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Abstract: The prevalence of unforeseen floods has heightened the need for more accurate flood
simulation and forecasting models. Even though forecast stations are expanding across the United
States, the coverage is usually limited to major rivers and urban areas. Most rural and sub-urban
areas, including recreational areas such as the Window Cliffs State Natural Area, do not have such
forecast stations and as such, are prone to the dire effects of unforeseen flooding. In this study,
four machine learning model architectures were developed based on the long short-term memory,
random forest, and support vector regression techniques to forecast water depths at the Window
Cliffs State Natural Area, located within the Cane Creek watershed in Putnam County, Tennessee.
Historic upstream and downstream water levels and absolute pressure were used to forecast the
future water levels downstream of the Cane Creek watershed. The models were tested with lead
times of 3, 4, 5, and 6 h, revealing that the model performances reduced with an increase in lead
time. Even though the models yielded low errors of 0.063–0.368 ft MAE, there was an apparent
delay in predicting the peak water depths. However, including rainfall data in the forecast showed a
promising improvement in the models’ performance. Tests conducted on the Cumberland River in
Tennessee showed a promising improvement in model performance when trained with larger data.

Keywords: flood forecasting; machine learning; flood early warning system (FEWS); long
short-term memory (LSTM); random forest (RF); support vector regression (SVR)

1. Introduction

Flooding is a devastating natural disaster across the globe with increasing frequency
and impacts in recent decades [1,2]. In the United States of America (U.S.), floods constitute
the most prevalent natural disaster, costing about USD 4.6 billion and claiming about
18 lives per event on average. From 2010 to 2020, a total of 212 lives were lost to major
flooding events in the U.S. [3]. The effects of floods are even worse when evacuations are
not performed in time [4]. Flash floods usually occur without conceivable warning, and as
such, may lead to injury, loss of lives, and property damage. The degree of flood hazards
has heightened the need for more accurate flood prediction and simulation models.

Floods can be forecasted by simulating flood events with either physically based
models or data-driven models. Physically based models are based on the principles of
physics governing streamflow. Physically based models usually require different types of
hydro-geomorphological monitoring datasets, intensive computational demands, and in-
depth knowledge and expertise regarding the hydrological parameters that impede the
short-term prediction capabilities of physically based models [5]. Also, physically based
models do not account for uncertainties such as underground flow in karst landforms [6].
The data-driven models, on the other hand, find a logical relationship between the input
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and output parameters [7,8] involved in the simulation. This includes the use of machine
learning to forecast water levels [9].

The use of machine learning in flood forecasting can be classified under data-driven
models. In a broad context, machine learning can be defined as the use of “a computer
program to learn from experience E with respect to some task T and a performance measure
P, if its performance at tasks in T, as measured by P, improves with experience E” [10]
(p. 2). In the context of flood forecasting, the experience can be a set of input data,
L = (X1, Y1), (X2, Y2) . . . , (XN , YN), where Y and X represent the continuous, observed
water levels and their corresponding feature matrix of N observations. The task of a
machine learning model is to find an unknown function f (X) which can be used to pre-
dict water levels, Ŷ, as close to the actual observations as possible based on a particular
performance measure [9].

There are several factors that need to be taken into consideration to generate accurate
flood forecasts using conventional physically based models. Due to the difficulty and high
level of skill involved in the conventional methods, there has been a gradual introduction
and shift towards the use of machine learning techniques for flood forecasting [11]. Machine
learning techniques do not require users to know the exact underlying processes behind
the flood models. Some of the recent advancements in the use of machine learning for
flood forecasting include techniques such as linear regression, gradient boosting, support
vector machine, and ensemble learning [11]. Ref. [9] tested the use of the least absolute
shrinkage and selection operator (LASSO), random forest, and support vector regression
(SVR) machine learning approaches in forecasting 5-lead-day water levels downstream
along the Mekong River, Vietnam. In their experiments, Ref. [9] evaluated their models
using the mean absolute error (MAE), root mean squared error, and coefficient of the
efficiency metrics. Based on these evaluation metrics, the SVR performed best in predicting
the 5-lead-day forecast water levels. Another form of machine learning technique that has
been used in flood forecasting is the long short-term memory (LSTM) neural network which
is the core architecture behind the stage forecasting in Google’s end-to-end operational
flood warning system that has been applied in India and Bangladesh [12]. This machine
learning model was able to predict floods during the monsoon season in 2021 and warn the
residents and the necessary authorities. This is an example of how important the use of
machine-learning-based models can be in saving lives. The use of LSTM-based models has
been proven to estimate extreme events even when events of similar magnitude are not
included in the training dataset [13].

Flood forecasting in the U.S. has evolved over the years. Currently, the National
Weather Service (NWS) has 13 river forecasting centers (RFCs) which are in charge of all
the hydraulic and hydrologic modeling involved in public streamflow forecasts [14]. Even
though the RFCs work independently, they all use similar operational models that are
customized to suit local needs. A typical example is the advanced hydrologic prediction
service (AHPS; [15]) which is implemented at the RFCs in predicting river levels with
longer lead times. The coverage of the AHPS is expanding across the U.S. at an accelerated
rate with about 3000 forecast stations in the U.S. as of 2021.

Despite the fast expansion of the AHPS, many small streams and areas do not have
forecast stations. As of November 2021, there were 73 forecast points in the state of
Tennessee that mostly covered the major rivers and urban areas. Out of the 95 counties in
the state of Tennessee, 50 of them, including Putnam County, do not have any river forecast
station [16]. Among the seven neighboring counties of Putnam County, only Smith County
has a forecasting point (Figure 1). However, flooding remains an issue in several rural and
suburban areas where there is no river forecast point.
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Figure 1. National Weather Service Forecast Points in the state of Tennessee. There is one forecasting
station in Putnam County and its neighboring counties combined [16].

Floods in some state parks in and around Putnam County have been in the news
recently. For instance, in August 2017, a flash flood claimed the lives of two women,
including a 73-year-old and a volunteer rescue worker, at the Cummins Falls State Park, TN.
The same event left 40 people stranded at the Blackburn Fork State Scenic River, upstream
of Cummins Falls [17]. Two years later, another flash flood led to the loss of a two-year-old
boy at the Cummins Falls State Natural area. Even though the office of the National Weather
Service had communicated the possibility of rain to the park managers, it was not easy
to associate the anticipated amount of rainfall with a fatal flood event. Ref. [18] reported
that, on a regular day, evacuation begins when the park’s staff observes a certain threshold
water level. There is, therefore, the need to expand the water level forecast to such areas
that are prone to flash flooding to help prevent any future loss of lives.

The objective of this study is to develop a water-level forecasting system for Window
Cliffs State Natural Area (Window Cliffs) based on which flood warnings can be issued
ahead of time. When there is an imminent flood event, the system will generate forecasts
with an ample lead time to allow for the safe evacuation or closure of the park. The flood
forecast is based on the predicted water level downstream, at Window Cliffs’ first creek
crossing (C1). In this study, machine learning techniques were used to develop the flood
forecasting system.

Window Cliffs was selected as the study area because of the accessible water monitor-
ing devices and gauge stations within and around the park. This study is a build-up on
previous work performed by [19] to develop an early flood warning system for Window
Cliffs that could predict the historical water level downstream of the Cane Creek stream,
given the historical upstream flow parameters and precipitation data.

