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Abstract: Two factors are crucial for the effective operation of modern-day smart services: Initially,
IoT-enabled technologies have to capture and combine huge amounts of data on data subjects.
Then, all these data have to be processed exhaustively by means of techniques from the area of
big data analytics. With regard to the latter, thorough data refinement in terms of data cleansing
and data transformation is the decisive cornerstone. Studies show that data refinement reaches
its full potential only by involving domain experts in the process. However, this means that these
experts need full insight into the data in order to be able to identify and resolve any issues therein,
e.g., by correcting or removing inaccurate, incorrect, or irrelevant data records. In particular for
sensitive data (e.g., private data or confidential data), this poses a problem, since these data are
thereby disclosed to third parties such as domain experts. To this end, we introduce SMARTEN, a
sample-based approach towards privacy-friendly data refinement to smarten up big data analytics
and smart services. SMARTEN applies a revised data refinement process that fully involves domain
experts in data pre-processing but does not expose any sensitive data to them or any other third-party.
To achieve this, domain experts obtain a representative sample of the entire data set that meets all
privacy policies and confidentiality guidelines. Based on this sample, domain experts define data
cleaning and transformation steps. Subsequently, these steps are converted into executable data
refinement rules and applied to the entire data set. Domain experts can request further samples and
define further rules until the data quality required for the intended use case is reached. Evaluation
results confirm that our approach is effective in terms of both data quality and data privacy.

Keywords: privacy; data refinement; data cleansing; data transformation; human-in-the-loop

1. Introduction

Since in 2011 the World Economic Forum coined the phrase “data will be the new
oil” [1], this allegory of data as the most valuable asset to be exploited has become in-
creasingly entrenched [2]. Data as a resource are highly relevant in any domain, including
research [3], economy [4], the public sector [5], and even private life [6]. None of the
so-called smart services can operate without processing vast amounts of data—the better
the quality and quantity of the data, the better the outcome [7].

This fact is often seen very positively, since data, unlike oil, are an almost indefinite
resource. Today, it is possible for every user to be a data producer, and due to the Internet of
Things (IoT), data can be gathered in any domain [8]. Moreover, unlike oil, processing data
are clean, and, since data are not consumed when they are processed, they represent the
ultimate renewable resource [9]. However, this should not be perceived quite so optimistic.
Just like oil, data are virtually worthless in their raw state. Thorough processing techniques
are required in order to refine them, and, in this process, enriching their information content
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and generating a value [10]. Elaborate data science strategies are therefore needed to derive
essential knowledge from raw data [11].

This is often illustrated by means of the Data Pyramid [12] (also known as DIK Hier-
archy—data, information, knowledge). This three tier pyramid is shown in Figure 1. It is
made evident that data are not only the foundation of this pyramid (and thus the source of
all knowledge), but that they are also available in large numbers. This is due to the fact
that, nowadays, almost every device is equipped with a variety of sensors and has the con-
nectivity needed to share the captured data with others [13]. These data, however, are raw,
i.e., they are unstructured and also contain some errors. Only by means of pre-processing
steps (e.g., data cleansing or linking previously incoherent data), raw data become useful
and valuable information. The actual analyses can only be carried out on the basis of this
information. By applying highly use-case-specific data processing techniques, knowledge
can be extracted from the information, which can then be used, for instance, by a smart
service. Although the quantity was reduced in the process, the aggregation of the raw data
has led to an increase in significance and thus value [14].
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Figure 1. Data pyramid illustrating the relationships between data, information, and knowledge.

This data refinement process therefore involves data processing at two stages: First,
raw data must be prepared using data wrangling techniques to extract processable as-
sets [15]. Then, processing techniques from the field of data mining or machine learning
can be applied to generate an added value for the intended use case [16]. Although it may
seem at first that the latter is the more valuable task, studies confirm that the foundation of
any successful data analysis is actual its preceding data preparation [17].

This, however, raises security concerns when dealing with sensitive data [18]. In the
course of data refinement, the data processor gains deep insights into the data. When
pre-processing and analyzing personal data [19] or confidential data [20], it is therefore
essential for the data subjects and data owners to ensure that no private information is
disclosed to third parties involved in the process [21]. However, this confronts data owners
with the privacy paradox: The best way to protect non-disclosure interests of data owners
and data subjects is to provide data processors with no data at all, or at least only highly
distorted data. This, however, also implies that no knowledge can be gained from the data,
and smart services that rely on it would be either inoperable or ineffective. A user only
experiences the best possible level of service if a data processor is able to derive the highest
possible degree of knowledge from all available data. Unfortunately, this also means that a
data owner has to expose all data and thus lose control over his or her data entirely. This is
therefore not an option either, especially for sensitive data [22].

