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Abstract: Highly dispersed Mn metallic nanoparticles (15.87 nm on average) on a nitrogen-doped
porous carbon matrix were prepared by thermal treatment of MnO2-x/polyaniline (PANI), which
was derived from the in situ polymerization of aniline monomers initiated by γ-MnO2 nanosheets.
Owing to the large surface area (1287 m2/g), abundant active sites, nitrogen dopants and highly
dispersed Mn sites on graphitic carbon, an impressive specific capacity of 1319.4 mAh g−1 with an
admirable rate performance was delivered in a Li-S battery. After 220 cycles at 1 C, 80.6% of the
original capacity was retained, exhibiting a good cycling stability.

Keywords: Li-S battery; Mn-N-C; polysulfide; polyaniline; MnO2

1. Introduction

With the increasing popularity of unmanned aerial vehicles, new energy vehicles
and other devices using batteries as the energy source, the demand for batteries with
high endurance is increasing. A lithium-sulfur (Li-S) battery is a battery system with
sulfur and lithium metal as electrode materials, possessing a high theoretical specific
energy (2600 Wh·kg−1) and specific capacity (1675 mAh·g−1), low manufacturing cost
and environmentally friendliness, and is considered a highly efficient energy storage
system [1–3]. However, the commercialization of Li-S batteries is still limited by many fac-
tors, such as capacity degradation, low Coulombic efficiency, incomplete sulfur utilization
and poor cycling life, which result from the dissoluble lithium polysulfide (Li2Sn) and poor
conductivity of sulfur [4–7].

Many efforts have been devoted to solving these issues by means of (i) utilization
of the interlayer, hierarchical structures, surface protection and quasi-solid electrolytes
to inhibit Li dendrite formation [8,9]; (ii) adjustment of the formulation of the separator,
binder and electrolytes to alleviate polysulfide shuttling [10–14]; (iii) capturing polysulfides
by chemical interactions such as bonding of Li with metal compounds, heteroatoms and
polymers [15–17]; (iv) confining polysulfides in the matrix of conductive and porous
materials [18–25].

Recently, it has been reported that various metals electro-catalytically convert the
long-chain polysulfides to short-chain polysulfides and oxidize the insoluble discharge
products to sulfur, enhancing the kinetic rate, reducing the overpotential and promoting
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reversible redox Li-S reactions [26,27]. Specifically, non-precious metal incorporated with
N-doped carbon matrix exhibited an outstanding electro-catalytic performance due to the
locally generated active sites during the charge transport and redistribution between N
dopants and neighboring transition metals [28,29]. In detail, metallic Lewis acidic sites can
form a strong interaction with Lewis basic polysulfide anions; however, Li can bond with
electronegative N atoms, accelerating the reversible redox conversion between Li and S by
an enhanced adsorption and dissociation of the discharging intermediate products [30,31].

For example, Chunlei song et al. [32] carbonized nitrogen-rich MOF-100 nanosheets in
an inert atmosphere to form Co nanoparticles loaded on nitrogen-doped carbon nanosheets
through an in situ formation and addition strategy, which was further compounded with
carbon nanotubes (CNTs) to generate a three-dimensional network of nanocomposites.
This composite cathode could effectively adsorb and catalyze the rapid conversion of
polysulfides due to the excellent conductivity and high catalytic activity of Co nanoparticles.
Similarly, Yu et al. [33] embedded Co nanoparticles in an N-doped self-supported carbon
fabric, facilitating polysulfide conversion and Li2S oxidation. Without weakening the
adsorption, the thermodynamic and kinetic barriers were both reduced for the conversion
of polysulfides, resulting in an ultralow capacity degradation rate of 0.034% over 500 cycles.

As another transition metal with good redox properties, however, Mn has not been
well investigated in related fields, despite the successful application in CO2 electroreduction
and photoreduction [34,35]. In this work, well-dispersed Mn nanoparticles (15.87 nm on
average) on N-doped porous carbon were prepared by pyrolysis of a polyaniline (PANI)-
coated MnO2-x composite, which was derived from the in situ oxidation polymerization of
aniline monomers by γ-MnO2 nanosheets. The Mn-N-C structure delivered a high specific
capacity of 1319.4 mAh·g−1 and an impressive cycling stability of 80.6% retention after 220
cycles at 1 C. The highly dispersed Mn nanoparticles, high specific surface area of porous
graphitic carbon, abundant active sites and N dopants are believed to be responsible for
the good electrochemical performance due to the promoted adsorption, dissociation and
fast redox conversion of polysulfides.

