 Y = 5550.8 NDVI + 1002 0.57 861 4.8 × 10−32

180–195 Y = 8316.9 SAVI + 1422.3 0.47 952 7.5 × 10−25 180–195 Y = 5922.8 NDVI + 1386.4 0.46 970 1.6 × 10−23

75–195 Y = 11,152 SAVI − 2066.5 0.73 688 1.9 × 10−48 75–195 Y = 11,230 NDVI + 4003.9 0.67 752 8.1 × 10−42

Peak Y = 11,044.7 SAVI − 3770 0.51 919 2.3 × 10−27 Peak Y = 15,470 NDVI − 9131.6 0.39 1029 3.2 × 10−19

Y: seed cotton yield (kg ha−1); Peak: maximum value of the VI in the time series; p-value determined by ANOVA.

Model estimates for cotton yields using TVI equations (Table 3) are compared to
observed yields alongside their respective RMSE in Figure 6. Figure 7 illustrates variations
in RMSE (Figure 7a) and R2 (Figure 7b) across different DAS intervals for the four best
VIs. The lowest RMSE and highest R2 were achieved by EVI and TVI between 90–105
and 135–150 DAS (four DAS intervals), enabling in-season yield forecasting with RMSE of
approximately 750 kg ha−1 (Figure 7a). Averaged VIs for the period 75–195 DAS and peak
models displayed comparable RMSE values to the best models (EVI, TVI, and SAVI) for
15-day intervals (90–105 to 135–150 DAS) (Figure 7c). However, for EVI, the peak model
exhibited the lowest RMSE (726 kg ha−1). Figure 7d presents the average yield predictions
for the 114 testing plots at 105–120 DAS, 75–195 DAS, and peaks. The average observed
yield for the 114 plots stood at 4372 kg ha−1 (represented by the dotted horizontal line
in Figure 7d), with most linear models tending to overestimate yield by approximately
160 kg ha−1 on average. Overall, there were tendencies of overestimation for lower-yield
plots and underestimation for higher-yield plots, as evidenced in Figure 6 for TVI. However,
the 75–195 DAS model appears to reduce such bias. Although NDVI provided a closer
average yield forecast for the 114 plots compared to the measured average yield (Figure 7d),
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its RMSE was significantly higher than the other VIs (EVI, TVI, and SAVI) for all intervals
between 75 and 165 DAS. Therefore, the best performances were achieved with EVI and
TVI for the 105–120, 120–35, and 135–150 DAS intervals. If an earlier prediction is required,
the 90–105 DAS or peak models are preferred, as the RMSE for 75–90 DAS and earlier DAS
intervals were excessively high, and the R2 values were insignificant.
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The observed trend of overestimation for low-yield plots and underestimation for high
yields (Figure 6) can be further examined by correlating the residual error (yieldestimated
− yieldobserved; estimated by the peak model with TVI) for the observed yield of each
plot (Figure 8a). In this analysis, negative residual errors (indicating underestimation)
are evident for yields higher than approximately 4000 kg ha−1, while positive residual
errors (indicating overestimation) are observed for lower yield values. Several factors
may contribute and explain the variation in low and high yield plots, such as climate
conditions, soil type, soil fertility, diseases, cultivars, and others. However, in rainfed
cotton production, one of the primary driven factors affecting yield has consistently been
climatic condition, particularly variations in precipitation and temperature throughout the
season. Consequently, the choice of sowing date and cycle duration, determined based on
the recommended cultivar and local climatic patterns, is influenced by water demands and
temperature fluctuations during each stage of cotton development, ultimately impacting
the expected cotton yield. For the testing dataset, the earliest sowing date was 19 November.
Therefore, observed yield was correlated with sowing dates after 1 November as a proxy for
sowing data, independent of the year (Figure 8b), revealing a negative influence on yield.
Additionally, the cotton cycle duration, primarily dictated by the cultivar used, exhibited a
positive correlation with yield (Figure 8c). These two parameters are intrinsically linked to
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climatic conditions and both significantly influence observed yields, with a discernible trend
of increasing yield associated with earlier sowing dates and longer cotton cycle durations.

AgriEngineering 2024, 6, FOR PEER REVIEW  10 
 

 

  
Figure 6. Comparisons between observed and predicted seed cotton yield for the testing dataset 
(114 plots) for different 15-day DAS (75–90 to 180–195 DAS), 75–195 DAS (averaged period), the 
time series peak value, and their respective root mean square errors (RMSE), obtained using TVI 
linear regression models (Table 3). 

  
Figure 7. Root mean square error (RMSE) (a) and linear determination coefficients (R2) (b) between 
predicted and observed yield for the 114 plots of the testing dataset for different 15-day DAS; comparison 
of RMSE (c) and predicted yield (d) for 105–120 DAS, 75–195 DAS, and peak equations for TVI, EVI, SAVI, 
and NDVI. Dotted horizontal line in d) represents the average observed yield for the 114 plots. 

Figure 6. Comparisons between observed and predicted seed cotton yield for the testing dataset
(114 plots) for different 15-day DAS (75–90 to 180–195 DAS), 75–195 DAS (averaged period), the time
series peak value, and their respective root mean square errors (RMSE), obtained using TVI linear
regression models (Table 3).

