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Abstract: This study utilized a max-stable process (MSP) model with a dependence structure defined
via a non-Euclidean distance metric, with the goal of modelling extreme flood data on a river network.
The dataset was composed of mean daily discharge observations from 22 United States Geological
Survey streamflow gaging stations for river basins in Missouri and Arkansas. The analysis included
the application of the elastic-net penalty to automatically build spatially varying trend surfaces to
model the marginal distributions. The dependence model accounted for the river distance between
hydrologically connected gaging sites and the hydrologic distance, defined as the Euclidean distance
between the centers of site’s associated drainage areas, for all stations. Modelling the marginal
distributions and spatial dependence among the extremes are two key components for spatially
modelling extremes. Among the 16 covariates evaluated for marginal fitting, 7 were selected to
spatially model the generalized extreme value (GEV) location parameter (for each gaging station’s
contributing drainage basin, its outlet elevation, centroid x coordinate, centroid elevation, area,
average basin width, elevation range, and median land surface slope). The three covariates selected
for the GEV scale parameter included the area, average basin width, and median land surface slope.
The GEV shape parameter was assumed to be constant throughout the entire study area. Comparisons
of estimates obtained from the spatial covariate model with their corresponding “at-site” estimates
resulted in computed values of 0.95, 0.95, 0.94 and 0.85, 0.84, 0.90 for the coefficient of determination,
Nash–Sutcliffe efficiency, and Kling–Gupta efficiency for the GEV location and scale parameters,
respectively. Brown–Resnick MSP models were fit to independent multivariate events extracted from
a set of common discharge data, transformed to unit Fréchet margins while considering different
permutations of the non-Euclidean dependence model. Each of the fitted model’s log-likelihood
values indicated improved fits when using hydrologic distance rather than Euclidean distance. They
also demonstrated that accounting for flow-connected dependence and anisotropy further improved
model fit. In this study, the results from both parts were illustrative; however, further research with
larger datasets and more heterogeneous systems is recommended.

Keywords: flood frequency estimation; spatial extremes; trend surfaces; variable selection; spatial
dependence; river distance; hydrologic distance; extremal coefficient

1. Introduction

Estimating the annual exceedance probability (AEP) for extreme floods is an important
problem in hydrology for dam and levee safety. In risk assessments, the probability of
failure for dams and levees often depends upon the magnitude of the hydrologic loading [1].
Hence, determining credible estimates of the AEPs of extreme floods that could lead to
failure is necessary. The design flood AEP for most dams and levees is 1 × 10−2 or less
frequent. In the United States (U.S.), high hazard dams are designed to pass the Probable
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Maximum Flood (PMF), which typically has an AEP of 1 × 10−4 or less frequent. In the U.S.,
most projects have limited flood data. The length of the observed discharge record at many
sites is less than 100 years. As a result, the greatest source of error in AEP and quantile
estimates for an at-site flood frequency analysis is often a limited observed discharge record.
Epistemic uncertainties in the estimated AEPs for extreme floods can potentially be reduced
by incorporating as much hydrologic information into the frequency analysis as reasonably
possible [2–5].

Recent U.S. Army Corps of Engineers (USACE) applied research and development
directed at the spatial analysis of hydrometeorological extremes has involved the devel-
opment of pointwise and areal estimates of extreme precipitation [6,7] and extreme snow
water equivalent (SWE) [8]. These studies have applied max-stable processes (MSPs), the
stochastic process analogue of the multivariate extreme value distribution [9–13]. With their
application, one can not only compute pointwise return level maps, but also model the joint
distribution and more complex areal-based assessments of risk while working within the
theoretically justified mathematical framework provided by extreme value theory (EVT).
Areal precipitation frequency estimates derived from the application of an MSP do not
require one to develop and apply empirical depth-area reduction factors to convert point
to areal estimates [14]. The MSP based analyses performed by Skahill et al. [6–8] com-
puted spatially varying pointwise estimates of extreme precipitation/SWE by leveraging
gridded covariate data and employing recent advances in variable selection and model
fitting [15–17].

With the application of MSPs, the extremal coefficient is a useful measure for sum-
marizing the degree of spatial dependence among the extreme data [9,10,18]. Its values
vary between one and two; a value of one indicates complete dependence, whereas a
value of two corresponds to independence. It is also possible to estimate the extremal
coefficient via the madogram, and these estimates are useful for MSP model checking [19].
For response variables such as precipitation, temperature, and wind speed, it is typical for
the extremal coefficient to be modelled as a function of the Euclidean distance between any
two locations [18,20,21].

Asadi et al. [22] introduced an MSP based model that leveraged a unique, non-
Euclidean distance metric to model extreme flood data on river networks. Their approach
utilized the river distance between hydrologically connected gaging sites, and the hydro-
logic distance, defined as the Euclidean distance between the centers of site’s associated
drainage areas, for all stations. The hydrologic distance accounts for shared spatially
variable meteorologic events and the geomorphometry of the river basin. Each of these
two distance measures can potentially differ from the Euclidean distance. Several studies
have proposed alternative methods to spatially model flood frequency; however, they have
either assumed independence among the extreme data or accounted for spatial dependence
in a manner that does not conform with EVT, hence potentially limiting their credibility for
extrapolation [23–29].

The max-stable modelling approach proposed by Asadi et al. [22] holds promise
for potential enhancements to USACE’s Bayesian estimation and fitting software BestFit
version 1.0 [30]. At present, BestFit combines limited at-site flood data with temporal
data on historic and paleofloods, spatial data from areal precipitation frequency estimates,
and causal data from the application of a calibrated hydrologic model forced with rainfall
frequency events. The MSP methodology they introduced could potentially yield a clearer
delineation between spatial information expansion and causal information expansion
data for future BestFit applications such that they better align with the original outline of
the flood frequency hydrology concept [3–5]. For these reasons, we took this modelling
approach in this study.

The primary contribution of this study was in demonstrating that the trend fitting
methodology introduced by Love et al. [31] and applied by Skahill et al. [6–8] is also useful
for modelling extreme flood data on river networks. With its application, this study was
able to automatically evaluate a larger set of potential marginal modelling covariates than
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were originally considered by Asadi et al. [22] in a manual manner. We also show that
their treatment of extremal dependence, that involves a combination of river distance and
hydrologic distance rather than Euclidean distance, resulted in a model of the extreme
flood data that closely resembled what is commonly observed with dependence model
summaries for MSP applications with extreme precipitation and SWE data [6–8].

