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Abstract: The concept of the rate determining step, i.e., the step having the strongest influence on the
reaction rate or even being the only one present in the rate equation, is often used in heterogeneous
catalytic reactions. The utilization of this concept mainly stems from a need to reduce complexity
in deriving explicit rate equations or searching for a better catalyst based on the theoretical insight.
When the aim is to derive a rate equation with eventual kinetic modelling for single-route mechanisms
with linear sequences, the analytical rate expressions can be obtained based on the theory of complex
reactions. For such mechanisms, a single rate limiting step might not be present at all and the common
practice of introducing such steps is due mainly to the convenience of using simpler expressions.
For mechanisms with a combination of linear and nonlinear steps or those just comprising non-linear
steps, the reaction rates are influenced by several steps depending on reaction conditions, thus a
reduction in complexity to a single rate limiting step can lead to misinterpretations. More widespread
utilization of a microkinetic approach when the reaction rate constants can be computed with
reasonable accuracy based on the theoretical insight, and availability of software for kinetic modelling,
when a system of differential equations for reactants and products will be solved together with
differential equations for catalytic species and the algebraic conservation equation for the latter,
will eventually make the concept of the rate limiting step obsolete.
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1. Introduction

The kinetics of heterogeneous catalytic reactions has been the focus of numerous studies because
of its theoretical and practical importance [1–10]. Kinetic analysis was applied for decades to assist
reactor design and scaling up of various reactions relevant for oil refining and synthesis of basis and
specialty chemicals. More recently, because of a widespread application of so-called flow chemistry
to streamline pharmaceutical research and products, kinetic analysis also started to be more widely
utilized in the field of fine chemicals [11–13]. It was argued [11] that the framework of a mechanistically
based rate equation combined with in situ experimental data is useful for the interpretation of complex
reaction networks. Increasing complexity of the catalytic reactions, either relevant for oil refining or
pharmaceutical synthesis, poses some restrictions regarding incorporation of such complex mechanisms
into tractable rate equations.

Thus, another trend is to simplify complex reaction networks and assume that there is a limiting step,
the rate of which is a good approximation of the reaction rate of the whole network [14,15]. This approach
of a rate-determining step (RDS) became very popular in chemical reaction engineering, allowing the
derivation of kinetic equations for reaction mechanisms of differing complexity. Such an assumption
of a rate-determining step makes the rate expressions more tractable, facilitating the kinetic modelling
of mainly steady-state kinetics even at the expense of losing important mechanistic information.
Moreover, in several instances, without a substantial reduction in complexity, kinetic modelling can be
computationally very demanding, especially when coupled with transport phenomena [16].
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On the other hand, the concept of RDS was suggested to give fruitful ideas for modifying the
reaction conditions or design the catalyst. Subsequently, there have been many theoretical papers
addressing how to determine the step which is the rate determining [17,18]. The most popular
is probably the degree of rate control proposed by Campbell, based on the general principles of
differential sensitivity analysis to determine sensitivity of the output to one input parameter [19–25].
It was argued [16] that an approach analogous to electrical networks is even better suited for the
identification of the key steps determining the reaction rate allowing the derivation of accurate rate
expressions even for mechanisms with nonlinear steps. Such nonlinear steps are present not only in
heterogeneous catalytic reactions, such as, for example, a water gas shift reaction [16], decomposition
of ammonia [26,27] or methanol [28], but also in organometallic catalysis. In the latter case, the reaction
order in catalysts deviates from unity [5]. The formation of dimeric catalytic species, on the contrary,
results in the reaction order being below one, which is rather rare [29–31].

Contrary to the case of linear (Christiansen) sequences of a single-route reaction [5,32,33] for
single-route mechanisms with nonlinear steps, a general expression for the reaction rate in steady-state
and quasi-steady-state conditions cannot be derived [34]. When such derivation is possible, the rate
expressions become rather complicated to handle [5,35–37].

To overcome difficulties in deriving explicit rate expressions, a semi-empirical kinetic polynomial
was proposed [38] as a substitute of analytical rate equations.