The most significant correlations between monthly accumulated precipitation and
yield were observed in the third and fourth months after sowing (r = 0.59 for 60–90 DAS and
0.39 for 90–120 DAS; Figure 8d), corresponding to the mid-season of cotton growth, from
canopy closure until flowering and boll development stages. In the first month, rainfall
demonstrated an adverse effect on yield (r = −0.29), as high-intensity rainfall during the
early season can potentially damage the germination process. Monthly averaged maximum
and minimum temperatures, along with their differences (Tmax − Tmin) also exerted an
influence on yield, particularly after the third month (r = −0.49).

Several studies, such as those listed in Table 1, have investigated the optimal timing for
acquiring satellite and UAV images or ground measurements for cotton yield predictions.
Some studies have relied on single-date images, while others have assessed images at spe-
cific phenological stages or analyzed complete time series data. Table 4 provides a summary
of the optimal periods, expressed in DAS, as inferred from the literature cited in Table 1.
The most favorable correlations between cotton yield and the VIs have been reported across
various stages, ranging from the flowering and boll development period [12,18,22,26–31]
to boll opening, maturation, and defoliant application [10,15–17,19,21,27,30]. Notably,
these findings align with the results obtained in the present study. Specifically, the study
conducted by Lang et al. [10] in Xinjiang Province, China, spanning from 2012 to 2019
and encompassing 355 plots, yielded results strikingly similar to ours, with the lowest
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RMSE and highest R2 observed during the fourth and fifth months after sowing (90–120 to
120–150 DAS).
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Figure 8. Relationships between the residual error (Yieldestimated − Yieldobserved; estimated by TVI
peak model) and observed cotton yield (a); observed yield and sawing day from 1 November (b);
observed yield and cotton cycle (c); and correlation coefficients (r) between observed yield and
monthly accumulated precipitation, monthly averaged minimum (Tmin) and maximum (Tmax)
temperatures, and Tmax − Tmin (d) for month 1 to 6 after sowing.
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Table 4. Optimal periods for remote sensing (RS) image or data acquisition, expressed in days after
sowing (DAS), considering best correlations between yield and VIs from different studies.

Reference RS DAS Reference RS DAS

[19] UAV 150–170 [27] Satellite 100
[30] Satellite 90–160 [26] UAV 90–100
[10] Satellite 90–150 [12] Satellite 90 *
[15] Satellite 120 [31] Satellite 80–90
[21] Airborne 115 * [18] UAV 80 *
[17] UAV 90–120 [29] Active Sensor 60–100
[16] Satellite 105 [22] Spectroradiometer 75

* single date applied.

The most effective forecasting models for the mid to late-season period (90 to 150 DAS)
on a regional scale can serve as valuable advance information for various stakeholders,
including commodity traders, policymakers, governments, and, in some instances, farmers.
This information can aid farmers in logistical planning and preparing for the next crop
season, such as determining fertilizer needs based on the nutrient exportation from the
previous crop. However, for certain in-season interventions like topdressing fertilizer
applications, some forecasting models may not be practical. This is because most top-
dressing fertilizers (both macro and micronutrients) are typically applied before 100 DAS.
Nonetheless, earlier prediction using peak models still offers a window of opportunity for
topdressing fertilizer intervention. For instance, by around 80 DAS, cotton plants have
absorbed 45%, 50%, and 80% of sulfur, potassium, and nitrogen, respectively [54].

4. Conclusions

The forecasting methodology, employing simple regression models and time series
intervals for cotton yield prediction using the MODIS product MCD43A4 V6.1 allowed
in-season prediction with an RMSE of approximately 750 kg ha−1 at a regional scale across
three cotton-producing states in the Brazilian Cerrado. This straightforward approach
offers ease of application and can be readily utilized for predicting seed cotton yield at farm,
region, and national levels. One limitation of the approach is the coarse spatial resolution
of the MODIS product, which restricts its applicability primarily to large commercial plots,
characteristic of crop production systems in the Brazilian Cerrado.

Among the nine VIs evaluated, EVI and TVI emerged as the most effective individual
predictors. However, it is important to note that accuracies, as assessed by mean of RMSEs,
were notably low up to 75 DAS, presenting a limitation to the application of this approach
for estimating cotton yield during the initial stages of cotton development. The most
reliable in-season predictions were achieved through 15-day intervals ranging from 90–105
to 135–150 DAS, corresponding to the mid to late stages of cotton development (including
boll development, open boll, and fiber maturation). For earlier stages (below 90–105 DAS),
the most accurate forecasts were obtained from the model fitted for peaks using EVI and
TVI, typically occurring around 80–90 DAS.

Future validation experiments should focus on assessing the accuracies and practical
utility of various models in upcoming cotton seasons across different sub-regions. This
evaluation should include their ability to predict cotton net production at various scales,
ranging from individual farms to states, regions, and even at the national level. When con-
sidering the applicability of models at the farm level for specific management interventions,
such as within-season topdressing fertilizer application or planning for the next crop based
on exported nutrients, caution is warranted. Additional validations or complimentary
approaches may be necessary to ensure the reliability and effectiveness of these models in
practical agricultural decision making.

The proposed approach can be extended to corn, which is also commonly grown as a
second harvest in the Brazilian Cerrado. Additionally, it could be adapted for soybean, the
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primary first crop cultivated in Brazil, despite facing challenges such as increased cloud
interference in satellite images due to its cultivation during the rainy season.
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