This study developed a forecasting system that can predict floods using basic climatic
and hydrologic data without the need for complex hydraulic and hydrologic modeling
methods that often require a lot of data on the physical characteristics of the watershed.
This approach is easily applicable to other watersheds that have limited data and can
capture complex relationships that cannot be easily represented in physical models. Once
developed, they can adapt to changing conditions and learn from new data, thereby
improving their accuracy over time compared to traditional forecasting systems.
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2. Materials and Methods
2.1. Study Area

Window Cliffs is a 1.11 km2 (275-acre) recreational area located in the southwestern
part of Putnam County, located in the state of Tennessee in the U.S. About 3.9 km (2.4 mi)
stream length of Cane Creek flows through Window Cliffs. The recreational area also
features a 2.7-mile trail that crosses Cane Creek 10 times [20]. Window Cliffs lies at the
downstream section of the entire Cane Creek watershed (HUC-051301080703; Figure 2). The
Phelps Branch is Cane Creek’s major tributary. The entire Cane Creek watershed is located
in the Eastern Highland Rim in Tennessee. The watershed has a highly developed karst
geology [20,21]. The Cane Creek watershed has a total area of 62.35 km2 (15,408.16 acres)
oriented from northeast to southwest (Figure 2).

Although rainfall is a primary driver of runoff processes, rainfall may not directly
translate into runoff owing to the porous and karst landform in the study area. Rainfall
seeps underground and reduces its impact on surface runoff and the downstream water
level. The karst landform, in other cases, also contributes the unaccounted underground
flow to the streamflow of Cane Creek.

Over the years, there have been several flash flood events at the Window Cliffs State
Natural Area. Currently, the park’s management relies on three water monitoring stations
and weather forecasts to determine whether or not to close the park when imminent
flooding is probable.

Figure 2. Cane Creek watershed.
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2.2. Data Collection and Preparation

Machine learning requires a sufficient amount of related input and output data. In
similar studies, Ref. [19] used the time series of “upstream water levels, precipitation and
antecedent dry period” as input datasets to forecast water levels [19] (p. 20). Additional
data that have been used in previous studies include temperature, characterized convective
weather systems, and wind direction data [22]. For this study, the data were collected
from measuring devices installed by Tennessee Tech University (TTU) and the Tennessee
Department of Environment and Conservation (TDEC) along the Cane Creek at Window
Cliffs, Window Cliffs road, Ditty Road, and Highland Park Boulevard (Figure 2).

A six-character alphanumeric nomenclature was adopted to allow one to easily make
reference to the available data. The first two characters in the nomenclature represent the
location of the measuring device, whilst the third and fourth characters signify the type of
data and the last two characters denote the owner of the data logger (Table 1). For example,
rainfall data collected from Highland Park Boulevard by a TDEC measuring device is
referred to as HP-RF-TD.

Table 1. Available sources of data within the Cane Creek watershed.

Location Data Type Owner Code

Cane Creek crossing 1

Absolute pressure

TTU

C1-AP-TT
Barometric pressure C1-BP-TT
Differential pressure C1-DP-TT

Temperature C1-TP-TT
Water depth C1-WD-TT

Cane Creek crossing 10

Absolute pressure

TTU

C0-AP-TT
Barometric pressure C0-BP-TT
Differential pressure C0-DP-TT

Temperature C0-TP-TT
Water depth C0-WD-TT

Window Cliffs Road

Absolute pressure

TTU

WC-AP-TT
Barometric pressure WC-BP-TT
Differential pressure WC-DP-TT

Temperature WC-TP-TT
Water depth WC-WD-TT

Ditty Road Water surface elevation TTU DR-WS-TT

Ditty Road Rainfall TDEC DR-RF-TD
Water level DR-WL-TD

Highland Park Boulevard Rainfall TDEC HP-RF-TD

Window Cliffs Road Water level TDEC WC-WL-TD

There were 20 available forms of data from all five data locations. There were three
TTU loggers at Cane Creek crossing 1, Cane Creek crossing 10, and Window Cliffs Road
that measured absolute pressure, barometric pressure, differential pressure, temperature,
and water depth. There was another TTU measuring device located at Ditty Road that
recorded water surface elevation. TDEC had a measuring device at Highland Park Boule-
vard that measured rainfall, a measuring device at Window Cliffs Road that measured
water level, and another device at Ditty Road that measured both rainfall and water level.

Apart from data from Cane Creek crossing 10, all other available data spanned across
a common, overlapping time window between 6 November 2021, 12:00 and 5 January
2022, 10:00. Consistently continuous data during this time window were not available for
Cane Creek crossing 10 (see Figure A1 in Appendix A). Therefore, data from Cane Creek
crossing 10 were excluded from this study, leaving only 15 data forms to work with. Also,
during the overlapping period, there were brief rainfall events recorded at Highland Park
Boulevard that do not provide a time series long enough to for the overlapping period. The
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time interval for all the available data was resampled to a 1 h time interval. In this study,
a 1 h time interval is synonymously referred to as a single time step.

Apart from the small amount of data being due to the short availability windows,
the distribution of the available data had a lot of outliers. The outliers can introduce
noise in the models and affect performance. Data from the downstream location at Creek
Crossing 1 (C1-WD-TT), for example, had some extreme events that constituted the outliers.
A distribution of the normalized data from the input features of the models can be seen in
Figure A2 of Appendix B.

2.2.1. Data Correction and Rescaling

Water depth data at C1 (C1-WD-TT) had some negative values which could have been
the result of an erroneous reference water level during the deployment and configuration of
the measuring device. To correct the negative water depth values in C1-WD-TT, a positive
constant with a magnitude equivalent to the minimum recorded water depth in C1-WD-TT
was added to all the values in C1-WD-TT. This correction assumes that the minimum
recorded water depth corresponds to a dry condition at the location of the measuring
device. Therefore, all values in C1-WD-TT were adjusted upwards with a constant value of
0.255 m (0.839 ft) (Figure 3).

11-16-2021, 00:00 12-01-2021, 00:00 12-16-2021, 00:00
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Figure 3. Correction of water depth data at Cane Creek crossing 1. The original values in C1-WD-TT
were adjusted upwards with a constant value of 0.255 m (0.839 ft). Data shown in this figure are from
16 November 2021 to 15 December 2021.

The input data were rescaled for efficient training during the model development
phase. All the input data were normalized linearly between 0 and 1 using Equation (1):

Xnorm = Fmin +
Xi − Xmin

Xmax − Xmin
× (Fmax − Fmin) (1)

where Fmin refers to the minimum value in the normalized domain, Fmax refers to the
maximum value in the normalized domain, Xmin is the minimum value of the raw input
data, Xmax is the maximum value of the raw input data, and Xi refers to the ith value in the
raw input data before normalization. The Xnorm values fall between the range of Fmin and
Fmax which were set to 0 and 1, respectively.

2.2.2. Feature Selection

The feature selection involved a series of tests to determine the input features with
the most influence on the output of the model. The important input features were selected
using the correlation analyses between a future downstream water level at a lead time of
6 h and input data from time steps t − 0 to t − 7 in history.
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The data involved in this study can be classified under predictor and criterion variables.
The predictor variables are used to predict the criterion variable. The criterion variable in
this study is the water level at C1 at a future time step of either t + 3, t + 4, t + 5, or t + 6
while the predictor variables include all other variables from time t− 0 to t− 7 in history. We
calculated the Spearman’s rank correlation coefficient (ρ) between the future time step t + 6
and the predictor variables to provide insight into which predictor variables were strong
factors in predicting the criterion variable. Values of ρ range from −1 to +1 where a value of
−1 indicates a perfect negative association, +1 indicates a perfect association, and 0 means
no association between two ranked variables. For a strong correlation, |ρ| is closer to 1
while |ρ| values closer to 0 represent a weak correlation. The Spearman’s rank correlation
analysis was the initial step in eliminating weak data from the prediction problem.