2. Materials and Methods
2.1. Materials

In this work, all chemicals used were commercially available and in analytical grade
without further purifications.

2.2. Synthesis of MnO2 Nanosheet

Based on a molar ratio of 2:3, the masses of KMnO4 and MnSO4·H2O were 0.316 g
and 0.507 g, respectively. KMnO4 solution was added into MnSO4 solution with a pipette
(200 µL). After the solution was completely precipitated, brown precipitates were separated
from the aqueous solution via three rounds of centrifugation. The obtained precipitates
were transferred to a beaker, washed with distilled water and dried at 90 ◦C for 4 h. After
drying, the powder was dissolved and centrifuged followed by transferring the sediment
in the centrifuge tube to a beaker, and drying it in an oven at 90 ◦C for 12 h.

2.3. Synthesis of MnO2-x/PANI Composite

0.172 g MnO2 was dispersed in 60 mL ultra-pure water, and then 200 µL aniline was
added by pipette. An appropriate amount of hydrochloric acid was added to the solution to
adjust the pH to about 3. The mixture was transferred to a 100 mL autoclave and heated at
140 ◦C for 24 h. The black precipitate was obtained by centrifuging and dried in a vacuum
oven at 60 ◦C for 8 h to obtain black powder.

2.4. Synthesis of Mn-N-C Structure

The obtained black powder was transferred to a tubular furnace and heated to 900 ◦C
at 5 ◦C/min under Ar gas for 4 h. The gas flow rate was 60 mL/min.
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2.5. Material Characterization

The sample microstructure was analyzed by X-ray diffraction (XRD). The patterns
were collected at 2θ = 30–70◦ with a step size of 0.02◦/s on a BRUCKER D8 ADVANCE X
XRD powder diffractometer, where a Cu target Kα-ray (operating at 40.0 kV and 25.0 mA)
was adopted as the source of the X-ray. The morphology was characterized by transmission
electron microscopy (TEM) using FEI Tecnai G2 f20 s-twin 200 kV field emission TEM and
scanning electron microscopy (SEM) using TESCAN MIRA 3 LMU field emission SEM. The
Brunner–Emmet–Teller (BET) area was analyzed by a BELSORP-max automatic specific
surface adsorption instrument. The samples were degassed at 300 ◦C for 2 h to remove
the impurities. The carbon nature was characterized by Raman (HORIBA JY LabRAM HR
Evolution). The structure of MnOx/PANI was explored using a Bruker Tensor 27 Fourier
Transform Infrared Spectrometer with a resolution of 4 cm−1. The surface properties of Mn-
N-C were analyzed by X-ray photoelectron spectroscopy (XPS) (Thermo Fisher Scientific
K-Alpha). Binding energies were referred to the C 1s peak at 284.5 eV.

2.6. Li-S Battery Test

The C/S/Mn-N-C electrode was prepared by mixing 10 wt % of Mn-N-C with CNTs
and sulfur followed by heating at 155 ◦C for 3 h. For the test, the C/S/Mn-N-C electrode
was punched into a disc with a diameter of 12 mm, which acted as a working electrode
combined with Li foil as the reference and counter electrode. The sulfur loading was
1 mg·cm−2 on average. 1.0 M LiTFSI in DME/DOL mixed with 1.0 wt % of LiNO3 was
adopted as the electrolyte. The galvanostatic charge/discharge (GCD) test was conducted
using a NEWARE battery test system between 1.8 V and 2.8 V at various current densities.
Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests were
conducted using a CS electrochemistry workstation. The scan rate for the CV test was
10 mV/s and the frequency for EIS ranged from 0.1 to 105 Hz with a 5 mV AC amplitude.