2. Materials and Methods
2.1. Study Area

The 12,989-square-kilometer (km2) study area consists of the drainage area upstream
of the streamflow gaging stations with identifying (ID) numbers 10, 14, 18, 21, and 22, as
depicted in Figure 1a. It includes parts of the Current, Little Black, Eleven Point, Spring,
and Strawberry River basins and contains 22 United States Geological Survey (USGS)
streamflow gaging stations (Figure 1a). Each of these five rivers are sub-basins of the
Black River (Figure 1). The Black River is entirely contained within the Salem Plateau
Subdivision of the Ozark Plateau Physiographic Region, which is characterized as gently
rolling topography with an abundance of karst features such as springs, sinkholes, and
caves [32]. Greer Spring on the Eleven Point River, Mammoth Spring on the Spring River,
and Big Spring on the Current River are the three largest springs in the Ozark Plateaus
whose geographic extent is depicted in Figure 1b [32].
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Little Black River Basin is classified to be approximately 54.9, 26.1, 17.7, and 0.1% forest, 
grassland, cropland, and urban land, respectively [33]. The Eleven Point River Basin is 
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49.1, and 2.4% of the Spring River Basin, respectively. The Strawberry River Basin is re-
ported to be approximately 66 and 31.9% forest and pastureland/cropland, respectively. 

Figure 1. (a) Study area, consisting of the Current, Eleven Point, Little Black, Spring, and Strawberry
River basins in Missouri and Arkansas, including the locations of 22 USGS streamflow gaging stations.
(b) Relative location of the study area within the Ozark Plateaus. For each plot, the horizontal axis is
in degrees longitude and the vertical axis is in degrees latitude.

The study area does not contain any major reservoirs, and the land area is pre-
dominantly forest and pastureland [32]. For the Current River Basin, approximately
80.1, 16, and 0.1% of its area is classified as forest, grassland, and urban land, respectively.
The Little Black River Basin is classified to be approximately 54.9, 26.1, 17.7, and 0.1%
forest, grassland, cropland, and urban land, respectively [33]. The Eleven Point River Basin
is classified to be 65, 34, and 0.4% forest, grassland/cropland, and urban land, respec-
tively [34]. Forest, grassland/cropland, and urban land classifications cover approximately
48.3, 49.1, and 2.4% of the Spring River Basin, respectively. The Strawberry River Basin is
reported to be approximately 66 and 31.9% forest and pastureland/cropland, respectively.
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Thirty-meter resolution raster datasets representative of 2001 and 2021 from the Na-
tional Land Cover Database (https://www.mrlc.gov/data, accessed on 1 December 2023)
were used to quantify land use changes from 2001 to 2021 for each of the five systems.
Developed land increased by 0.3% within the Current River Basin and 0.2% for the remain-
ing four basins. Forested/planted-cultivated land decreased by 0.3%/0.4%, 1.0%/0.3%,
1.6%/0.6%, 3.0%/0.8%, and 2.6%/0.8%, while shrubland/herbaceous land increased by
0.2%/0.1%, 1.4%/−0.4%, 0.8%/1.1%, 1.2%/2.4%, and 1.4%/1.8% within the Current, Little
Black, Eleven Point, Spring, and Strawberry River Basins, respectively.

Adamski et al. [32] summarized the climate of the Ozark Plateaus (Figure 1b). It is
characterized as temperate with its thunderstorm dominated severe weather season primarily
occurring during the months from March to June. Wilkerson [33] reported the months from
April to June to be the wettest for the Current and Little Black River Basins. Miller and
Wilkerson [34] reported that March through May were the wettest months for the Eleven Point
River Basin. Figure 2 summarizes the monthly mean precipitation climatology for each of the
five basins, computed using the gridded Parameter-elevation Relationships on Independent
Slopes Model (PRISM) monthly climate dataset representative of the period 1981–2010 [35].
The graphs in Figure 2 depict a trimodal distribution for the monthly mean precipitation
climatology across all five basins with two larger modes occurring in May and November
and a smaller mode in July. The months of April, May, and November were consistently the
three wettest individual months across all five basins. Except for the Little Black River Basin,
January, February, and August were consistently the three driest months. For the Little Black
River Basin, January, February, June, and August were the four driest months.
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Figure 2. Mean monthly precipitation (units in mm) for the Current, Eleven Point, Little Black,
Spring, and Strawberry River basins, computed using the gridded PRISM monthly climate dataset
representative of the period 1981–2010.
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Adamski et al. [32] indicated a general southeast directed increase for mean annual
precipitation from minimum values in the north of the Ozark Plateaus to maximum values
near its southern boundary. This trend is generally observed in Figure 3a, which depicts the
mean annual precipitation computed using the PRISM monthly climate dataset. Figure 3b
depicts the PRISM gridded mean annual precipitation dataset for a region surrounding
the study area’s five river basins. The PRISM data-computed mean annual precipitation
values for the Current, Little Black, Eleven Point, Spring, and Strawberry River basins
were 1189, 1217, 1195, 1199, and 1218 millimeters (mm), respectively. This large degree of
homogeneity in the mean annual precipitation climatology across the five systems is
observed in Figure 3.
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Figure 3. (a) Mean annual precipitation (values in mm) (a) throughout the Ozark Plateaus and (b) for
the Current, Eleven Point, Little Black, Spring, and Strawberry River basins, delineated. The mean
annual precipitation values were computed using the PRISM monthly climate data set representative
of the period 1981–2010. For each plot, the horizontal axis is in degrees longitude and the vertical
axis is in degrees latitude.

Adamski et al. [32] summarized mean monthly temperatures in the Ozark Plateaus to
range from 30 to 38 degrees Fahrenheit (◦F) during January, generally its coolest month,
and from 78 to 82 ◦F in July, typically the warmest month. The mean monthly mean
and minimum temperature values presented in Figure 4 for the Current, Little Black,
Eleven Point, Spring, and Strawberry River basins, computed using the gridded PRISM
dataset, support their mean temperature climatology summary [32] that January and July
are the coolest and warmest months, with computed values of 0.4, 1.0, 1.0, 1.6, 2.3 and
25.2, 26.0, 25.5, 25.9, and 26.4 degrees Celsius (◦C), respectively. The mean monthly mean
temperature values presented in Figure 4 are above 0 ◦C across all months for all five
watershed systems. However, the PRISM mean monthly minimum temperature values
presented in Figure 4 are below 0 ◦C for all five river basins during the months of January,
February, and December. Across the Current, Little Black, Eleven Point, Spring, and
Strawberry River basins, March was consistently the fourth coolest month, with mean
March minimum temperature values of 1.0, 1.9, 2.2, 1.6, and 2.7 ◦C, respectively.