However, in catalysis by solids or organometallic complexes, quite often either there are nonlinear
steps involved or the rate equations for even single-route mechanisms and obviously multi route
reactions do not have rate limiting steps [34].

It was recognized a long time ago that for multi-route (or composite) reactions, the concept of the
rate-controlling steps is not required [34,39], while in other cases it should be considered with care,
as misinterpretation is easily possible.

In the current work, several cases of complex single- and multi-route heterogeneous catalytic
reactions will be presented, highlighting an apparent danger of falling into a trap of using the rate
determining step, which leads to confusion rather than clarification of reaction mechanisms.

2. Three Step Sequence

Let us consider first a three-step linear sequence (Figure 1)
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Figure 1. Potential energy diagram using Gibbs energy and Gibbs activation energy for the reaction
S->P. T1–T3 represent transition states, and I1–I2 intermediates, I0 is the free form of catalyst. Adapted
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The general equation for this three-step sequence in the case of all reversible steps can be written
in a form of frequencies of steps [6]

r =
ω+1ω+2ω+3−ω−1ω−2ω−3

ω+2ω+3+ω−3ω+2+ω−3ω−2+ω+3ω+1 + ω−1ω+3+ω−1ω−3+ω+1ω+2+ ω−2ω+1+ω−2ω−1
Ccat (1)
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where r is the reaction rate, ω+1 is the frequency of step 1, etc., and Ccat is the catalyst concentration.
The frequencies of steps are obtained by dividing the rate expressions of a particular step by the
concentration of catalytic species in that expression. For example, in the case of the reaction mechanism
presented in Figure 2, the general form of the Equation (1) gives [6]

r =
(k+1CH2 k+2CC2H4 k+3−k

−1k
−2k
−3CC2H6 )Ccat

k+2k+3+k
−3CC2H6 k+2+k

−3CC2H6 k−2+k+3k+1 CH2+ k−1k+3+k−1k
−3CC2H6+k+1CH2 k+2CC2H4+ k−2k+1CH2+k−2k−1

(2)
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Thus, the frequency of the first step in the forward direction is k+1CH2 , while for the reverse step
it would be just k

−1. When all steps are irreversible, Equation (2) can be easily simplified, giving

r = ω+1ω+2ω+3
ω+2ω+3+ω+3ω+1 +ω+1ω+2

Ccat =
k+1CH2 k+2CC2H4 k+3Ccat

k+2k+3+k+3k+1 CH2+k+1CH2 k+2CC2H4
=

k+1CH2 CC2H4 Ccat

1+
k+1
k+2

CH2+
k+1
k+3

CH2 CC2H4

(3)

It follows from Equation (3) that depending on the values of partial pressures of, for example,
hydrogen, the reaction order can change from unity at low pressures, to zero at high hydrogen pressures.
The relative contribution of the last term in the denominator of Equation (3) k+1CH2CC2H4 /k+3 in
comparison with two other terms defines the reaction order towards ethylene.

This example illustrates an apparent danger of defining the rate and even more turnover frequency
through just one rate limiting step without taking into account kinetic regularities. To highlight the need
to consider all steps in a linear catalytic sequence even further, let us consider the apparent activation
energy for the three-step mechanism (Equation (3)). In what follows, the term “apparent” corresponds
to the observed activation energy of a complex multistep reaction in the kinetic regime, which should
not be confused with the case when the observed kinetics is influenced by the transport phenomena.

A more simple case of the two-step sequence was addressed in the literature [41] using the
definition of the apparent activation energy

Ea,app = −R
∂ ln r
∂(1/T)

(4)

and giving

Ea,app =
ω+2

ω+1 +ω+2
Ea,1 +

ω+1

ω+1 +ω+2
Ea,2 (5)
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As follows from Equation (5), the apparent activation energy depends not only on the step with
the highest activation energy, but also on the contribution of the other step with a lower activation
energy. For the three-step sequence using Equations (3) and (4), one gets

Ea,app = RT2 ∂
∂T (ln k+1 + ln CH2 + ln k+2 + ln CC2H4 + ln k+3 + ln Ccat−

ln(k+2k+3 + k+3k+1 CH2 + k+1CH2k+2CC2H4))
(6)