To this end, we introduce SMARTEN, a sample-based approach towards privacy-
friendly data refinement. With SMARTEN, users are enabled to share sensitive data with
smart services without the risk of unwanted insights being gained during data processing.
In other words, we smarten up smart services in a privacy-friendly manner. To this end, we
make the following three contributions:
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1. We adapt the data preparation phase of the data refinement process. Data processors
are not granted access to the full data stock, but rather to representative samples that
comply with the privacy requirements. They then define data wrangling activities
on these samples. These definitions are generalized as data pre-processing rules and
applied to the entire data stock.

2. We adapt the data processing phase of the data refinement process. By means of
privacy filters, different versions of the pre-processed data are generated. According to
the privacy requirements, a specific version is used for the analysis, and the resulting
insights are provided to the data consumers (e.g., smart services). As a result, each
use case can be provided with the required knowledge without exposing any sensitive
information.

3. We enable data owners to annotate their data with privacy requirements by means of
digital signatures. These privacy requirements define how profoundly a data proces-
sor and a data consumer can inspect the data. Analogous with the data refinement
process, the privacy requirements are also structured in two parts to determine in
which manner access to the data are granted during pre-processing and what insights
can be gained during the analysis.

The remainder of this paper is structured as follows: We initially discuss the data
refinement process, describe its two phases as well as the tasks to be carried out, and
identify key players in data processing in Section 2. Furthermore, we also address legal
aspects that have to be considered in data processing and must be ensured by technical and
organizational measures. In Section 3, we discuss such measures and how they resolve the
privacy paradox. Based on these findings, we present our proposed solution SMARTEN
in Section 4, which addresses shortcomings in related work. Our main focus is to ensure
that all privacy requirements of a data owner are respected by the data processor for both
the data preparation phase and the data processing phase of the data refinement process.
In Section 5, we evaluate SMARTEN by means of a feature assessment to document its
capabilities, by means of a user study to prove the applicability of our approach, and by
means of a performance measurement to determine its overhead in terms of runtime and
memory usage. Finally, we wrap up our work in Section 6.

2. Data Refinement Process

The cornerstone of effective data refinement is a systematic process model that gradu-
ally elevates raw data to a higher level [23]. To this end, there are several process models
that address this matter from different directions and therefore each has its own specific
focus. One such process model is SEMMA [24]. SEMMA stands for the individual pro-
cess steps, namely sample, explore, modify, model, and assess. These steps are deliberately
designed highly generically in order to be applicable to any kind of data science task. The
involved activities are therefore defined very broadly. Thus, it is only specified that initially
a significant amount of base data has to be selected and an overview of these data has to
be obtained. Then, these data have to be prepared and processed in such a way, as it is
“appropriate” for a specific goal. Finally, the success—i.e., the quality of the knowledge
gained—has to be evaluated. These steps are strictly sequential. It can only be determined
whether the data refinement was successful at the very end. If this is not the case, the cycle
starts again from the beginning.

From an operational point of view, however, such a strategy is not efficient as it is
not possible to identify and counteract aberrations at an early stage. Furthermore, a more
precise specification of the individual activities is also required in practice. Therefore, the
Cross-Industry Standard Process for Data Mining (CRISP-DM) [25] introduces an industry-
oriented view of data refinement. Its practicability is clearly reflected by the fact that, before
starting data refinement, knowledge about the business domain has to be gathered. This
way, a cost–benefit analysis can be carried out in order to evaluate the economic viability
of the respective data science project. For this reason, the deployment of the results of the
data refinement is also an integral part of this process. Only when deploying the results, a
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final review of the gained knowledge can be performed. In contrast to SEMMA, however,
CRISP-DM introduces feedback loops between its individual process steps. As a result, the
process is not rigidly run through sequentially as it is possible to return to an earlier step if
a step is not completed satisfactorily.

All these process models stem from Knowledge Discovery in Databases (KDD) [26].
KDD is the first systematic process model for transforming data into a usable form
(i.e., information) in order to gain knowledge from them. The process model consists
of five core steps, which can be mapped almost directly to the five steps of the SEMMA
model. These core steps are preceded by an implicit step in which knowledge about the
application domain is assembled. Furthermore, another implicit step is following the core
steps in which the discovered knowledge is applied. These two implicit steps correspond
to the first and last steps of CRISP-DM. Despite the iterative approach of KDD, the process
is designed to be interactive. That is, similar to CRISP-DM, it is possible to revert to a
previous process step at any stage [27].