GeoHazards 2023, 4 531

Figures 5 and 6 and Table 1 present the spatial distribution and summary statis-
tics of elevations and basin slopes throughout the Current, Little Black, Eleven Point,
Spring, and Strawberry River Basins. The scale of the raster digital elevation model
data presented in Figure 5 is one arc second, and its source is the U.S. Geological Sur-
vey 3D elevation program. The basin slopes presented in Figure 6 were computed us-
ing the digital elevation model data shown in Figure 5. For the Current, Little Black,
Eleven Point, Spring, and Strawberry River Basins, the computed maximum basin reliefs
were 389, 177, 374, 304, and 219 meters (m), respectively. The hypsometric curves shown
in Figure 7a present a fair degree of similarity across the five watershed systems that is not
easily apparent upon examination of Figure 5 and Table 1. By contrast, the plots presented
in Figure 7b of basin specific land surface slopes reinforce the information presented in
Figure 6 and Table 1.
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Figure 4. Mean monthly mean and minimum temperature (units in ◦C) for the Current, Eleven
Point, Little Black, Spring, and Strawberry River basins, computed using the gridded PRISM monthly
climate dataset representative of the period 1981–2010.
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Figure 5. Elevation values by basin (units in meters (m)). (a) All five modelled basins; (b) Cur-
rent River Basin; (c) Little Black River Basin; (d) Eleven Point River Basin; (e) Spring River Basin;
(f) Strawberry River Basin. One-arc-second resolution raster data from the USGS 3D elevation pro-
gram was the source of the elevation values. For each plot, the horizontal axis is in degrees longitude
and the vertical axis is in degrees latitude.
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Figure 6. Slopes by basin (in degrees). (a) All five modelled basins; (b) Current River Basin; (c) Little 
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Figure 6. Slopes by basin (in degrees). (a) All five modelled basins; (b) Current River Basin; (c) Little
Black River Basin; (d) Eleven Point River Basin; (e) Spring River Basin; (f) Strawberry River Basin.
One-arc-second resolution raster data from the USGS 3D elevation program was the source of the
elevation values that were used to compute the slopes. For each plot, the horizontal axis is in degrees
longitude and the vertical axis is in degrees latitude.
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Spring, and Strawberry River basins, computed using one-arc-second resolution raster data from 
the USGS 3D elevation program. 
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Table 1. Summary statistics of elevations and slopes by basin (units, meters (m) and degrees,
respectively; Min. = minimum; Max. = maximum).

Elevations (m) Basin Slopes (Degrees)

Min. 25% 50% 75% Max. Min. 25% 50% 75% Max.

Current 101.80 241.50 308.00 359.61 490.82 0 3.63 6.70 11.16 55.18
Little Black 91.81 144.52 176.10 201.13 268.35 0 1.72 3.25 5.35 32.81

Eleven Point 91.15 212.04 266.58 310.45 465.59 0 2.51 4.19 6.65 48.03
Spring 79.25 183.92 227.03 271.67 383.35 0 2.57 4.42 6.87 43.04

Strawberry 90.89 176.54 205.98 231.41 309.67 0 2.29 3.73 5.67 38.81

Adamski et al. [32] summarized the streams of the Black River Basin as fast flow-
ing with minimum and maximum monthly streamflows within the Ozark Plateaus gen-
erally occurring between July and October and between March and May, respectively.
Wilkerson [33] reported flood frequencies from Alexander and Wilson [36] for several
USGS streamflow gaging stations located within the Current River Basin, including for
the stations with IDs 1, 3, 8, 9, and 10, as depicted in Figure 1a. They listed values of
27,300, 50,700, 68,700, 93,500, 113,000, and 185,000 cubic feet per second for 2-, 5-, 10-, 25-,
50-, and 100-year return periods for the station with ID number 10, as shown in Figure 1a.
Miller and Wilkerson [34] also listed flood frequency values from Alexander and Wil-
son [36] for two USGS streamflow gaging stations located within the Eleven Point River
Basin, viz., the stations with ID numbers 16 and 17 as depicted in Figure 1a. Southard
and Veilleux [37] computed and reported flood frequency values for 14 of the 22 USGS
streamflow gaging sites shown in Figure 1a, i.e., stations with ID numbers 1, 3, 6–8, 9, 10,
and 15–21, as depicted in Figure 1a.

2.2. Discharge Data

Mean daily discharge data were collected from the USGS National Water Information
System for each of the 22 USGS streamflow gaging stations whose locations are shown
in Figure 1a. For each gaging station, Table 2 summarizes its assigned ID, USGS station
number, location, upstream drainage area, period of record, and number of missing data
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values. Figure S1 includes the period of record plots of the mean daily discharge data for
each station. Based on the precipitation and temperature climatology for the study area,
only the daily streamflow data from April to November were used for analysis. Table 3
lists the begin date, end date, and number of missing April–November mean daily data
values for each of the 22 streamflow gaging stations. Figure S2 includes plots of the April–
November mean daily discharge data for each station. Calendar year annual maxima
were computed for each of the 22 streamflow gaging stations using the April–November
(seasonal) mean daily data. Figure S3 includes plots of the seasonal (April–November)
annual maxima for each station. Table 3 lists the number of April–November (seasonal)
annual maxima for each station. Figure S4 includes plots which were used to define
thresholds and decluster the seasonal mean daily discharge data to extract independent
storm events for application of Equation (1). Common measurements were required for the
spatial dependence modelling. Overall, 9 of the 22 stations with common April–November
(seasonal) mean daily discharge measurements for the period 2002–2020 were used for the
dependence modelling. Their station IDs were 04–07, 09, 10, 13, 17, and 18.

Table 2. Summary information for the study’s 22 daily streamflow gaging stations whose locations
are shown, by ID, in Figure 1 (dd = decimal degrees, # = number).