3. Results
3.1. Synthesis Route

Figure 1 shows the synthesis route where MnO2 nanosheets were first prepared using a
precipitation method, followed by in-situ polymerization of aniline to form a MnO2-x/PANI
composite (the chemical state of Mn4+ may change to lower valence states during oxidation
polymerization of aniline, thus this is labeled as MnO2-x). After pyrolysis in argon gas, a
Mn-N-C nanostructure was generated.
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3.2. MnO2 Characterizations

As presented in Figure 2a, the crystal structure of MnO2 was γ-phase based on
the characteristic peaks of (1 3 1), (3 0 0), (1 6 0) and (4 2 1) at 36.9◦, 42.2◦, 55.8◦ and
66.6◦, respectively [36–38]. The other very sharp peaks belonged to the silicon substrate.
The morphology of the γ-MnO2 is shown in Figure 2b, where MnO2 with a spherical
morphology is clearly observed. The diameter of the spheres was 0.53 ± 0.20 µm and the
thickness of the nanosheet was 10 nm on average (Figure 2c).
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3.3. MnO2-x/PANI Composite Characterizations

After the aniline was added into the MnO2 nanosheets, polymerization of aniline was
initiated due to the high redox potential of MnO2 [35,39]. A radical cation was generated
during the reaction between the electron lone pair of anilinium cation ions and the metal
ion center. After the coupling of radicals, the radical cation of the dimer coupled with the
radical cation in aniline, resulting in chain propagation [40]. As shown in Figure 3a, two
broad peaks located between 15◦ and 30◦ were presented while no obvious MnO2 crystal
structures were seen (despite the very broad peak at around 41.9◦, which slightly shifted
to the left compared with the (3 0 0) crystal phase of γ-MnO2), suggesting the successful
formation of amorphous PANI and Mn oxide [35,36,41,42]. As observed in Figure 3b,
the nanosheet spherical structures were collapsed into nanoparticles with a diameter of
19.92 ± 2.04 nm, probably attributed to the oxidation polymerization of PANI initiated by
MnO2, which changed the ordered crystal structures of γ-MnO2 into a more disordered
and amorphous type.
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FTIR was used to further investigate the structure. In Figure 4a, the peaks at 1504.4
and 1575.8 cm−1 were attributed to the stretching vibration of the benzenoid and quinoid
ring, respectively. The peak at 1298.1 cm−1 corresponded to the Ph-N group and the peak
at 1172.7 cm−1 suggested the electron delocalization of conductive PANI [43–47]. Moreover,
the peak at 503.4 cm−1 was assigned to the stretching of the Mn-O bond, indicating the
existence of Mn oxides [48,49]. To further explore the surface properties, XPS was adopted
and the results in Figure 4b show that O 1s spectra exhibited two peaks at 531.28 eV and
532.94 eV, which referred to surface adsorbed oxygen species and surface adsorbed water
molecules, respectively. Specifically, the existence of surface adsorbed oxygen species
indicated the formation of oxygen vacancies, which suggested the generation of Mn3+ ions
in order to compensate the vacancies. In other words, during the polymerization, part of
the Mn4+ ions in MnO2 were reduced into Mn3+ to form a MnO2-x species. This was also
consistent with the theoretical assumption that when electrons were transferred from the N
in aniline to the Mn ions in MnO2 to form the radical cations to initiate the polymerization
reaction, the valence states of Mn should be lowered accordingly. In addition, the absence
of lattice oxygen species at a lower binding energy matched the XRD results showing that
the MnO2-x was mainly in an amorphous state [37,38]. Besides the O 1s spectra, the N
1s spectra in Figure 4c presented several characteristic peaks at 399.1, 399.8 and 401.2 eV,
which corresponded to the quinoid imine, benzenoid amine and [-ph-NH-ph-] groups,
in line with the FTIR results showing that PANI was successfully synthesized [36,41]. In
summary, due to the high redox potential of MnO2, PANI polymerization was initiated
and formed in situ, accompanied by the generation of Mn ions with a lower valence state,
resulting in the formation of a MnO2-x/PANI nanocomposite.
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3.4. Mn-N-C Characterizations