Some of the predictor variables may be related to each other because some are derived
from others. The proximity of measuring devices can also result in a strong correlation
between the predictor variables. We conducted a cross-correlation to determine any multi-
collinearity between two or more of the shortlisted variables. This served as a secondary
procedure to further reduce the size of predictor variables involved in forecasting the water
level at C1.

2.2.3. Training, Testing, and Inference Data Split

The available dataset was split into training, testing, and inference sets. The training
and testing sets comprised data from 6 November 2021, 12:00 to 31 December 2021, 23:00
while the inference set spanned from 1 January 2022, 00:00 to 5 January 2022, 10:00. After
generating input–output pairs for training and testing, the input–output pairs were shuffled
and split into a training set and a testing set ratio of 70:30, respectively. The inference set,
on the other hand, was not shuffled.

The training and testing datasets were shuffled to generate an unbiased distribution
and to capture a variety of event types (high- and low-water depths at C1) among the
training and testing sets. The training set was used to train the models while the testing
set was used to evaluate the performance of the trained models. The purpose of the
inference set was to assess the models’ performances in generating outputs for a continuous,
unshuffled dataset.

2.3. Machine Learning Model Development

The machine learning development involved the selection of suitable machine learning
architectures, training, and model enhancement. All the candidate architectures were
developed in parallel to assess their performances in the end. The models were developed
in a Python 3 environment mainly by using TensorFlow [23] and Scikit-learn [24] packages.

The objective of the machine learning model is to find a function that receives a time-
sequence of input features to predict the expected water level at a downstream location, C1,
at a future time step. The function can be expressed as:

ĥt+l(C1) = f (Xt−0, Xt−1, · · · , Xt−(n−1), Xt−n) (2)

where ĥt+l(C1) refers to the predicted water level C1 at time step t + l, l refers to the number
of lead time steps, and Xt−0, Xt−1, · · · , Xt−(n−1), Xt−n referred to a sequence of input data
from the present time, t − 0, to n timesteps in history. In this study, we assessed the lead
time steps of 3, 4, 5, and 6 h for each of the candidate models.

2.3.1. Model Architecture Selection

Two variations of long short-term memory (LSTM; [25]) , the SVR [26], and the random
forest regression (RFR; [27]) models were assessed as candidates for the flood forecasting
system. LSTM, a form of a recurrent neural network, is efficient in sequence problems
while the SVR and RF models were also used in a similar study that forecast downstream
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water levels [9]. Details of the candidate architectures assessed in this study are outlined in
this section.

2.3.2. LSTM Model 1

The LSTM Model 1 (LSTM 1) consists of two main components: an LSTM cell and at
least one dense layer. The LSTM cell is a recurrent unit that has a memory component with
the ability to forget, retain, and pass on information from previous steps along a sequence.
The memory of the LSTM cell contains the cell state that holds the information to be passed
on from one step in the sequence to another. The state of the memory is controlled by a
set of functions that are called gates. There are three main gates in a standard LSTM cell,
namely the forget gate, update gate, and output gate. The forget gate determines what
information needs to be discarded from the memory while the update gate controls the
information that needs to be added to the memory’s cell state. Based on the cell state at a
particular step, the output gate generates the output of the LSTM cell.

In summary, an LSTM cell receives a cell state and an output from the previous step in
the sequence and then combines it with input data to generate a cell state and an output to
be passed on to the next step in the sequence. The output is then passed on to at least one
densely connected neural network layer (dense layer) with a linear activation. The output
of the dense layers is the forecast water level at C1.

Figure 4 is a schematic of the LSTM Model 1 that receives a sequence of input data
Xt−n, Xt−(n−1), · · · Xt−0 to generate an output water level prediction ĥt+l . The LSTM Model
1 was constructed using the Keras module in TensorFlow.

Xt−n

LSTM

Cell

Xt−(n−1)

LSTM

Cell

Xt−1

LSTM

Cell

Xt−0

LSTM

Cell
· · ·

Dense ×i | i ≥ 1

ĥt+l

Figure 4. Schematic of the LSTM Model 1. The recurrent LSTM cells receive a set of inputs to generate
an output which is then passed onto at least one dense layer to generate a final output.

2.3.3. LSTM Model 2

The LSTM Model 2 (LSTM 2) is made up of an encoder component and a decoder
component. The encoder component has the same structure as the LSTM Model 1 (Figure 4).
The output of the encoder section is passed onto the decoder section. The decoder com-
ponent is a sequence of LSTM cells preceding at least one dense layer. We have named
the LSTM cells in the decoder component as decoder cells to distinguish them from the
LSTM cells in the encoder component. Each decoder cell uses the previous time step’s
water depth at the target location and information from either the encoder component or a
preceding decoder cell to generate the water depth at the next time step. This process is
recursively repeated until the final water depth is generated.

Figure 5 is a schematic of the LSTM Model 2 that receives a sequence of input data
Xt−n, Xt−(n−1), · · · Xt−0 to generate a final output water level prediction ĥt+l . Like the
LSTM Model 1, the LSTM Model 2 was constructed using the Keras module in TensorFlow.
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Xt−n · · · Xt−0

Encoder

ĥt+1

ht+1

Decoder

Cell

ht+(l−2)

Decoder

Cell

ht+(l−1)

Decoder

Cell

Dense

ĥt+2

Dense

ĥt+(l−1)

Dense
}
×i | i ≥ 1

ĥt+l

· · ·

Figure 5. Schematic of LSTM Model 2.

2.3.4. SVR Model

SVR is a representation of support-vector networks which was originally developed
by [28] for two-group classification problems. The objective of the SVR model is to find a
function F(x, ŵ) that can approximate an unknown function G(x) within a specified error
margin. x refers to an input vector of d elements where d is the dimensionality of the input
space. The dimensionality of the input vector for the flood forecasting model is equivalent
to f × (n + 1), where f refers to the number of input features and n refers to the number
of historic time steps that are used for forecasting. ŵ represents a set of parameters that
minimizes the error between the functions G(x) and F(x, ŵ) [26].

The loss function for the SVR is an ε-insensitive loss [29] given by Equation (3):

L =

{
0 if |yi − F(xi, ŵ)| < ε

|yi − F(xi, ŵ)| − ε otherwise
(3)

where yi represents an observed instance of the function G(xi), F(xi, ŵ) is the model’s
prediction using an input xi, and ε represents an error margin. If the observed instance
is within the error margin, the loss is zero. If the observed instance is outside the error
margin, the loss is the difference between the observed value and ε. The losses are denoted
by ξ if the observed instance is above the error margin and ξ∗ if the observed instance is
below the error margin (Figure 6). If the observed instance is within the error margin, ξ
and ξ∗ become zeros [26].

ε

ξ

ξ∗

predicted

observed

x

y

Figure 6. The parameters for the support vector regression [26]. The solid line represents the
regression function of the support vector and the dashed lines represent the error bounds of the
support vector.
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The optimal values of ŵ are solved by minimizing the losses and the norm of ŵ. The
objective function is therefore given by Equation (4):

minimize C
ℓ

∑
i=1

(ξi + ξ∗i ) + ||ŵ||2 (4)

where ℓ is the total number of instances used in training, C, the regularization constant, is
the nonzero positive value that determines the trade-off between the error and the norm of
ŵ. A large value of C emphasizes the error more than the norm while a smaller value of C
emphasizes the norm more. The objective function is constrained by the set of equations in
Equation (5) [26]:

constraints


yi − F(xi, ŵ) ≤ ε + ξi

F(xi, ŵ)− yi ≤ ε + ξ∗i
ξi ≥ 0

ξ∗i ≥ 0

(5)

The SVR Model was constructed using the support vector machine (SVM) module
in Scikit-learn.