ID USGS Station
Number

Location Upstream
Drainage Area Period of Record Missing

DataLongitude Latitude Elevation
dd dd m km2 Begin Date End Date # of Days

01 7064300 −91.73705 37.53023 354.7977 4.45 10/01/1956 09/30/1976 0
02 7064440 −91.67111 37.44833 274.1449 152.29 02/07/2007 01/18/2021 1
03 7064500 −91.85003 37.23291 366.1545 21.65 06/01/1949 10/15/1975 0
04 7064533 −91.55281 37.37569 239.8535 764.05 08/14/2001 01/18/2021 0
05 7065200 −91.66806 37.05611 257.621 479.15 10/01/2001 01/18/2021 0
06 7065495 −91.44308 37.14817 200.9399 771.82 03/25/1993 01/18/2021 0
07 7066000 −91.35817 37.15408 195.018 1030.82 11/01/1921 01/18/2021 0
08 7066500 −91.25833 37.18389 174.3443 3294.47 08/24/1921 03/18/1976 0
09 7067000 −91.01350 36.99139 136.4441 4317.51 06/18/1921 01/18/2021 0
10 7068000 −90.84750 36.62194 113.4498 5278.40 06/14/1921 01/18/2021 0
11 7069220 −91.52667 36.46028 137.6679 725.20 03/17/1988 10/04/2016 5665
12 7069295 −91.63361 36.35222 150.2549 686.35 03/19/2010 01/18/2021 5
13 7069305 −91.48278 36.31361 110.2237 2188.54 10/01/2001 01/18/2021 7
14 7069500 −91.17167 36.20556 79.49311 3056.19 04/01/1936 01/18/2021 2757
15 7070000 −91.92758 36.97039 358.6052 12.72 09/01/1955 09/30/1967 0
16 7070500 −91.49194 36.78472 184.0703 934.99 10/01/1950 11/09/1976 0
17 7071500 −91.20083 36.64869 131.1981 2053.86 10/01/1921 01/18/2021 0
18 7072000 −91.11417 36.34639 93.5527 2926.69 10/01/1929 01/18/2021 2728
19 7073000 −91.60833 36.09889 128.1738 562.03 03/01/1939 10/17/1979 0
20 7073500 −91.61083 36.08056 129.4728 256.93 03/01/1939 01/30/1985 31
21 7074000 −91.44944 36.11111 105.7302 1225.07 04/01/1936 09/30/2004 2339
22 7068510 −90.57528 36.63167 91.96727 502.46 05/15/1980 01/18/2021 7464
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Table 3. The begin date, end date, number of missing April–November mean daily data values and
number of seasonal annual maxima for each of the study’s 22 daily streamflow gaging stations whose
locations are shown, by ID, in Figure 1 (# = number).

ID USGS Station
Number

April–November Period of Record Missing Data # of Seasonal
MaximaBegin Date End Date # of Days

01 7064300 04/01/1957 11/30/1975 0 19
02 7064440 04/01/2007 11/30/2020 0 14
03 7064500 04/01/1950 11/30/1974 0 25
04 7064533 04/01/2002 11/30/2020 0 19
05 7065200 04/01/2002 11/30/2020 0 19
06 7065495 04/01/1993 11/30/2020 0 28
07 7066000 04/01/1922 11/30/2020 0 99
08 7066500 04/01/1922 11/30/1975 0 54
09 7067000 04/01/1922 11/30/2020 0 99
10 7068000 04/01/1922 11/30/2020 0 99
11 7069220 04/01/1988 11/30/2015 3722 28
12 7069295 04/01/2010 11/30/2020 5 11
13 7069305 04/01/2002 11/30/2020 0 19
14 7069500 04/01/1936 11/30/2020 1888 85
15 7070000 04/01/1956 11/30/1966 0 11
16 7070500 04/01/1951 11/30/1975 0 25
17 7071500 04/01/1922 11/30/2020 0 99
18 7072000 04/01/1930 11/30/2020 1855 91
19 7073000 04/01/1939 11/30/1978 0 40
20 7073500 04/01/1939 11/30/1984 0 46
21 7074000 04/01/1936 11/30/2003 1607 68
22 7068510 04/01/1981 11/30/2020 4941 40

2.3. Covariate Data

Asadi et al. [22] evaluated four covariates to model the marginal distributions through-
out T: the latitude of the centroid, size, mean elevation, and mean slope for the contributing
drainage area associated with each gaging station. In this study, 16 covariates were eval-
uated for marginal fitting (Table 4). In total, 14 of the 16 covariates listed in Table 4 were
readily computed for each gaging station’s contributing drainage area using a geographic
information system and raster digital elevation model dataset. The basin average length
and average width were each computed using the estimates for the basin area and perime-
ter [38]. Precipitation climatology was not included as a covariate due to the large degree of
homogeneity that was observed throughout the study area for the mean annual precipita-
tion (Figure 3). Estimated values of the 16 covariates for each gaging station’s contributing
drainage area are provided in Table S1.

Table 4. The 16 covariates that were used for marginal fitting. Covariate values were readily computed
for each gaging station’s contributing drainage area using a geographic information system and a
one-arc-second resolution raster digital elevation model dataset from the USGS 3D elevation program.

Covariate

Outlet x coordinate
Outlet y coordinate

Outlet elevation
Centroid x coordinate
Centroid y coordinate

Centroid elevation
Area

Perimeter
Average length
Average width
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Table 4. Cont.

Covariate

Mean elevation
Minimum elevation
Maximum elevation

Elevation range
Mean land surface slope

Median land surface slope

2.4. Methods

In this study, we applied the EVT-based MSP modelling approach introduced by
Asadi et al. [22]. The modelling analysis involved two parts, one to model the spatially
variable marginal distributions and another to properly account for the spatial dependence
among the observed flood data [6–8,22]. Asadi et al. [22] comprehensively outlined their
MSP based modelling approach, and herein we only highlight a few of its essential features.
We encourage the interested reader to refer to their work for the full details [22]. The
following section, which discusses fitting the marginal distributions, includes a description
of aspects that were unique to this study.

2.4.1. Marginal Fitting

In univariate EVT, it can be shown that a distribution is max-stable if and only if it is
the generalized extreme value (GEV) distribution [39]. Mathematical nondegenerate limit
law expressions of max-stability exist in the multivariate and spatial process settings [10].
In either case, univariate EVT results guarantee that the marginal distributions of an MSP
are max-stable GEV distributions, possibly with GEV model parameters that may vary
spatially. Ribatet [10,11], Ribatet et al. [9], Davison et al. [12], and Cooley et al. [13] provided
thorough summaries of MSPs and MSP based modelling.

Asadi et al. [22] presented a threshold exceedance Poisson point process independence
likelihood for marginal fitting:

L
(
ξ j, aj,n, bj,n

)
∝ exp

−nj

[
1 + ξ j

(
qj,p − bj,n

aj,n

)]−1/ξ j
× ∏i∈Ij

a−1
j,n

[
1 + ξ j

(
Xj,i − bj,n

aj,n

)](−1/ξ j)−1

, (1)

where ξ j, aj,n, bj,n, nj, and qj,p denote the GEV shape, scale, and location parameters at fixed
streamflow gaging site locations on the river network, tj (j = 1, . . . , m), the number of years
of observations at location tj, and the empirical p-quantile, p ≈ 1, of the data Xj,i, i = 1, . . . , n
for location tj, respectively, and wherein Ij =

{
i ∈ {1, . . . , n} : Xj,i > qj,p

}
. With nj, the

parameters ξ j, aj,n, and bj,n equal those in the GEV distribution for annual maxima.
Trend surfaces were defined to support prediction throughout the entire river network,

T. Trend surfaces spatially model the location, µ(s), scale, σ(s), and shape, ξ(s), parameters
of the known GEV marginal distributions as a function of location s. For example, linear
trend surfaces are of the form µ(s) = ηµ,0 + ηµ,1covµ,1 + · · ·+ ηµ,nµ covµ,nµ , σ(s) = ησ,0 +
ησ,1covσ,1 + · · ·+ ησ,nσ covσ,nσ , ξ(s) = ηξ,0 + ηξ,1covξ,1 + · · ·+ ηξ,nξ

covξ,nξ
, where η·,i and

cov·,i are the parameters and covariates of the linear trend surface for µ(s), σ(s), and ξ(s),
respectively. Factors that are assumed or known to influence extreme flood hydrology in a
drainage basin, for example, climatological, morphometric, and physiographic data, were
candidates to be included as covariates.