Some terms in Equation (6) can be easily differentiated

∂
∂T

(ln k0
+1 exp(−E+1/RT) =

∂
∂T

(ln k0
+1 − E+1/RT) =

E+1

RT2 (7)

Taking Equation (7) into account and also using a standard approach for the differentiation of a
complex function

∂ ln U
∂T

=
∂ ln U
∂U

∂U
∂T

=
1
T
∂U
∂T

(8)

one gets the final expression for the activation energy of a three step sequence

Ea,app =
ω+2ω+3Ea,1 +ω+1ω+3Ea,2 +ω+1ω+2Ea,3

ω+2ω+3 +ω+3ω+1 +ω+1ω+2
(9)

It can be shown that in only exceptional cases the apparent activation energy of the overall reaction
is determined by the activation energy of only one rate-limiting step in a steady-state sequence.

3. Four Step Sequence

As an example of such a sequence, the liquid-phase hydrogenation of aromatic compounds will
be considered. The reaction kinetics was extensively investigated previously in [42–46]. The following
generic scheme for hydrogenation of an aromatic compound A to the product B was proposed

1.*A + H2⇔ *AH2

2.*AH2 + H2⇔ *AH4

3.*AH4⇒ *Y
3′.*Y + H2⇔ *B (fast)

4.*B + A Ξ *A + B
A + 3H2 = B

(10)

where Y is cyclohexene or its derivative, AH2 and AH4 are intermediate complexes, step 3′ is fast
because hydrogenation of cycloalkenes is much faster than aromatic compounds and step 4 is at
quasi-equilibrium.

A general equation for the four step sequence is [6]

r =
ω+1ω+2ω+3ω+4 −ω−1ω−2ω−3ω−4

D
Ccat (11)

where
D = ω+2ω+3ω+4 + ω−1ω+3ω+4 +ω−1ω−2ω+4 +ω−1ω−2ω−3+

+ω+1ω+2ω+3 + ω−4ω+2ω+3 +ω−4ω−1ω+3 +ω−4ω−1ω−2+

+ω+4ω+1ω+2 + ω−3ω+1ω+2 +ω−3ω−4ω+2 +ω−3ω−4ω−1+

+ω+3ω+4ω+1 + ω−2ω+4ω+1 +ω−2ω−3ω+1 +ω−2ω−3ω−4

(12)

Because of irreversibility of step (3), Equations (11) and (12) can be simplified

r =
ω+1ω+2ω+3ω+4

D
Ccat (13)
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D = ω+2ω+3ω+4 + ω−1ω+3ω+4 +ω−1ω−2ω+4 +ω+1ω+2ω+3 + ω−4ω+2ω+3 +ω−4ω−1ω+3 +ω−4ω−1ω−2+

+ω+4ω+1ω+2 + ω+3ω+4ω+1 + ω−2ω+4ω+1
(14)

Step 4 is at quasi-equilibrium, and therefore the rates are fast in both directions. Further
simplifications of Equation (13) are thus possible by dividing the numerator and the denominator byω+4,
neglecting subsequently the terms ω+1ω+2ω+3/ω+4 and ω−3ω+1ω+2/ω+4. Then the following holds

r =
ω+1ω+2ω+3

(ω+2ω+3 + ω−1ω+3 +ω−1ω−2)(1 +
ω−4
ω+4

) +ω+1ω+2 +ω+3ω+1 + ω−2ω+1
Ccat (15)

Replacing frequencies in Equation (15) with the explicit expressions, one gets

r =
k+1CH2k+2CH2k+3

(k+2CH2k+3 + k−1k+3 + k−1k−2)(1 +
CB

K4CA
) + k+1CH2 k+2CH2 + k+3k+1CH2 + k−2k+1CH2

Ccat (16)

where K4 = k+4/k−4. For a binary mixture of the reactant and substrate, it is possible to use mole
fractions instead of concentrations. Moreover, quite often partial pressures of hydrogen are applied
instead of concentrations, resulting in another form of the rate equation

r =
k′+1PH2 k′+2PH2 k+3

(k′+2PH2 k+3+ k−1k+3+k−1k−2)(1+
1−NA
K4NA

)+k′+1PH2 k′+2PH2+k+3k′+1PH2+ k−2k′+1PH2

Ccat (17)

where NA is the mole fraction of the reactant. Equation (16) contains the modified rate constants
k′+1; k′+2 as instead of hydrogen concentration in the liquid phase, the pressure of hydrogen is used.