2.3.5. RFR Model

Random forest is an ensemble of independent decision trees built from identically
distributed datasets [27]. The dataset that is used in building each tree is randomly sampled
from the training dataset with replacement. The size of the sampled dataset equals the
size of the original training dataset. Random forest for regression is constructed based on
numerical inputs and outputs, unlike random forest for classification which is constructed
based on class labels [27].

The strength of a random forest is that the collective vote of the decision trees in the
forest increases the overall accuracy and reduces the tendency of overfitting as opposed to
a single decision tree which tends to easily overfit on the training dataset. For regression,
voting is performed by finding the unweighted average output of all the decision trees.
The larger the number of decision trees, the better the accuracy of the random forest model.
However, the accuracy peaks with an increase in decision trees. Also, because a large
number of decision trees requires a longer training time, it is important to find an optimal
number of decision trees in the forest to balance out the training time and accuracy of the
random forest.

2.4. Hyperparameter Tuning

Hyperparameter tuning is the process of strategically adjusting the model hyperpa-
rameters to determine their optimum values. Model hyperparameters are specific variables
that define the configuration and behavior of a machine learning model. These variables
are set by the developer before the learning process and cannot be directly estimated
from data [30]. Examples of hyperparameters include the learning rate of an artificial
neural network, the regularization constant of an SVR, and the number of estimators in a
random forest.

The training and testing datasets (Section 2.2.3) were combined to form the hyperpa-
rameter tuning dataset. We tuned the model hyperparameters using the random search
strategy [31]. The random search involved the assessment of different combinations of
hyperparameter values randomly chosen from specific ranges (Table 2). For each model
and lead time step, the best out of 100 different hyperparameter combinations were used
to build the model for training. The hyperparameter combinations were ranked based on
the mean square error (MSE) metric. We conducted the hyperparameter tuning using the
KerasTuner Python package.
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Table 2. The ranges of model hyperparameters assessed during the hyperparameter tuning process.

Model Hyperparameter Range

LSTM 1

No. of LSTM units 20–300
No. of dense units 20–300
No. of dense layers 1–6

Learning rate 0.001–0.100

LSTM 2

No. of LSTM units 20–500
No. of dense units 20–500
No. of dense layers 1–6

Learning rate 0.001–0.100

RFR No. of estimators 20–200

SVR Epsilon (ε) 0.001–1.000
Regularization constant (C) 0.1–10.0

Model Training

Apart from model hyperparameters, there are parameters that are estimated from
data when training the model. These model parameters are the model’s internal variables
that are not often set manually. Examples of model parameters include the weights of an
artificial neural network such as LSTM. After building the models with their corresponding
best hyperparameters, each model was trained on the training set.

The training processes of the LSTM 1 and LSTM 2 models were optimized using the
Adam optimizer [32] with learning rates obtained from the hyperparameter tuning and
an objective function of the LSTM models was to minimize the MSE. An early stopping
criterion was set to terminate the training process after no change in MSE greater than
0.001 is observed during ten consecutive epochs of training. Apart from the selected
hyperparameters, default settings were used in training the SVR and RFR models. All the
models were trained using the training dataset (Section 2.2.3).

2.5. Model Evaluation

The models were evaluated using the testing and inference dataset (Section 2.2.3). The
inference dataset was used to assess the models’ performances on a consecutive dataset.
The metrics used in evaluating the models include MSE (Equation (6)), percent bias (PBIAS;
Equation (7)), Nash–Sutcliffe efficiency (NSE; Equation (8)), coefficient of determination
(R2; Equation (9)), and MAE (Equation (10)):
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1
N

N

∑
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(
hi − ĥi

)2
(6)
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)2

∑N
i=1

(
hi − h̄

)2 (8)

R2 =

 ∑N
i=1

(
hi − h̄

)(
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where hi represents the ground truth observations, ĥi represents the model output, and N
is the total number of instances in the test dataset.

The R2, ranging from 0 to 1, is a measure of the degree of collinearity between the
predicted and actual water level values. R2 values close to 1 indicate less error variance
between the model outputs and the actual water levels. Acceptable R2 values are greater
than 0.5 [33]. The NSE is a measure of how well a model’s output fits the actual observations
on a 1:1 line. The NSE ranges from −∞ to an optimal value of 1.0. The PBIAS indicates the
tendency of the predicted water levels to be larger or smaller than the actual water levels.
A PBIAS value close to the optimum value of 0.0% signifies an accurate model. A positive
PBIAS value represents a model underestimation, while a negative value represents a model
overestimation [33]. The MSE and MAE are error indices that describe the magnitude of
error between the predicted and actual water level values. For any model, the closer the
error index is to 0, the better the model’s performance.

The performance of the models in generating timely peak water depths was assessed
by comparing the peak times in the observed water depth and the forecast peaks. The
magnitudes of the peaks were compared using a percentage peak difference similar to the
PBIAS but only for the peak values in context.

2.5.1. Inclusion of Rainfall Data

With an increasing trend in climate change, extreme rainfall events will consequently
increase the potential of rainfall-induced floods [34–36]. Despite rainfall being a primary
driver of runoff processes, rainfall data, including DR-RF-TD and HP-RF-TD, did not
show a strong correlation with the downstream water depth C1-WD-TT, as will be seen
in Section 3.1. The influence of rainfall data was tested based on the NSE, percent peak
difference, and peak delay. The first test was conducted by combining only DR-RF-TD with
the strongly correlated input data to generate water level forecasts. Secondly, only HP-RF-
TD was combined with the strongly correlated input data to generate water level forecasts.
Finally, both DR-RF-TD and HP-RF-TD were combined with the strongly correlated data to
generate water level forecasts.

2.5.2. Test on the Cumberland River at Ashland City, Tennessee

After the implementation of the various machine learning models on Window Cliffs,
we followed the same methodology to test the LSTM 2 model on the Cumberland River
at Ashland City, Tennessee, to ascertain the effect of data quantity on the performance of
the forecasting system. Compared to Window Cliffs, the Cumberland river basin has a
rich collection of gauge stations with longer periods of historic data. Data from 1 January
2019, 00:00 to 31 December 2021, 23:00 were used as training and testing datasets at the
Cumberland River while the inference dataset covered the period from 1 January 2022,
00:00 to 4 June 2022, 01:00.

The available data were obtained from the United States Geological Survey (USGS)
and United States Army Corps of Engineers (USACE) in the form of either stage or flow
hydrographs (Table 3).

Table 3. The available sources of data within the Cumberland river basin in Tennessee.

Location Data Type Source

Browns Creek State Fairgrounds, Nashville Flow (cfs); stage (ft) USGS
Cumberland River, Ashland City Flow (cfs); stage (ft) USGS

Cumberland River, Nashville Flow (cfs); stage (ft) USGS
Cumberland River, Old Hickory Dam (tailwater) Stage (ft) USACE

Dry Creek, Edenwold Flow (cfs); stage (ft) USGS
Mill Creek Thompson Lane, near Woodbine Flow (cfs); stage (ft) USGS

Richland Creek Charlotte Ave, Nashville Flow (cfs); stage (ft) USGS
Stones River, U.S. Hwy 70 near Donelson Flow (cfs); stage (ft) USGS

Whites Creek, Bordeaux Flow (cfs); stage (ft) USGS
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2.6. Flood Forecasting Interface

A platform for forecasting with the trained model was developed using Jupyter
Notebook [37]. This platform assimilates data in a specific format to forecast water depth at
C1. The ultimate goal of the flood forecasting system is to automate the entire forecasting
process. This will involve the process of automatically fetching and preparing the input
dataset before generating forecasts with the trained model. However, the automation
process requires extra expertise beyond the scope of this study.