It is important to model the spatial variation of the marginal parameters by carefully
“building relevant trend surfaces including any relevant covariable” [10]. Poor characteriza-
tion of µ(s), σ(s), and ξ(s) complicates estimation of the dependence parameters [10,40]. In
this study, linear trend surfaces for the known GEV marginal parameters were developed
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by leveraging the theory of spatial extremes [9,10] and recent advances for fitting general
linear models [15–17,31].

The elastic net penalty [41] was applied to regression models to facilitate model
selection from among the set of potential covariate models using the trend surface fitting
methodology introduced by Love et al. [31]. The elastic-net penalty is a convex combination
of the penalties of ridge [42,43] and lasso [44] regression, and the resulting estimates are
able to retain properties of both approaches. Given observations yi, i = 1, . . . , n, an n × m
matrix of covariates COV, and an assumed linear model:

yi = η0 + η1covi,1 + · · ·+ ηmcovi,m, (2)

the elastic-net minimizes:

1
2n∑n

i=1
∼
wi

(
yi − η0 − ηcovT

i

)2
+ λ∑m

j=1

[
1
2
(1 − α)η2

j + α
∣∣ηj
∣∣], (3)

where λ is non-negative and tuned to weight the penalty term; α ∈ [0, 1] controls the
penalty term to vary from ridge to lasso regression at α = 0 and α = 1, respectively; and
∼
wi is the weight assigned to the ith observation [9]. Ridge regression results in solutions
that include all the predictors, whereas application of lasso regression yields sparse, much
more easily interpretable solutions [45]. The elastic-net penalty is a convex combination of
these two penalties. As the parameter that weights the relative contributions of the L1 and
L2 penalties increases from 0 to 1, the number of non-zero estimated coefficients increases
from 0 to the sparsity of the lasso [15].

Automatic variable selection was a primary aim for the marginal fitting analysis;
therefore, we weighted the L1 penalty more heavily so that the elastic-net performed much
like lasso regression while retaining ridge regression’s capacity to collectively shrink the
coefficients for any highly correlated covariables [15,46]. To select the tuning parameter,
cross validation (CV) was employed with each elastic-net model fit. Each elastic-net
model was fit using the R software (version 4.2.1) package ‘glmnet’ [15]. For each model,
the pseudo responses were made up of the three GEV univariate parameter estimates
at each location, and a set of spatially varying covariates were used as covariates in the
models. Independent elastic net-model fits were performed for µ(s) and σ(s) and guided
subsequent spatial GEV model fitting and selection. We note that we set ξ(s) = ξ, as in
EVT; it is common to consider the GEV shape parameter in this manner [18,47], especially
over homogeneous regions. Figure 8 is a schematic diagram depicting the main elements
of the marginal fitting method.
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2.4.2. Dependence Model

Asadi et al. [22] introduced an MSP dependence model for extreme flood data. Their
modelling approach aimed to account for both the river distance between hydrologically
connected gaging stations and for stations that are not connected but share common me-
teorological events. The former is simply the distance along the river, whereas the latter
is termed the hydrologic distance and is defined to be the Euclidean distance between
the weighted (e.g., using precipitation climatology or elevation) centroids of their up-
stream drainage areas. The overall distance metric that combines both river distance and
hydrologic distance is defined as:

Γ(s, t) = λRivΓRiv(s, t) + λHydroΓHydro(s, t)

= λRiv

{
1 − ∏

√
πs,t

(
1 − d(s,t)

τ

)
+

}
+ λHydro∥R · H(s)− R · H(t)∥α

2
(4)

for any s, t ∈ T where λRiv ≥ 0, λHydro ≥ 0, πs,t, d(s, t), τ > 0, R = R(β, c), H, and
α ∈ (0, 2] represent a weight that is assigned to the dependence term for flow-connected
gaging stations (ΓRiv(s, t)), a weight assigned to the dependence term for gaging sites that
are not flow-connected (ΓHydro(s, t)), weights that account for the proportions of extreme
flood discharge values coming from each branch of the river network, the river distance
between sites s, t ∈ T, the distance beyond which inter-site correlation is essentially zero, a
rotation and dilation matrix to account for geometric anisotropy, the hydrological location
of a gaging location on the river network, and a variogram shape parameter, respectively.
Understanding the desire to model any location in T, observed or not, Asadi et al. [22]
suggested the use of elevation as a surrogate for precipitation and that values for π be
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estimated by integrating elevations for the area upstream of each gaging station. Similarly,
they suggested the hydrologic location be defined as the center of mass of the precipitation
climatology (or elevation, as a replacement for precipitation) for each gaging site’s con-
tributing drainage area [22]. In order to account for potential anisotropy, the rotation and
dilation matrix R is given by:

R =

(
cos β − sin β
c sin β c cos β

)
, β ∈

[
π

4
,

3π

4

]
, c > 0. (5)

The parameters λRiv, λHydro, τ, β, c, and α were estimated via the fitting of the MSP.
Large values of Γ(s, t) corresponded to weak dependence, whereas small values correspond
to strong dependence.

The dependence measure ΓRiv(s, t) was constructed in the following manner. We de-
fined ΓRiv(s, t) = 1−∏

√
πs,t

(
1 − d(s,t)

τ

)
+

if s and t were flow-connected and ΓRiv(s, t) = 1

otherwise [22]. The weights
√

πs,t reflect the number of bifurcations that occur in the river
network between the two locations. We used the “linear with sill” covariance function
given by

(
1 − d(s,t)

τ

)
+

[22]. For additional background on this and other covariances on

river networks, refer to Ver Hoef et al. [48] and Ver Hoef and Peterson [49].

3. Results
3.1. Marginal Fitting

Using the independent storm events that were extracted from the seasonal mean
daily discharge data, the Poisson point process likelihood of Equation (1) was applied to
compute unique estimates for the marginal distribution’s GEV parameter values at each
of the 22 streamflow gaging stations. Initial estimates for the application of Equation (1)
were obtained from the results of GEV at-site block maxima analyses that used the seasonal
maxima data shown in Figure S3. The results obtained from applying Equation (1) without
covariates are listed in Table 5.