The crystal structure of Mn-N-C was analyzed by XRD as shown in Figure 5a. The
broad peak at around 25◦ referred to the (0 0 2) plane of graphitic carbon species, which was
generated by the pyrolysis of PANI and enhanced the electrical conductivity [35]. The peaks
at 43.16◦ corresponded to the crystal plane (4 1 1) of metallic Mn [PDF#32-0637], confirming
the formation of Mn metals during the thermal treatment of MnO2-x in argon gas. Figure 5b
showed that the nanoparticles were highly dispersed on the carbon matrix with a size of
15.87 ± 2.96 nm (very close to 19.92 ± 2.04 nm before calcination), suggesting a strong
interaction between Mn ions and electro-donating N in the MnO2-x/PANI precursor, which
anchored Mn ions and prevented the Mn metals from agglomerating during heat treatment.
The slight reduction of the particle size may be attributed to the decomposition of PANI
into nitrogen-doped carbon species and the reduction of Mn oxide. As shown in Figure 5c,
the lattice space was 0.296 nm, proving the formation of a Mn metallic phase [50]. To further
analyze the ordered degree of carbon, the Raman spectrum in Figure 5d demonstrated two
peaks at 1591.69 cm−1 and 1349.97 cm−1, referring to the 2D graphitic carbon nanosheets
with C-C stretching vibrations and disordered/defect sp3-hybridized carbon structures,
suggesting the transformation of PANI into carbon species. Moreover, the high ratio of
IG/ID (1.02) indicated a dominant amount of more ordered graphitic carbon formation,
which promoted the electron transfer [35,51]. In addition, the absence of Mn-O scattering
peaks at around 600 cm−1 indicated the total conversion of Mn oxide into metallic Mn, in
line with XRD and TEM results [35].
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In addition to the electrical conductivity of carbon, which affected the electron transfer,
the number of active sites was another determining factor to influence the surface redox
reactions, which could be characterized by the specific surface area. Figure 6a exhibits
a type I isotherm where a very sharp gas uptake occurred at the low pressure region
(p/p0 < 0.1), suggesting that micropores were dominant in the carbon matrix, which fa-
cilitated the mass diffusion of electrolyte ions [35,52,53]. In addition, the adsorption and
desorption curves almost overlapped, indicating a uniform pore size distribution, which
was proven by Figure 6b showing that most of the pores were less than 2 nm (micropores)
and the remaining pores were between 2 and 15 nm (mesopores). Moreover, the calcu-
lated specific area was as high as 1287 m2/g and the total pore volume was as large as
0.611 cm3/g, offering abundant active sites for the high loading of sulfur, effective ad-
sorption of polysulfides and reversible conversion of polysulfides and other discharging
products [33]. The surface groups were analyzed by XPS in Figure 6c,d. In Figure 6c, the
peak at 284.5 eV corresponded to the non-oxygenated C-C and C=C bonds [54]. The peak
at 285.4 eV indicated the formation of a C-N bond, suggesting the N element was doped in
the carbon matrix [55]. The peak at 289.43 eV referred to the C-O species, which could be
an impurity [35,54]. As for the N 1s spectrum in Figure 6d, four characteristic peaks were
located at 398.5, 399.1, 400.3 and 401.2 eV, corresponding to pyridinic N, Mn-N, pyrrolic N
and graphitic N, respectively [35,56]. The existence of graphitic N was consistent with the
C 1s spectrum showing that nitrogen atoms were incorporated in the carbon matrix to form
a C-N bond and the Raman results showing that highly ordered graphitic carbon species
were generated during the pyrolysis of PANI. Moreover, the pyridinic N and pyrrolic
N could strongly adsorb metal ions via a coordinated bond, potentially promoting the
adsorption of Li ions during the polysulfide conversion [57,58]. In addition, the peak at
399.1 eV referred to the Mn-N bond, which was responsible for the anchoring of Mn atoms
by a coordinating mechanism and generating a highly dispersed Mn nanoparticle on the
N-C surface [35].
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3.5. Li-S Battery Performances