3. Results
3.1. Data Collection and Preparation

The set of data that showed a strong correlation (ρ ≥ 0.5) with a water depth at C1
at time t + 6 includes C1-WD-TT, DR-WL-TD, DR-WS-TT, WC-AP-TT, and WC-WL-TD.
These data indicate a strong correlation from time t − 0 back in time up to t − 7. To limit
the size of the input data, only data from t − 0 to t − 6 were selected as inputs. The detailed
results of the initial Spearman’s ranked correlation analyses are presented in Appendix C.

As indicated in Figure 7, there was a perfect positive association between C1-WD-TT
and C1-DP-TT because C1-WD-TT is directly derived from C1-DP-TT. C1-WD-TT and
C1-DP-TT both showed a strong correlation (ρ = 0.85) with C1-AP-TT. C1-AP-TT and
C1-DP-TT were therefore dropped from the set of selected input data. C1-WD-TT was
maintained with the intuition that a historic water depth at C1 is likely a good factor in
determining the future water depth at C1. WC-WL-TD, DR-WL-TD, and DR-WS-TT were
maintained despite their strong cross-correlation (ρ ≥ 0.85) because they were recorded at
different locations and with different recording systems unlike data from C1 which were
all measured with one device and at the same location.
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Figure 7. Cross-correlation between predictor variables.

3.2. Machine Learning Model Development

The hyperparameters for each model architecture and the lead time steps of 3 h,
4 h, 5 h, and 6 h were determined using a random search strategy. Table 4 shows the
selected hyperparameters for each model architecture and the corresponding lead time step.
The MSE values measured during the hyperparameter tuning were the bases for model
configuration selection. The selected model hyperparameters were then used to build the
models for training.
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Table 4. Hyperparameter tuning results for the best configurations for lead times of six, five,
four, and three hours. Further details on ranked hyperparameter tuning results are presented
in Appendix D.

Model Hyperparameter
(Evaluation Metric)

Lead Time

3 h 4 h 5 h 6 h

LSTM 1

No. of LSTM units 90 20 30 30
No. of dense units 180 140 100 30
No. of dense layers 4 5 2 3

Learning rate 0.0560 0.0710 0.0460 0.0610
(MSE [×10−3 m2]) 2.230 2.806 3.317 3.735

LSTM 2

No. of LSTM units 25 385 195 205
No. of dense units 390 400 240 150
No. of dense layers 2 1 2 2

Learning rate 0.0945 0.0969 0.0853 0.0964
(MSE [×10−3 m2]) 2.936 4.534 6.680 9.235

RFR No. of estimators 161 155 83 183
(MSE [×10−3 m2]) 1.384 1.682 1.747 1.858

SVR
Epsilon 0.0406 0.0543 0.0773 0.0758

C 1.3137 7.7472 8.9307 8.8529
(MSE [×10−3 m2]) 2.025 2.564 2.899 3.214

3.3. Model Evaluation

Evaluation of the test dataset showed that the RFR model yielded the lowest ranges
of errors such as 2.23 × 10−3–4.27 × 10−2 m2 MSE and 1.92 × 10−2–2.50 × 10−2 m MAE
(Figure 8a). The positive range of PBIAS in the LSTM 1, RFR, and SVR indicates that these
models have higher tendencies to underpredict than the LSTM 2 models which showed a
negative PBIAS of −2.408% and −0.604% for the 3 h and 4 h lead times, respectively. The
LSTM 1, RFR, and SVR models had a range of PBIAS from 1.334% (3 h LSTM 1) to 5.890%
(6 h SVR). However, for the LSTM 2 model, a sharp increase in PBIAS from 0.114% in a
5 h lead time to 11.461% in a 6 h lead time. The RFR model yielded the best similarity in
pattern in terms of the NSE with minimum and maximum values of 0.576 (4 h lead time)
and 0.760 (3 h lead time), respectively. The RFR models’ R2 on the testing dataset ranged
from 0.584 (4 h lead time) to 0.774 (3 h lead time) as shown in Figure 8a.

In general, the evaluation of the testing dataset indicated a better performance than
the inference data. For example, the range of MSE in the testing dataset is from 0.024
(3 h RFR) to 0.075 (6 h LSTM 1) whereas the MSE ranged from 0.076 (3 h LSTM 2) to 0.228
(6 h RFR) in the inference dataset (Figure 8; Table A6). However, a consistent improvement
in performance with a reduction in lead time was seen across all models when tested on
the inference dataset. From the inference dataset, only the LSTM 2 model with a 3 h lead
time yielded an NSE value of 0.526, greater than the recommended value of 0.5 [33]. At
most times, all the models underpredicted in the inference dataset with a positive PBIAS
values ranging from 10.654% (3 h LSTM 2) to 28.274% (6 h SVR). While the LSTM 2, RFR,
and SVR models yielded similar ranges of R2 with differences ranging from 0.015 to 0.089,
the LSTM 1 model consistently yielded a lower R2 than the other models in all lead times
with a minimum value of 0.059 (6 h lead time) and a maximum value of 0.453 (3 h lead time)
as shown in Figure 8b.

The LSTM 2 model yielded the closest approximation of the inference hydrograph’s
peak with percent peak difference values ranging from 8.2% for a 3 h lead time to 22.5% for a
6 h lead time (Table 5; Figure 9). The highest percent peak difference of 37.3% was observed in
the LSTM 1 model for the 6 h lead time. Overall, the positive percent peak differences indicate
that all the models forecast peak values lower than the actual peak. Another important
performance indicator worth noting is the delay in the time to peak. For all the models,
the higher the lead time, the longer the delay in the peak forecast (Table 5). The SVR model
yielded the shortest delay of 2 h for the 3 h and 4 h lead times. The LSTM 1 model resulted in
the longest delays ranging from 8 h for a 3 h lead time to 12 h for a 6 h lead time.
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Table 5. Analysis of the time to peak using the inference dataset.

Lead
Time Model

Observed Peak Time
(yyyy-mm-dd hh:mm)

Forecast Peak Time
(yyyy-mm-dd hh:mm)

Delay
(hh:mm)

% Peak
Difference

3 h

LSTM 1

2022-01-01 21:00

2022-01-02 05:00 08:00 21.8
LSTM 2 2022-01-02 01:00 04:00 8.2

RFR 2022-01-02 01:00 04:00 22.9
SVR 2022-01-01 23:00 02:00 22.9

4 h

LSTM 1

2022-01-01 21:00

2022-01-02 08:00 11:00 31.2
LSTM 2 2022-01-02 02:00 05:00 9.1

RFR 2022-01-02 05:00 08:00 24.2
SVR 2022-01-01 23:00 02:00 22.8

5 h

LSTM 1

2022-01-01 21:00

2022-01-02 09:00 12:00 34.9
LSTM 2 2022-01-02 04:00 07:00 19.0

RFR 2022-01-02 05:00 08:00 36.9
SVR 2022-01-02 03:00 06:00 27.7

6 h

LSTM 1

2022-01-01 21:00

2022-01-02 09:00 12:00 37.3
LSTM 2 2022-01-02 08:00 11:00 22.5

RFR 2022-01-02 02:00 05:00 36.9
SVR 2022-01-02 03:00 06:00 27.7
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Figure 8. Model performance on the (a) testing dataset (left column) and (b) inference dataset (right
column). The variation in the model performance is plotted with an increasing order of lead time.
Further details are presented in Appendix E.
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Figure 9. Inference from 1 January 2022, 00:00 to 5 January 2022, 10:00 based on (a) 3 h; (b) 4 h; (c) 5 h;
and (d) 6 h lead time steps.