Table 5. GEV model parameter estimates obtained from application of Equation (1), using the
independent storm events that were extracted from the seasonal mean daily discharge data, for each
of the study’s 22 streamflow gaging station sites whose locations are shown, by ID, in Figure 1. Each
set of GEV parameter estimates is only applicable at its respective gaging site.

GEV

ID USGS Station Number Location Scale Shape

1 7064300 7.83070 6.593739 0.203143061
2 7064440 651.81687 464.175609 0.344217689
3 7064500 201.25654 228.860738 −0.144267974
4 7064533 2220.88580 2732.279987 0.233906106
5 7065200 3502.68845 4008.151359 −0.195715630
6 7065495 3514.90339 3934.048180 0.296018442
7 7066000 3685.56258 3657.132441 0.246881711
8 7066500 8518.98331 9928.801022 −0.002357151
9 7067000 10,000.00034 13,184.621414 0.107549044
10 7068000 12,469.20565 12,111.606256 0.208479773
11 7069220 365.82757 2372.683454 −0.018406653
12 7069295 2805.65199 1452.731942 0.669369529
13 7069305 6590.52164 4115.879261 0.753694210
14 7069500 8379.45515 8044.792143 0.308929673
15 7070000 51.56659 74.159390 −1.150904107
16 7070500 1096.32359 2370.342979 −0.243435530
17 7071500 3217.66916 3532.282701 0.359971090
18 7072000 4238.21201 5571.942438 0.244704406
19 7073000 1488.63406 6172.408812 −0.460305499
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Table 5. Cont.

GEV

ID USGS Station Number Location Scale Shape

20 7073500 1307.22777 1423.849136 −0.059088878
21 7074000 4722.16930 5034.295129 0.049622116
22 7068510 1566.40636 1946.957383 0.208274893

Figure 9 summarizes the application of two independent elastic-net regression mod-
els that were used to identify trend surface covariates for the GEV location and scale
parameters. Each model used the data listed in Table 5 and the set of covariate values
(standardized) listed in Table S1, and weights were assigned in accordance with the number
of exceedances at each station.
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Figure 9. Elastic-net cross-validation (CV) plots for the study area that summarize the results for
(a) µ(covµ)) and (b) σ(covσ)), identifying trend surface covariates for the GEV location and scale
parameters. Each model used the data listed in Table 5, the set of covariate values (standardized)
listed in Table S1, and weights which were assigned in accordance with the number of exceedances at
each station. The elastic-net CV simulations considerd 16 total covariables. The x-axis is the natural
logarithm of λ, the y-axis is the mean squared error (MSE), the top of the plot indicates the number of
non-zero covariates as λ varies, the red markers are the CV-derived MSE with error bars indicating
one standard error, and the dotted vertical lines indicate the locations of the CV-identified λ-value
that minimizes the MSE (λmin) and identifies the defined most regularized model (λreg) [15].

Covariate coefficient estimates obtained from the elastic-net regression models were
used as initial values for a second optimization of Equation (1). The GEV location and
scale parameters were allowed to spatially vary as a function of their covariate values,
and the GEV shape parameter was specified to be constant throughout the river network.
Figure 10 plots comparisons of estimates obtained from the spatial covariate model with
their corresponding “at-site” estimates (Table 5) for the GEV location and scale parameters
at the 22 streamflow gaging stations. Figure 11 presents probability plots obtained from
application of Equation (1), without and with covariates, respectively, for each of the study’s
22 daily streamflow gaging stations (Figure 1, Table 2).
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Figure 10. Comparisons of the trend surface models for the GEV location and scale parameters, using
the spatial covariates identified from application of the elastic-net penalty, with their corresponding
at-site estimates at the study’s 22 streamflow gaging stations whose locations are shown, by ID, in
Figure 1. In each case, results were obtained from application of Equation (1), with and without
covariates, respectively.

Tables 6 and 7 summarize the results from 500 CV supervised elastic net optimization
runs that were performed, in each case, for the GEV location, scale, and shape parameter.
For each GEV distribution parameter, 100 CV supervised elastic net optimization runs were
performed while the number of folds were set equal to 3, 9, 11, 15, and 22. Leave-one-out
CV equated with the case when the number of folds equaled 22. Given the marginal trend
fitting method objective was feature selection, α (Equation (3)) remained fixed and close in
value to one for each CV-directed elastic net run, while the number of folds was allowed to
vary to examine the procedure’s sensitivity for covariate selection.
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Figure 11. Probability plots for each of the study’s 22 daily streamflow gaging stations whose loca-
tions are shown, by ID, in Figure 1. For each site, results were obtained from application of Equation 
(1), without and with covariates, respectively (‒ = 95% confidence intervals). 
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ciated with each covariate for each set of 100 runs. 
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Figure 11. Probability plots for each of the study’s 22 daily streamflow gaging stations whose locations
are shown, by ID, in Figure 1. For each site, results were obtained from application of Equation (1),
without and with covariates, respectively (– = 95% confidence intervals).

Table 6. A summary of 1500 nfold cross validation directed elastic net optimization runs with α fixed close in
value to one (Equation (3)). For each GEV distribution parameter (location, scale, shape) and fold value (3, 9,
11, 15, 22), 100 runs were performed. Leave-one-out cross validation equates with the case when the number
of folds equaled 22. The table summarizes the count associated with each covariate for each set of 100 runs.

GEV Location GEV Scale GEV Shape

Number of Folds

Covariate 3 9 11 15 22 3 9 11 15 22 3 9 11 15 22

Intercept 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Outlet x coordinate 0 0 0 0 0 1 0 0 0 0 6 23 13 12 0
Outlet y coordinate 3 0 0 0 0 1 0 0 0 0 7 5 3 3 0

Outlet elevation 34 60 66 77 100 1 0 0 0 0 0 0 0 0 0
Centroid x coordinate 76 99 100 100 100 7 0 0 0 0 10 13 19 14 0
Centroid y coordinate 0 0 0 0 0 2 0 0 0 0 9 5 3 3 0

Centroid elevation 96 100 100 100 100 0 0 0 0 0 1 0 1 1 0
Area 100 100 100 100 100 100 100 100 100 100 2 0 1 1 0

Perimeter 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Average length 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Average width 100 100 100 100 100 100 100 100 100 100 1 0 0 0 0
Mean elevation 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Minimum elevation 0 0 0 0 0 0 0 0 0 0 38 45 41 34 0
Maximum elevation 5 0 0 0 0 28 5 4 5 0 0 0 0 0 0

Elevation range 69 99 100 100 100 8 0 0 0 0 41 45 41 34 0
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Table 6. Cont.