Equation (17) presented in a slightly different form

r =
k′+1k′+2k+3

k+3k′+1+k−2k′+1+k′+2k+3
PH2 NACcat

k−1k+3+k−1k−2
k+3k′+1+k−2k′+1+k′+2k+3

NAP−1H2+
( k−1k+3+k−1k−2)(1−NA)

(k+3k′+1+k−2k′+1+k′+2k+3)K4
)P−1H2+

k′+2k+3(1−NA)

(k+3k′+1+k−2k′+1+k′+2k+3)K4
+

k′+1k′+2
k+3k′+1+k−2k′+1+k′+2k+3

PH2 NA+NA

(18)

was derived in [43] using a more tedious procedure, namely applying directly the steady-state conditions

r+1 − r−1 = r+2 − r−2 = r+3 (19)

as well as the quasi-equilibrium for step 4 and finally the balance equation (i.e., the sum of all coverages
is equal to unity).

All steps in Equation (10) are needed to explain the observed kinetic regularities, because it was
demonstrated that at low hydrogen partial pressures, the reaction order in hydrogen can exceed unity,
which is possible when k−1 , 0, while at high pressures the reaction kinetics obeys frequently observed
zero orders in the substrate and hydrogen. In the latter case, the overall rate is determined by the
isomerization of the adsorbed AH4 species. The surface of the catalyst is completely covered with this
complex and the reaction rate ceases to depend on either hydrogen pressure or the concentration of
the substrate.

Apparently, the concept of a single rate-determining step is not able to account for a rich kinetic
behavior, observed experimentally in hydrogenation of aromatics.

4. Oxidative Dehydrogenation of Ethanol: A Multi-Route Mechanism with Nonlinear Steps

The mechanism and kinetics of oxidative dehydrogenation of ethanol over gold catalysts was
recently reported [47]. DFT calculations indicated that the activation of molecular oxygen is facilitated
in the presence of ethanol acting as a hydrogen donor. As a result of hydrogen abstraction from the
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donor leading to the formation of an OOH intermediate, the dioxygen undergoes dissociation on the
catalyst surface. The scheme of the reaction mechanism is given below
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Figure 3. The minimum energy path for ethanol (EtOH) dehydrogenation. The black and orange bars
correspond to minima and transition states, respectively. * denotes adsorbed species, while (g) refers to
gas phase species. Square brackets enclose a transition state structure where ‘ - -’ marks the bond being
broken. Reproduced with permission from [47].

From the considerations above on the apparent activation energy of the three-step sequence
with linear steps, it is clear that the apparent activation energy and the reaction rate depend on the
contribution of all steps in the mechanism, which could be treated using the steady-state approximation.
This approach is possible because of the specific features of the reaction mechanism comprising only
nonlinear steps and thus allowing derivation of an analytic rate expression. Such derivation was done
in [47] based on the DFT computed reaction energies assuming quasi-equilibria for steps 1 and 2,
irreversibility for steps 4 and 5 and reversibility for steps 3 and 6.

From the viewpoint of the global reaction kinetics, not only steps 3–6 are important but also
the final step in the mechanism, step 7, reflecting the fate of atomically adsorbed oxygen. Therefore,
three options are possibly influencing the stoichiometric numbers of other steps. Step 7a in the route
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N(1a) corresponds to recombination of atomic oxygen, while such recombination in step 7c (route N(1c))
involves a reaction with a peroxy species OOH. In the route N(1b), atomically adsorbed oxygen assists
in the abstraction of hydrogen from the substrate.