3.3.1. Inclusion of Rainfall Data

The available rainfall data were combined with the selected, strongly correlated data
(Section 3.1) in three different ways to generate forecasts: (1) combining only DR-RF-TD;
(2) combining only HP-RF-TD; and (3) combining both DR-RF-TD and HP-RF-TD. The
results were evaluated based on the NSE, percent peak difference, and peak delay. For
each metric, the best- and worst-performing models during the initial model evaluation
(Section 3.3) were selected for further assessment. In terms of NSE, the 3 h RFR and
6 h LSTM 1 were selected while the 3 h LSTM 2 and 6 h LSTM 1 were selected for the
percent peak difference. For the peak delay, the 3 h SVR and 6 h LSTM 1 were selected.

The addition of only DR-RF-TD to the strongly correlated data resulted in an improve-
ment in NSE from 0.760 to 0.774 for the 3 h RFR and 0.285 to 0.292 for the 6 h LSTM 1
(Table 6). Adding only HP-RF-TD to the strongly correlated data yielded an improved NSE
of 0.765 and 0.299 for the 3 h RFR and 6 h LSTM 1, respectively. When both DR-RF-TD and
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HP-RF-TD were combined with the selected, strongly correlated data, the 3 h RFR yielded
a stronger NSE of 0.785 while the NSE of the 6 h LSTM 1 was reduced to 0.263 (Table 6).

Table 6. NSE comparison of different combinations of rainfall data.

Model Type
Correlated

Only
Correlated

+ DR-RF-TD
Correlated

+ HP-RF-TD

Correlated
+ DR-RF-TD
& HP-RF-TD

3 h RFR 0.760 0.774 0.765 0.785
6 h LSTM 1 0.285 0.292 0.299 0.263

While combining only DR-RF-TD with the strongly correlated data did not change the
peak delay in the 3 h SVR and 6 h LSTM 1, combining only HP-RF-TD reduced the peak
delay in both models by 1 h. Including both DR-RF-TD and HP-RF-TD further reduced
the peak delay of the 6 h LSTM 1 to 10 h while the peak delay was reduced to 1 h in the
3 h SVR (Table 7).

Table 7. Peak delay comparison of different combinations of rainfall data.

Model Type
Correlated

Only
Correlated

+ DR-RF-TD
Correlated

+ HP-RF-TD

Correlated
+ DR-RF-TD
& HP-RF-TD

3 h SVR 2 h 2 h 1 h 1 h
6 h LSTM 1 12 h 12 h 11 h 10 h

In terms of percent peak difference, the 3 h LSTM 2 and 6 h LSTM were assessed
(Table 8). Combining DR-RF-TD with the strongly correlated data resulted in a reduction in
percent peak difference for both the 3 h LSTM 2 and the 6 h LSTM 1. The 3 h LSTM 2 yielded
a percent peak difference of 6.2% and the 6 h LSTM 1 yielded a percent peak difference
of 35.9%. The 3 h LSTM 2 saw an increase in the percent peak difference from 8.2% to
11.2 when only HP-RF-TD was combined with the strongly correlated data. Meanwhile,
the 6 h LSTM 1 saw an improvement when only the HP-RF-TD was included. Combining
both DR-RF-TD and DR-RF-TD increased the percent peak difference to 8.3% and 38.6% for
the 3 h LSTM 2 and 6 h LSTM 1, respectively, (Table 8).

Table 8. Percent peak difference comparison of different combinations of rainfall data.

Model Type
Correlated

Only
Correlated

+ DR-RF-TD
Correlated

+ HP-RF-TD

Correlated
+ DR-RF-TD

and HP-RF-TD

3 h LSTM 2 8.2% 6.2% 11.2% 8.3%
6 h LSTM 1 37.3% 35.9% 35.0% 38.6%

3.3.2. Test on the Cumberland River at Ashland City, Tennessee

The LSTM 2 model was tested on the Cumberland River at Ashland City with the
following hyperparameters: 180 LSTM units, 70 dense units, 3 dense layers, and a learning
rate of 0.033334. The hyperparameters were selected using a random search strategy. A
comparison between observed and forecast stage values showed a near-perfect similarity
with NSE values of 0.980 and 0.970 for the testing and inference datasets, respectively. The
testing and inference datasets also yielded R2 values of 0.980 and 0.970, respectively. The
negative PBIAS values close to the optimum value of 0.0% indicate that the forecast values
were mostly not significantly greater than the observed stage values (Table 9).
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Table 9. Performance of the LSTM 2 model when tested on the Cumberland River dataset.

Evaluation Metric Testing Dataset Inference Dataset

MSE (×10−3 m2) 2.601 2.230
PBIAS (%) −0.083 −0.054

NSE 0.980 0.970
R2 0.980 0.970

MAE (×10−2 m) 3.688 3.353

A comparison of peaks indicated a minuscule difference of 0.12 ft in the peak percent
peak stage and a delay of 3 h on 25 February 2022 (Figure 9). However, in some instances,
the LSTM 2 model overestimated the peaks. For example, on 23 February 2022, the model
overestimated the peak by 0.10 ft with a 2 h delay (highlighted by a red ellipse in Figure 10).
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Figure 10. Inference on the Cumberland River from 21 February 2022, 00:00 to 27 February 2022, 23:00
using a 3 h LSTM 2 model. The plotted hydrographs show the observed and forecast peak stages
during the inference period.

3.4. Flood Forecasting Interface

We developed a graphical user interface (GUI) for the flood forecasting system with
the option to select a model architecture and a lead time step. When the input data are
uploaded, a hydrograph of the historic water levels at C1 is displayed (solid blue line;
Figure 11). The forecast button generates the forecast water level(s) at C1 which is appended
to the historic hydrograph as a “dash-dotted” orange line. Because they generate a single
output value, the LSTM 1, RFR, and SVR models result in a single line connecting the last
historic water depth to the forecast water level. On the other hand, the LSTM 2 model can
generate intermediate values between the current water level and the forecast.
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Figure 11. GUI of the flood forecasting tool for Window Cliffs developed in Jupyter Notebook.

4. Discussion

The variations in the performance of the different models can be attributed to the
differences in the model architectures. The underlying algorithms and assumptions for
each model architecture contribute to the differences in performance. For example, the RFR
model showed a better performance in the test dataset which may be attributed to the
model’s ability to learn the nonlinearities between the input features and the target variable.
However, when tested on the inference dataset, the model showed a relatively poorer
performance than the LSTM 2 model. This may be attributed to the RFR’s model’s inability
to generalize properly on the training dataset. LSTM models are generally suited for series
datasets; hence, the LSTM 2 is well adapted for the time series dataset used in this study.
The LSTM 2 model showed a better performance in the inference dataset than the RFR
model. The limited amount of data used in this study may have also contributed to the
reduction in the performance of the models when tested on the inference dataset.

Compared to the model performances on the testing datasets, the performances
observed on the inference dataset indicated relatively higher error indices such as MSE
and MAE. This is because, unlike the inference dataset, the testing dataset was drawn from
the same distribution as the training dataset. Because of the limited dataset in this study,
the inference dataset was selected from data that chronologically follow the training and
testing datasets.

Despite the consistent positive PBIAS and percent peak difference (Table 5), the mag-
nitude of difference indicated by a minimum of 0.063 ft (3 h RFR in the testing dataset) and
a maximum of 0.368 ft (3 h SVR in the inference dataset) can be classified as insignificant.
However, given the available data used in this study and the overall maximum, corrected
water depth of 2.65 ft, the performance of the models cannot be ascertained for extremely
high water events. For example, recently observed water depth records dated outside the
time frame of the data used in this study showed an uncorrected water depth of 9.77 ft
on 27 January 2022, 07:00 at C1. Such an extreme event is about 370% greater than the
maximum water depth used in this study. There is therefore the need to further train and
assess the performance of the models in forecasting a wide range of possible extreme events
at Window Cliffs.