GEV Location GEV Scale GEV Shape

Number of Folds

Covariate 3 9 11 15 22 3 9 11 15 22 3 9 11 15 22

Mean land surface slope 0 0 0 0 0 2 0 0 0 0 3 0 1 1 0
Median land surface slope 100 100 100 100 100 91 100 100 100 100 5 5 2 2 0

Table 7. Summary statistics associated with 1500 nfold cross validation directed elastic net opti-
mization runs with α fixed close in value to one (Equation (3); Table 6). For each GEV distribution
parameter (location, scale, shape) and nfold value (3, 9, 11, 15, 22), 100 runs were performed. Leave-
one-out cross validation equated with the case when the number of folds equaled 22. The summary
statistics were computed using each fitted elastic net model, in particular, the most regularized
model [15] for GEV location and scale, and the best-fitting minimum error model [15] for GEV
shape (NSE = Nash–Sutcliffe efficiency [50]; KGE = Kling–Gupta efficiency [51]; Min. = minimum;
Max. = maximum; St. dev. = standard deviation; NA = not available).

GEV Location GEV Scale GEV Shape

nfolds

3 9 11 15 22 3 9 11 15 22 3 9 11 15 22

NSE

Max. 0.980 0.978 0.978 0.977 0.976 0.919 0.898 0.898 0.896 0.685 −0.322 −7.664 −1.683 −1.683 NA
Min. 0.737 0.931 0.952 0.956 0.976 −0.324 0.465 0.552 0.586 0.685 −41,934.587 −263.274 −400.794 −400.794 NA
Mean 0.949 0.970 0.971 0.973 0.976 0.655 0.691 0.697 0.698 0.685 −1181.861 −30.333 −35.422 −35.615 NA

St. dev. 0.044 0.008 0.007 0.005 0.000 0.251 0.067 0.057 0.054 0.000 6547.948 37.485 61.570 65.879 NA

R2

Max. 0.981 0.979 0.979 0.979 0.978 0.922 0.909 0.909 0.908 0.863 0.593 0.352 0.541 0.541 NA
Min. 0.906 0.946 0.959 0.962 0.978 0.841 0.851 0.856 0.858 0.863 0.155 0.176 0.165 0.165 NA
Mean 0.962 0.973 0.974 0.976 0.978 0.872 0.865 0.865 0.866 0.863 0.230 0.214 0.216 0.218 NA

St. dev. 0.018 0.006 0.006 0.004 0.000 0.024 0.009 0.009 0.010 0.000 0.096 0.041 0.061 0.066 NA

KGE

Max. 0.978 0.972 0.972 0.971 0.969 0.951 0.924 0.924 0.922 0.650 0.189 −1.459 −0.275 −0.275 NA
Min. 0.649 0.901 0.934 0.938 0.969 0.050 0.470 0.533 0.560 0.650 −200.561 −14.500 −18.227 −18.227 NA
Mean 0.930 0.959 0.961 0.964 0.969 0.668 0.662 0.666 0.667 0.650 −11.682 −3.635 −3.761 −3.739 NA

St. dev. 0.061 0.013 0.011 0.009 0.000 0.215 0.075 0.068 0.066 0.000 31.650 1.952 2.743 2.827 NA

3.2. Modelling Spatial Dependence

The dependence modelling was limited to six streamflow gaging sites in the Current
River Basin with a common period of record from 2002 to 2020. In particular, the analysis
considered the six gaging stations with IDs 4–7, 9, and 10 (Figure 1, Table 2). With six sites,
there were 15 potential pairs ((6

2)). Figure 12 is a plot of extremal coefficient estimates (esti-
mated via the madogram [19]) as a function of Euclidean distance for those 15 possible pairs,
with blue crosses for flow-connected pairs and black circles for flow-unconnected pairs.
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Figure 12. Extremal coefficients (estimated using the madogram) of all pairs of gaging stations
plotted against Euclidean distance; those for flow-connected pairs are blue crosses, and those for
flow-unconnected pairs are black circles.

Brown–Resnick MSP models were fit to independent multivariate events extracted
from the common discharge data, transformed to unit Fréchet margins [22], for the six sites
in the Current River Basin while considering different permutations of the non-Euclidean
dependence model presented in Equation (4). The first model fit only considered the second
component of Equation (4) (λRiv = 0), assumed isotropic data (β = π

2 and c = 1), and
specified each gaging site’s hydrologic location, H, to be its basin outlet rather than the
center of mass of the precipitation climatology (i.e., H(s) = s). Hence, only the dependence
parameters λHydro and α were specified as adjustable. The second fit was the same as the
first but incorporated the matrix R to account for geometric anisotropy. The third and
fourth fits were the same as the first and second, respectively, with the exception that
each gaging site’s hydrologic location, H, was specified to be its basin centroid rather than
outlet. A final fit combined both terms of Equation (4). The computed log-likelihood values
associated with each model fit were 526.44, 530.09, 556.18, 574.32, and 582.75, respectively.

Using the best-fitting MSP model that applied the complete dependence model of
Equation (4), Figure 13a plots model-based extremal coefficient estimates as a function of
hydrologic distance.
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Figure 13. Fitted MSP model-based extremal coefficient estimates obtained using Equation (4)
(a) plotted against hydrological distance and (b) madogram-based estimates. Blue crosses denote
flow-connected pairs and black circles signify flow-unconnected pairs.

4. Discussion
4.1. Marginal Fitting

The GEV parameter estimates listed in Table 5 are only applicable at their respective
gaging site locations. The location and scale parameter estimates were subsequently used
as the response variables in two independent elastic-net regression models to identify trend
surface covariates for the GEV location and scale parameters. We then fit an MSP based
model that used these elastic-net regression models to inform the makeup of trend surfaces
for the location and scale parameters. This approach allowed us to estimate marginal
distributions throughout the entire river network, T.

Selected covariates for the GEV location parameter included, for each gaging station’s
contributing drainage basin, its outlet elevation, centroid x coordinate, centroid elevation,
area, average basin width [38], elevation range, and median land surface slope (Figure 9a).
Covariates selected for the GEV scale parameter included area, average basin width, and
median land surface slope (Figure 9b). Because of the regions’ relative homogeneity, the
GEV shape parameter was assumed to be constant throughout the entire study area.

The “at-site” estimates were the 66 GEV parameter values that were computed by
optimizing Equation (1) without any covariates for the study’s 22 streamflow gaging station
sites (Table 5). Computed values for the coefficient of determination (R2), Nash–Sutcliffe
efficiency (NSE) [50], and Kling–Gupta efficiency (KGE) [51] equal to 0.95, 0.95, and 0.94,
respectively, further summarized, in addition to the plot presented in Figure 10, a compari-
son of the estimates obtained from the spatial covariate model with their corresponding
“at-site” estimates (Table 5) for the GEV location parameter at the 22 streamflow gaging
stations. Similarly, computed values for the R2, NSE, and KGE equal to 0.85, 0.84, and 0.90,
respectively, further summarized the agreement for the GEV scale parameter. For the
spatial covariate model, the estimated value for the GEV shape parameter was 0.0499. The
computed first, second, and third quartiles and mean of the at-site estimates for the GEV
shape parameter were −0.04892, 0.20571, 0.28373, and 0.09316, respectively.