Table 1 provides a comparison of the individual steps of the three process models.
It can be seen that KDD is the broadest model, and the other two can be mapped to it.
Because of this property, KDD can be applied to any data science task [28]. Therefore, we
draw on it to describe the data refinement process in this paper (see Figure 2).

Table 1. Contrasting Juxtaposition of the Individual Process Steps of CRISP-DM, KDD, and SEMMA.

CRISP-DM KDD SEMMA

Business Understanding Preceding the KDD Process -

Data Understanding
Selection Sample

Pre-Processing Explore

Data Preparation Transformation Modify

Modeling Data Mining Model

Evaluation Interpretation/Evaluation Assess

Deployment Succeeding the KDD Process -

Data
Producer

Data
Processor

Data
Consumer

Raw Data
Target Data

Pre-
Processed
Data

Transformed Data /
Information

Information
Patterns

Knowledge
Cleansing

Structuring
Analyzing

Provision / Application

Multiple
Feedback
Loops

Provision /
Acquisition

Data Preparation Phase Data Processing Phase

Data
Steward

Data
Analyst

Figure 2. A data refinement process model in accordance with Fayyad et al. [26].

As shown in Figure 2, three key roles are involved in the data refinement process from
an organizational perspective. A data producer initially generates and shares data in order to
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get them refined. The IoT facilitates the capturing of different types of raw data. These data
constitute the foundation for any smart service. Data producers therefore have an incentive
to let their data be prepared and processed in order to feed these services. The processing
itself is handled by the data processor. The processor first transforms the heterogeneous
raw data into a processable form and then applies various analysis techniques to them in
order to gain knowledge. This knowledge is then offered to a data consumer, who utilizes it,
e.g., to operate a smart service [29].

Sensitive data, e.g., confidential or private data, may be involved in this process. A data
producer therefore not only has privacy requirements with regard to the data consumer,
who utilizes the knowledge contained in the data, but also with regard to the data processor,
who gains deep insights into the raw data during data refinement. In our work, the stages
of the refinement process in which the data processor is involved are particularly relevant.
Here, not only the transformation of the data into information takes place, but also the
analysis of the information that reveals the knowledge. This part of the process can be
divided into two phases, the data preparation phase and the data processing phase.

Data Preparation Phase. This part of the data refinement process deals with data wran-
gling. That is, a data steward selects a set of base data from the available raw data that is
worth further investigation. These target data must then be cleansed, since raw data always
have quality issues. For instance, missing values have to be filled in, wrong values have to
be corrected, redundant data have to be removed and imbalances in the datasets have to be
corrected. The cleansed data must then be converted into a uniform structure that can be
processed. A data steward needs deep insight into individual datasets in order to identify
the quality issues within the base data [30].

Data Processing Phase. Based on the compiled information, a data analyst can recognize
contained information patterns. Applied to the right situation, these patterns represent
knowledge. Such patterns are supposed to answer questions such as “What happened?”
(descriptive), “Why did it happen?” (diagnostic), “What will happen?” (predictive), and
“What should I do?” (prescriptive). Thus, the base data are reflected in this knowledge
only in a highly aggregated and condensed form. Therefore, a data analyst does not need
an insight into individual datasets to accomplish his or her task. However, the derived
knowledge reveals much more insight than a single set of raw data [31].

Although it might seem that the second phase is more relevant, as it reveals the valu-
able knowledge, the focus of data refinement is actually on the first phase. In fact, the data
preparation phase accounts for up to 80% of the data refinement, and, without thorough
data wrangling, the subsequent data analysis cannot be conducted successfully [32].

However, since such data refinement can reveal a lot of confidential knowledge,
data subjects have to be protected. Legislators have therefore enacted data protection
laws that are designed for the age of the IoT and big data analytics, e.g., the General
Data Protection Regulation (GDPR) [33] which is in effect in the European Union. The
GDPR obliges that data subjects give their consent before their data are processed in any
form (Art. 6(1)(a)). In addition, even then, a data processor is required to comply with
the principle of data minimization, i.e., the disclosed sensitive data must be limited to
a necessary minimum (Art. 5(1)(c)). At the same time, the accuracy must be high and
incorrect data have to be rectified (Art. 5(1)(d) and Art. 16). Data processors must be able
to document compliance with these regulations to supervisory authorities (Art. 24). This
requires not only organizational measures but also technical ones, referred to as privacy by
design (Art. 25) [34].