The performance of a machine learning model is influenced by the quantity and quality
of the data used in developing the model. The two months of data used in this study do
not capture most of the seasonal variations within a year. This was evident in the better
performance metrics observed from the testing dataset compared to the inference dataset.
The dataset used to train the models was more representative of the testing dataset than the
inference dataset. Even though the data preparation process involved some techniques such
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as shuffling to ensure an unbiased mix of available data, at least a full year’s data would be
needed to ensure that the models are trained for well-varied conditions and events.

In the forecast problem, a longer lead time is preferred since a longer lead time implies
enough time to plan park closures or evacuate the park to protect lives and property.
However, it was observed that increasing the lead time increased the error in forecast
hydrographs. Coupled with the resulting errors, the time to peak was delayed in the
forecast hydrographs by a minimum of 2 h (3 h SVR) and a maximum of 12 h (5 and 6 h
LSTM 1). Such delays negate the advantage of setting enough lead time in the model.

The rainfall data did not show a strong correlation with the target water depth data
downstream. The response to rainfall events at the downstream location may be delayed
by the time it takes for the water to travel from the upstream location to the downstream
location. The delay in the response to rainfall events may be the reason for the weak
correlation results for the rainfall data. Hence, we did not include rainfall as input in
the first set of simulations. However, the subsequent inclusion of rainfall data showed a
promising model improvement in terms of NSE, percent peak difference, and peak delay.
For example, including the various combinations of DR-RF-TD and HP-RF-TD improved
the NSE values in all scenarios of the 3 h RFR and 6 h LSTM 1 except for the inclusion of
both DR-RF-TD and HP-RF-TD on the 6 h LSTM 1 model (Table 6). In terms of peak delay,
adding only HP-RF-TD or both DR-RF-TD and HP-RF-TD reduced the peak delay in the
3 h SVR and 6 h LSTM 1 (Table 7). The percent peak difference for the 6 h LSTM 1 reduced
in all combinations of DR-RF-TD and HP-RF-TD, while only the inclusion of DR-RF-TD
reduced the percentage peak difference in the 3 h LSTM 2 model (Table 8).

The LSTM 2 model, when tested on the Cumberland River with over two years of
data, showed an improved performance in terms of similarity between the ground truth
observations and forecast values compared to the performance at Window Cliffs. The
LSTM 2 model also yielded insignificant percent errors in peak forecast. With enough data,
the LSTM 2 model was able to forecast peaks with a maximum delay of 3 h and occasionally,
lesser delay times. The test on the Cumberland River shows the promising performance of
the forecast models when trained with more data from the Window Cliffs’ domain.

5. Conclusions

In this study, four model architectures, the LSTM 1, LSTM 2, RFR, and SVR, were used
to forecast water depths at Window Cliffs creek crossing 1. The models were evaluated
with lead times of 3, 4, 5, and 6 h. Overall, the evaluation of the models indicated different
strengths of the different models. For example, the LSTM 2 model yielded the least percent
difference with a 3 h lead time and the SVR model forecasted the peaks with shorter delays
of 2 h when tested with a lead time of 3 and 4 h (Table 5). valuation of the testing dataset
showed that the RFR model resulted in the lowest range of errors such as the MAE of
1.92 × 10−2–2.50 × 10−2 m. The varied strengths of the various models can be combined
in an ensemble model to generate more accurate forecasts. This study also highlights
the importance of rainfall data in flood forecasting, mainly because rainfall is a primary
trigger for flooding. The inclusion of rainfall data in the model development improved the
performance of the models in terms of NSE, percent peak difference, and peak delay even
though the initial correlation did not show a strong correlation between rainfall and the
target water depth.

Limitations and Recommendations

The models developed in this study can be further improved by training the models
with more data that cover at least one complete hydrological year. This will expose the
models to a wide variety of events and capture the influence of seasonal variations within
a year. With enough data to train the model, the model will cover almost all scenarios that
would be seen in the inference dataset. We recommend the frequent maintenance of the
gauges at Window Cliffs to ensure that the data used in training the models are of good
quality and cover a wide range of events.
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Apart from the quantity of data used in developing the models, the type of data
involved may be a factor for the delayed peak response and higher errors related to longer
lead times. For instance, adding rainfall data generally improved the models’ NSE, peak
delay, and percent peak difference. Currently, the models do not factor in the influence
of other future hydrologic factors such as precipitation, temperature, and wind [22]. The
feasibility of including forecast datasets in the model development needs to be investigated,
as including the forecast data may improve the delay in peaks and the difference in peaks.

An improvement in at least one of the models will lead to a better discrimination
between the performances of the models. Without discriminable performance measures,
an ensemble of the models can be explored to harness the collective strengths of the
individual models.
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Appendix A. Data Availability Chart

Figure A1. The data availability chart for the gauge locations within the Cane Creek watershed.
Legend description: C1-TT-TTU gauge at Creek Crossing 1; C0-TT-TTU gauge at Creek Crossing 10;
WC-TT-TTU gauge at Window Cliffs Road; DR-TT-TTU gauge at Ditty Lane; DR-TD-TDEC gauge
at Ditty Lane; HP-TD-TDEC gauge at Highland Park Boulevard; WC-TD-TDEC gauge at Window
Cliffs Road.

Appendix B. Distribution of Input Features

Figure A2. Distribution of the normalized input features. The data were normalized and centered at
zero by subtracting the mean and dividing by the standard deviation. The black circles represent
outliers in the dataset for each location.
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Appendix C. Spearman’s Ranked Correlation Analysis

Table A1. Spearman correlation between the water depth at Creek Crossing 1 (C1-WD-TT) and the
available historical data up to 7 timesteps back in history.

Data Location
Historical Timesteps (h)

t − 0 t − 1 t − 2 t − 3 t − 4 t − 5 t − 6 t − 7

C1-AP-TT 0.63 0.60 0.58 0.56 0.54 0.52 0.51 0.49
C1-BP-TT 0.15 0.14 0.13 0.12 0.11 0.11 0.10 0.09
C1-DP-TT 0.72 0.68 0.65 0.63 0.61 0.59 0.57 0.55
C1-TP-TT −0.05 −0.01 0.02 0.04 0.06 0.07 0.07 0.08

C1-WD-TT 0.72 0.68 0.65 0.63 0.61 0.59 0.57 0.55
DR-RF-TD 0.19 0.20 0.21 0.21 0.21 0.22 0.21 0.20
DR-WL-TD 0.57 0.56 0.56 0.56 0.55 0.55 0.54 0.54
DR-WS-TT 0.59 0.60 0.61 0.62 0.62 0.62 0.62 0.61
HP-RF-TD 0.05 0.06 0.07 0.08 0.07 0.06 0.05 0.04
WC-AP-TT 0.55 0.55 0.54 0.54 0.53 0.52 0.52 0.51
WC-BP-TT 0.14 0.13 0.12 0.12 0.11 0.10 0.10 0.09
WC-DP-TT 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41
WC-TP-TT −0.17 −0.15 −0.13 −0.12 −0.11 −0.10 −0.09 −0.08

WC-WD-TT 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41
WC-WL-TD 0.55 0.56 0.57 0.58 0.58 0.58 0.59 0.59
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Figure A3. Spearman’s ranked correlation analysis. We generated the plots using data from Table A1.
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Appendix D. Hyperparameter Tuning Results

Table A2. Hyperparameter tuning results for the best five configurations with a lead time of 3 h.