The probability plots shown in Figure 11 further summarize the quality of the fit
for the spatial covariate model for modelling the marginal parameters throughout the
entire river network, T. The computed Akaike information criterion (AIC) value for the
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13-parameter spatial covariate model (AIC = 24,374.22) was slightly greater than the AIC
value obtained for the 66-parameter “at-site” model (AIC = 24,223.48). The spatial covariate
model can be applied to estimate pointwise return levels for any location in T.

Tables 6 and 7 summarize the results from 1500 CV supervised elastic net optimization
runs that were performed to examine the marginal trend fitting method’s sensitivity for
covariate selection. For each marginal distribution parameter, the most parsimonious
model was always obtained using leave-one-out CV (nfolds = 22; Table 6). While increasing
the number of folds provided more stability with respect to covariate selection (Table 6),
the CV runs with fewer folds introduced opportunities for a greater fit (Table 7), albeit
with potentially more complex models. For example, the most predictive models, defined
to be the ones with the greatest NSE/KGE/R2 from among the 100 CV optimization
runs performed with nfolds set equal to 3, were examined for the GEV location, scale,
and shape parameters. The most regularized model, defined to be at the largest value
of λ (Equation (3)) within one standard error of the minimum [15], with the greatest
NSE/KGE/R2 from among the 100 CV runs for the GEV location and scale parameters
were of dimensions 11 and 8, respectively. The best-fitting minimum error model [15] for
the GEV shape parameter was of dimension 10. By contrast, the comparable leave one
out CV models were of dimensions 8, 4, and 1, for the GEV location, scale, and shape
parameters, respectively (nfolds = 22; Table 6).

Spatial models were fit, using Equation (1), for these two potential covariate models
of sizes 29 and 13, respectively. The AIC value associated with the fitted spatial model
with 29 covariates was 25,651.5, whereas the spatial covariate model parameterized using
the leave one out CV-directed elastic net results yielded a lower AIC value of 24,374.22.
One possible explanation for the higher AIC value associated with the more complex
spatial covariate model was the observation that the CV-directed elastic net optimization
runs could not identify a predictive covariate model for the GEV shape parameter as
measured by the computed and reported NSE values (Table 7). The maximum reported
NSE value for the GEV shape parameter was less than zero [50]. These results for the
GEV shape parameter, obtained from a comprehensive CV-directed elastic net analysis,
provided support to the assumption to treat it as a constant given the physiographic and
climatological homogeneity that was observed throughout the study area. It is also worth
mentioning that simple synthetic numerical experiments involving the simulation of series
of block maxima from GEV(0,1,0), wherein the true shape parameter is zero, with lengths
equal in value to the number of seasonal maxima reported in Table 3, can be performed to
demonstrate that the variability of the at-site shape parameter estimates reported in Table 5
are not necessarily inconsistent with an assumed constant shape parameter.

This study evaluated a novel covariate selection procedure within the framework of a
unique MSP for modelling flood extremes on a river network [22,31]. One advantage of
the marginal distribution fitting method introduced in this study is that it is applicable
for alternative methods, such as Bayesian hierarchical modelling, to spatially model flood
frequency [23–29].

4.2. Modelling Spatial Dependence

Beyond a strong dependence among all site pairs, it is difficult to identify any observ-
able pattern with the extremal coefficient estimates plotted versus Euclidean distance in
Figure 12. This contrasts with comparable plots typically obtained for extreme precipitation,
SWE, temperature, and wind data [6–8].

Each of the fitted MSP model’s log-likelihood values indicated improved fits when
using the distance metric proposed by Asadi et al. [22], as opposed to Euclidean dis-
tance. In addition, they demonstrated that accounting for flow-connected dependence and
anisotropy further improved model fit.

The curve of the data plotted in Figure 13a closely resembles what is commonly ob-
served with dependence model summaries for MSP applications with extreme precipitation
and SWE data [6–8]. The plot also shows that flow-connected sites at the same distance can
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have different extremal coefficients depending on their location in T. Further, in general,
dependence is stronger among sites that are flow-connected. Figure 13b is a plot that
compares the empirical and model-based extremal coefficient estimates. While based on a
limited dataset, the observed agreement is reasonable. Flood discharge exceedances can be
estimated by simulating the fitted MSP that models extreme discharge dependence on the
river network and subsequently transforming the simulated values using the results from
the estimated marginal distributions.

5. Conclusions

Modelling extremes using an MSP involves two distinct steps, trend surface fitting
and modelling the inter-site extremal dependence, with each step assuming independence
among the extremes and fixed margins, respectively. In this study, each step was ap-
plied to discharge data from 22 streamflow gaging stations located in the Current, Little
Black, Eleven Point, Spring, and Strawberry River basins in Missouri and Arkansas. The
methodology utilized here was based on a unique MSP approach specifically designed
for analysis of streamflow extremes. We expanded upon the novel approach by consider-
ing a larger suite of covariates and a novel automatic covariate selection procedure. The
first step involved applications of the elastic-net penalty to automatically select covariate
models for the marginal distribution’s location and scale parameters from among a set
of 16 potential covariates representing morphometric data associated with each gaging
station’s contributing drainage basin. The spatial covariate model required 13 parameters,
whereas the “at-site” model involved 66 parameter values. While the computed AIC value
for the spatial covariate model was slightly greater than the AIC value obtained for the
66-parameter “at-site” model, the spatial covariate model could be applied to estimate
pointwise return levels for any location throughout the river network, whereas the “at-site”
model was only applicable at the study’s 22 streamflow gaging station sites (Table 5).
Application of the dependence model that involved river distance and hydrologic distance
rather than Euclidean distance resulted in a better fitting model of the extreme flood data,
with a dependence summary that more closely resembled what is commonly observed
for dependence summaries from MSP models for extreme precipitation and SWE data.
Flood exceedances can be estimated throughout the entire river network using results from
applications of these two steps.

There was a moderate degree of homogeneity with respect to climate, morphometry,
and physiography for the five basins whose river networks were modelled in this study.
In addition, the size of the discharge dataset was somewhat limited, particularly for the
dependence modelling. Further related study, focusing on larger datasets and more hetero-
geneous systems, possibly using modified flows datasets, for example, is recommended.
Adapting the likelihood for marginal fitting to combine the systematic discharge records
with temporal and causal information expansion data types could be another direction to
explore to potentially expand upon the capabilities of the USACE’s BestFit flood frequency
analysis tool.
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