In the following, we therefore discuss which technical measures can be taken to comply
with data minimization without compromising the accuracy of the derived knowledge.

3. Related Work

When looking at the state of the art in terms of technical measures to minimize the
information content of data, three fundamentally different approaches can be identified.
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First, base data can be withheld in whole [35] or in part [36]. Second, base data can be
aggregated [37], or certain aspects of the data can be filtered out [38]. Third, the data of a
particular instance can be hidden in the bulk data [39].

Withhold Data. One of the most effective ways to protect sensitive information is to avoid
sharing them with third parties and not let such data be processed at all. In practice, for
instance, this would mean that access to certain sensors on an IoT device—and therefore
their data as well—would be completely blocked [40]. As a result, the information captured
by the sensor in question is no longer available for analysis. This, however, has a significant
impact on data quality and the knowledge that can be derived from them. To mitigate this
to some degree, the withholding of data can be bound to certain constraints. For instance,
certain time slots or locations can be defined where the disclosure of the collected data are
acceptable for the data subject [41]. Likewise, only those data items that contain particularly
compromising information can be withheld, e.g., if the captured values are above or below
a defined threshold [42]. From a technical point of view, this approach corresponds to the
application of a selection operator σ adopted from relational algebra. That is, all tuples that
do not satisfy a specified predicate are removed from the corresponding relation, i.e., a
selection represents a horizontal withholding of data [43].

Instead of withholding the entire data from a sensor or a full dataset, only certain
features of a sensor can be concealed in a fine-grained manner as well [44]. If a sensor
captures multiple facts and combines them into a single measurement—e.g., a GPS sensor
captures, among other things, longitude, latitude, and altitude—it is possible that only
some of these features contain confidential information. In order to still be able to process
the measurements of this sensor, only the affected feature can be withheld in this case.
From a technical point of view, this corresponds to the application of a projection operator π
adopted from relational algebra. That is, a subset of the available attributes is removed
from all relations, i.e., a projection represents a vertical withholding of data [45].

Filter Data. However, withholding data represents a sledgehammer approach that severely
impairs data quality and quantity. Filtering techniques take a more sophisticated approach.
Here, only sensitive information is filtered out of the data. To this end, there are two
opposing approaches: either the data are condensed, or they are enriched with synthetic data.

When condensing data, e.g., the data can be grouped by certain attribute and then only
a single synthetically generated dataset per group, which is representative of the respective
group, is forwarded for processing. From a technical point of view, this corresponds to the
application of an aggregate operator G adopted from relational algebra. That is, all relations
with common attribute value are initially grouped and then an aggregate function, e.g., SUM

or MEDIAN, is applied to each group [46]. Instead of grouping all records by their attribute
values, all records collected within a given time frame can be aggregated, alternatively [47].
However, in doing so, the data quantity is severely reduced since n records are mapped to
a single aggregated value. To address this, data interpolation initially reduces the amount
of data—and thus the disclosure of sensitive information—by processing only every n-th
record of a data source. The omitted data points are then filled with suitable mock data to
maintain the original amount of data [48].

When enriching data, randomly generated noise is usually added to the actual data in
order to reduce the accuracy of the data—and thus the amount of information contained [49].
However, such a one-size-fits-all approach is not always effective. On the one hand, generic
noise may not sufficiently mask certain confidential information in some cases, or it may be
removed very easily [50]. On the other hand, such noise can be too intrusive and render
the data unusable in the process [51]. Therefore, it is better to rely on privacy filters that are
tailored to the particular data and their intended processing [52]. For instance, there are
specialized approaches for location data [53], health data [54], time series data [55], voice
data [56], and image data [57]. Such approaches ensure that the synthetically generated
data appear plausible in the context of the data subject [58]. In addition to such filters
targeting specific data sources, there are also higher-level filters for events, i.e., specific
combinations of data from different sources [59].
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Hide in the Masses. While the technical measures to conceal sensitive information de-
scribed above primarily targeted data from individual users, the protection of such data
can also be seen as a community task. If many individuals are willing to expose their data
to a certain risk of disclosure, sensitive information can also be hidden in the masses of
data. This principle can be explained very simply by means of an example: When General
Crassus tried to arrest Spartacus, many followers of Spartacus claimed to be him. This
way, the real Spartacus blurred with the masses and could no longer be identified as an
individual. The more people thereby expose themselves to the danger of being arrested, the
lower is the actual danger for each individual [60]. This fundamental idea also applies to
the protection of confidential data. Often, the data themselves are not particularly sensitive
as long as they cannot be linked to a data subject. Thus, instead of tampering with the data
and thus degrading the quality of the data, it is often sufficient to pool the data of many
individuals, so that a single record cannot be uniquely linked to any of them. It is only
possible to tell that they belong to one of the k individuals that participate. In this way,
it is possible to perform better analyses on the data than it would have been possible if
arbitrarily filters are applied to the data of each individual [61].