Li-S batteries were assembled with traditional electrodes (denoted as C/S) and
electrodes containing 10 wt % Mn-N-C (denoted as C/S/Mn-N-C), and the rate per-
formance was first investigated under different current densities ranging from 0.1 to 3 C
(Figure 7a). At rates of 0.1, 0.2, 0.5, 1.0, 2.0 and 3.0 C, reversible capacities of Li-S batteries
using C/S/Mn-N-C as the electrodes were preserved at 1319.4, 1080.2, 922.1, 834.4, 765.0
and 729.8 mAh g−1, respectively. When the current density recovered to 0.2 C, the cell still
delivered a high reversible capacity of 945.2 mAh g−1. In sharp contrast, the capacities of
the cell with the C/S electrode ranged 500~700 mAh g−1 lower than those of the C/S/Mn-
N-C electrode at corresponding rates. The charge-discharge voltage profiles of the cell with
the C/S/Mn-N-C electrode exhibited much higher reversible capacities at different rates
than those of the pure C/S electrode, and the capacity difference mainly derived from the
prolongation of the lower-voltage plateau (2.05 V) (Figure 7b). Specifically, the maximum
capacity of 1319.4 mAh g−1 achieved at 0.1 C in this work outperformed other carbon
cathode materials at similar conditions, such as 1230 mAh g−1 at 0.1 C for N,S-co-doped
carbon [59], 897.1 mAh g−1 at 0.5 C for N-doped carbon nanotubes [60], 1090 mAh g−1 at
0.2 mA g−1 for acetylene black/S/polypyrrole [61] and 1200 mAh g−1 at 167.5 mA g−1 for
S/C derived from phenolic resin [62]. In addition, the plateau-voltage gap of the C/S/Mn-
N-C electrode (150 mV) was smaller than S/C (200 mV). The results indicate that Mn-N-C
possessed a better catalytic effect on the conversion of short-chain sulfides (Li2S2/Li2S).
The cycling performance of the Li-S cells with different electrodes was also examined at
a current density of 0.5 C. The cell with the C/S/Mn-N-C electrode preserved a capacity
of 806.3 mAh g−1 after 60 cycles, which was much higher than that of the C/S electrode
(579 mAh g−1) (Figure 7c). Even when the current density was increased to 1 C, the cell
with the C/S/Mn-N-C electrode still delivered a maximum capacity of 744.3 mAh g−1

with a high-capacity retention ratio of 80.6% after 220 cycles. In comparison, the maximum
capacity for the C/S electrode was only 658.5 mAh g−1 and the capacity retention ratio was
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only 69.1% (Figure 7d). The results of the cyclic performance demonstrated that Mn-N-C
could greatly improve the reversible capacity and cyclic stability. The compatibility of
electrodes was investigated by electrochemical impedance spectroscopy (EIS) (Figure 7e).
When Mn-N-C was introduced into the electrode, the interface impedance slightly in-
creased, indicating the composition was good between Mn-N-C and C/S. Meanwhile, the
lower semi-infinite Warburg impedance in the low-frequency regions suggested a faster
mass transfer in the Mn-N-C electrode [63]. The reaction kinetics were further studied by
the cyclic voltammogram (CV), only one pair of redox peaks appeared with a peak interval
of 0.13 V for the cell with the C/S/Mn-N-C electrode (Figure 7f). The CV results with
a small interval indicated the Mn-N-C possessed a good reversibility for the conversion
of polysulfides.
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electrodes. (b) Galvanostatic charge-discharge voltage profiles of the C/S/Mn-N-C electrode at
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assembled with C/S and C/S/Mn-N-C electrodes. (e) Nyquist plots of Li-S batteries assembled
with C/S and C/S/Mn-N-C electrodes. (f). CV curves of the Li-S battery using C/S/Mn-N-C
as the electrode.

4. Conclusions

PANI was synthesized via in situ polymerization of aniline monomers by highly redox
γ-MnO2 nanosheets to form a MnO2-x/PANI nanocomposite, which was subsequently
transformed into Mn-N-C nanostructures where metallic Mn nanoparticles were highly
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dispersed on the nitrogen-doped porous carbon matrix. This nanostructure possessed a
large specific surface area of 1287 m2/g and uniformly distributed small Mn metal sites with
an average size of 15.87 nm; moreover, a microporous graphitic carbon matrix incorporated
with N atoms provided abundant active sites for surface adsorption of Li ions and redox
conversion of polysulfides. Owing to the merits above, the Mn-N-C cathode additive
delivered an admirable specific capacity of 1319.4 mAh·g−1 at 0.1 C and 55.3% retention
of the initial capacity after a 30 times current density increase. Moreover, 80.6% capacity
retention was achieved after 220 cycles at 1 C, exhibiting a good cycling performance.
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