Derivation of the rate expression (per mole of oxygen) for the route N(1b) was described
in [47], giving

rN(1b)
=

k+3k+4K1K2CO2
CEtOH

(k+4+k−3
k+7b
k+5

CEtOH)

(1+K2CEtOH+K1CO2+
2k+7bK2CEtOH

k+5
+

k+3k+4K1CO2

k+7b(k+4+k−3
k+7b
k+5

CEtOH)

+

√√√
2

k+6
(

k+3k+4K1K2CO2
CEtOH

k+4+k−3
k+7b
k+5

CEtOH

+
k−6k+3k+4K1CO2

CH2O

k+7b(k+4+k−3
k+7b
k+5

CEtOH)

)+
k+3K1K2CO2

CEtOH

k+4+k−3
k+7b
k+5

CEtOH

)

2 (21)

Just for illustration purposes, let us consider a case when step 3 is at quasi-equilibrium and step 6
is irreversible. Equation (21) is then transformed to

rN(1b)
=

K3k+4k+5K1K2CO2 CEtOH/k7b

(1+K2CEtOH+K1CO2+
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√
2
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k+7b

)+
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For two other options also considering the quasi-equilibria of the step 3, the rates are for the
routes N(1b)
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and N(1a), respectively
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illustrating that the rate expression and even the kinetic regularities which follow from the corresponding
rate expressions are very sensitive to the chemistry of step 7 and the rate constant of this step.
The mechanism N(1a) is less probable compared to other alternatives considering a high activation
barrier anticipated for this step [47], while other options in principle are possible. For kinetic modelling
in [47], a feasible channel of atomically adsorbed oxygen consumption with a low activation energy
barrier was considered to be step 7b (Equation (20)).

5. Conclusions and Outlook

Apparently, the concept of the rate limiting will continue to be utilized in the future. This concept
is useful as a part of the education of future specialists in chemical reaction engineering and catalyst
development. For simple single-route reaction mechanisms, the application of the rate-determining
step along with the quasi-equilibria of other steps results in easily derived rate equations. For more
complex cases with several linear steps, the general approach based on the theory of complex reactions
of Horiuti–Temkin allows the derivation of the corresponding rate equations. Apparent difficulties in
doing this, as illustrated above for the four-step sequence, often result in a reductionistic approach
assuming a rate-determining step either based on chemical intuition or a more rigorous theoretical
analysis based on quantum chemical calculations.

There are cases when the rate equation for linear sequences with a small number of steps was
not derived and a system of differential equations was solved even if the rate equation for the steady
-state system can be readily derived. This was done, for example in [48], when a solver of differential
equations was used for a four step sequence of the Fujiwara–Moritani reaction (Figure 4), unfortunately
not reporting how the balance equation for catalytic species was taken into account,
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For a particular case of the mechanism in Figure 4, the rate equation can be easily derived as this
mechanism is a special case of Equations (11) and (12) with irreversible steps 2 and 3 simply resulting in

r =
ω+1ω+2ω+3ω+4Ccat

ω2ω3ω4 + ω−1ω3ω4 +ω1ω2ω3 + ω−4ω2ω3 +ω−4ω−1ω3 ++ω4ω1ω2 + ω3ω4ω1
(25)

Or, after introducing the explicit expressions for the frequencies of steps

r =
k+1k+2k+3k+4Cace tan ilideCacrylateCBQCcat

k+2k+3k+4CacrylateCBQ+k−1k+3k+4CacrylateCBQ+k+1k+2k+3Cace tan ilideCacrylate+ k−4k+2k+3Cacrylate+k−4k−1k+3Cacrylate+k+1k+2k+4Cace tan ilideCBQ+ k+1k+3k+4Cace tan ilideCacrylateCBQ
(26)

In a more general case, when the reaction mechanisms comprise linear and nonlinear steps
without any rate-limiting ones, derivation of an explicit rate equation can be too tedious. Instead,
a comparison between the experimental and calculations should be done in an implicit form using a
system of differential equations considering also an algebraic balance equation for the catalytic species.
Availability of computer programs with a customer written subroutine comprising a set of elementary
reactions will pave the way for eventual marginalization of the concept of the rate-determining step in
the kinetic modelling of complex heterogeneous catalytic reactions.
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