Model Hyperparameter
(Hypertune Metric)

Rank

1st 2nd 3rd 4th 5th

LSTM 1

No. of LSTM units 90 50 110 50 170
No. of dense units 180 140 140 230 130
No. of dense layers 4 5 1 3 2

Learning rate 0.0560 0.0810 0.0960 0.0660 0.0960
(MSE [×10−3 m2]) 2.211 2.230 2.230 2.239 2.239

LSTM 2

No. of LSTM units 25 115 330 25 100
No. of dense units 390 265 300 415 355
No. of ense layers 2 3 1 4 1

Learning rate 0.0945 0.0937 0.0927 0.0939 0.0728
(MSE [×10−3 m2]) 0.0316 0.0318 0.0319 0.0321 0.0323

RFR No. of estimators 161 175 163 127 85
(MSE [×10−3 m2]) 1.384 1.384 1.384 1.394 1.394

SVR
Epsilon 0.0406 0.0502 0.0684 0.0880 0.0739

C 1.3137 7.4276 7.9804 9.0464 6.5188
(MSE [×10−3 m2]) 2.025 2.025 2.025 2.025 2.035

Table A3. Hyperparameter tuning results for the best five configurations with a lead time of 4 h.

Model Hyperparameter
(Hypertune Metric)

Rank

1st 2nd 3rd 4th 5th

LSTM 1

No. of LSTM units 20 150 20 80 20
No. of dense units 140 120 160 140 230
No. of dense layers 5 2 1 2 1

Learning rate 0.0710 0.0960 0.0760 0.0860 0.0960
(MSE [×10−3 m2]) 2.806 2.824 2.843 2.852 2.852

LSTM 2

No. of LSTM units 385 275 60 45 500
No. of dense units 400 60 405 335 70
No. of dense layers 1 5 1 6 3

Learning rate 0.0969 0.0931 0.0768 0.0984 0.0915
(MSE [×10−3 m2]) 4.534 4.562 4.580 4.580 4.580

RFR No. of estimators 155 100 157 166 130
(MSE [×10−3 m2]) 1.682 1.682 1.691 1.691 1.691

SVR
Epsilon 0.0543 0.1104 0.0253 0.0326 0.1026

C 7.7472 9.2149 4.0142 6.6004 7.2953
(MSE [×10−3 m2]) 2.564 2.564 2.573 2.573 2.573

Table A4. Hyperparameter tuning results for the best five configurations with a lead time of 5 h.

Model Hyperparameter
(Hypertune Metric)

Rank

1st 2nd 3rd 4th 5th

LSTM 1

No. of LSTM units 30 50 60 80 140
No. of dense units 100 60 70 250 280
No. of dense layers 2 2 4 2 4

Learning rate 0.0460 0.0860 0.0910 0.0710 0.0860
(MSE [×10−3 m2]) 3.317 3.363 3.372 3.372 3.391

LSTM 2

No. of LSTM units 195 305 115 35 370
No. of dense units 240 65 240 380 280
No. of dense layers 2 1 4 6 7

Learning rate 0.0853 0.0802 0.0880 0.0666 0.0965
(MSE [×10−3 m2]) 6.680 6.773 6.773 6.782 6.801

RFR No. of estimators 83 163 161 149 72
(MSE [×10−3 m2]) 1.747 1.774 1.774 1.784 1.793

SVR
Epsilon 0.0773 0.0675 0.0585 0.0218 0.0545

C 8.9307 9.9592 5.5814 9.3182 5.2299
(MSE [×10−3 m2]) 2.899 2.908 2.926 2.964 2.964
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Table A5. Hyperparameter tuning results for the best five configurations with a lead time of 6 h.

Model Hyperparameter
(Hypertune Metric)

Rank

1st 2nd 3rd 4th 5th

LSTM 1

No. of LSTM units 30 60 20 190 80
No. of dense units 30 210 250 90 90
No. of dense layers 3 3 3 2 4

Learning rate 0.0610 0.0860 0.0960 0.0860 0.0710
(MSE [×10−3 m2]) 3.735 3.753 3.800 3.809 3.837

LSTM 2

No. of LSTM units 205 455 305 85 335
No. of dense units 150 350 110 220 315
No. of dense layers 2 5 1 2 1

Learning rate 0.0964 0.0869 0.0721 0.0915 0.0918
(MSE [×10−3 m2]) 9.235 9.262 9.290 9.300 9.327

RFR No. of estimators 183 61 191 166 97
(MSE [×10−3 m2]) 1.858 1.858 1.867 1.877 1.877

SVR
Epsilon 0.0758 0.0801 0.0615 0.0679 0.0467

C 8.8529 7.3196 7.3582 6.6954 7.2667
(MSE [×10−3 m2]) 3.214 3.224 3.233 3.242 3.242

Appendix E. Model Evaluation Results

Table A6. Evaluation of the testing and inference datasets using the MSE, PBIAS, NSE, R2, and
MAE metrics.

Evaluation
Metric Model

Testing Dataset Inference Dataset

3 h 4 h 5 h 6 h 3 h 4 h 5 h 6 h

MSE
(×10−3 m2)

LSTM 1 3.995 6.503 6.317 6.968 10.684 16.165 18.859 20.717
LSTM 2 3.437 5.295 4.831 6.596 7.061 10.405 14.307 20.532

RFR 2.230 4.274 3.159 3.437 11.148 14.307 17.744 21.182
SVR 3.623 5.946 4.831 5.574 10.312 18.859 19.324 22.947

PBIAS (%)

LSTM 1 1.334 6.048 2.509 1.748 12.976 17.374 19.576 21.467
LSTM 2 -2.408 −0.604 0.114 11.461 10.654 12.408 16.281 22.289

RFR 1.520 3.945 1.889 2.379 18.496 21.325 22.989 25.266
SVR 3.502 5.984 5.468 5.890 18.289 27.512 26.324 28.274

NSE

LSTM 1 0.573 0.352 0.341 0.285 0.286 −0.105 −0.323 −0.496
LSTM 2 0.637 0.467 0.503 0.325 0.526 0.287 −0.007 −0.483

RFR 0.760 0.576 0.677 0.652 0.252 0.021 −0.244 −0.530
SVR 0.609 0.405 0.496 0.428 0.307 −0.290 −0.359 −0.659

R2

LSTM 1 0.581 0.370 0.350 0.290 0.453 0.214 0.110 0.059
LSTM 2 0.639 0.477 0.503 0.383 0.639 0.474 0.311 0.168

RFR 0.774 0.584 0.688 0.669 0.600 0.488 0.325 0.179
SVR 0.624 0.421 0.522 0.453 0.689 0.489 0.384 0.231

MAE
(×10−2 m)

LSTM 1 3.048 3.840 3.993 4.145 6.279 8.169 8.992 9.571
LSTM 2 2.743 3.078 3.353 4.176 4.846 6.005 7.650 9.876

RFR 1.920 2.256 2.377 2.499 8.443 9.388 10.058 10.942
SVR 2.225 2.652 2.835 3.109 7.498 10.820 10.516 11.217
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Appendix F. Evaluation Results with Rainfall Data

Table A7. Evaluation of different combinations of rainfall data with selected and strongly corre-
lated data.

Included
Rainfall

Model NSE % Peak
Difference

Peak Delay
(h)

DR-RF-TD
only

6 h LSTM 1 0.292 35.9 12
3 h LSTM 2 0.589 6.2 4

3 h RFR 0.774 21.1 4
3 h SVR 0.613 22.1 2

HP-RF-TD
only

6 h LSTM 1 0.299 35.0 11
3 h LSTM 2 0.603 11.2 4

3 h RFR 0.765 23.5 5
3 h SVR 0.617 19.2 1

DR-RF-TD
and

HP-RF-TD

6 h LSTM 1 0.263 38.6 13
3 h LSTM 2 0.586 8.3 6

3 h RFR 0.785 21.6 10
3 h SVR 0.607 18.0 1
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