Dwork [62] introduces differential privacy, a measure that can be used to assess the
risk to an individual who hides his or her data in the masses. To this end, an analysis
is performed on the data of all participating individuals. The analysis results are then
compared to the results of the same analysis on a neighboring database, i.e., base data without
the data of the individual in question. If the two results differ only by a small ε, the data of
that individual are not exposed. However, it has to be mentioned that this result cannot
be directly applied to all other individuals or to all types of analyses because the level of
exposure may differ in each case. While there is a lot of research work on how to ensure
these ε-differentially private properties [63], which show promising results [64], it still has
rather little significance in practice due to the high complexity to apply such measures [65].

Synopsis. When looking at the related work, only the horizontal and vertical withholding
of data can be applied to arbitrary raw data. However, in the context of data refinement,
these measures are often too restrictive in terms of reducing not only the amount of
sensitive information contained in the data but also the quality of data and thus their
value. The dedicated filtering techniques can operate at a much higher level of granularity
and thus better preserve data quality. To this end, however, the data must be available in
the appropriate form and are afterwards only usable for their intended purpose. These
measures could be applied directly at the data source’s side. However, studies show that
the effectiveness of such dedicated filtering techniques is higher when they are applied at
the data processor’s side, where a complete overview of all existing data are available [66].
Since data processors in the service domain are commonly assumed to be semi-honest-but-
curious, i.e., they will not expose any sensitive information about a user deliberately, it is
reasonable to entrust them with the task of data protection [67].

Therefore, to map the discussed measures to the data refinement process performed
by the data processor, generic techniques such as horizontal and vertical withholding are
particularly suitable in the data preparation phase, since only unprocessed raw data are
handled here, for which no assumptions can be made regarding their structure. Only when
the data have been transformed into processable information, i.e., in the data processing
phase, can the dedicated privacy filters be applied systematically. Approaches such as
differential privacy are also more suitable for hiding sensitive information from the data
steward, i.e., in the data preparation phase, since data analysts may deal with data of a
particular individual or a very small group of individuals only.

Since there is no privacy approach addressing the data refinement process as a whole,
we introduce such an approach called SMARTEN in the following section.

4. SMARTEN

To enable a privacy-friendly data refinement by data processors, in SMARTEN, we
consider the two-phase design of this process (see Section 2). In this regard, SMARTEN
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provides a mechanism for data stewards to transform raw data into information without
violating the privacy requirements of data producers. Our sample-based approach is
presented in Section 4.1. For data analysts, SMARTEN provides a mechanism to gain
knowledge from the information. To ensure that this knowledge does not expose sensitive
information to data consumers, the addressed state-of-the-art filtering techniques are
applied (see Section 3). This mechanism is discussed in detail in Section 4.2. Although a
semi-honest-but-curious data processor can be assumed, a control mechanism is required
so that independent supervisory authorities can monitor whether the data are processed
privacy-aware. To this end, privacy requirements are attached inseparably to the data by
means of digital signatures. This approach is explained in Section 4.3.

4.1. Data Preparation Phase

Due to the IoT and decreasing storage costs, data are constantly being captured and
stored persistently. Data processors and especially data stewards are therefore faced with
a flood of raw data that they cannot handle manually. Therefore, there are approaches
towards data pre-processing powered by artificial intelligence. However, it cannot substi-
tute human knowledge in data preparation. Human data wrangling experts, such as data
stewards, achieve better results in data preparation because they can rely on broad domain
knowledge and their experience. In the data preparation phase, it must be ensured to keep
the human in the loop [68].

In our approach, we therefore adopt a dynamic sampling approach to meet this
premise. Here, the data steward operates on a representative yet manageable sample
which is extracted from the bulk of raw data. In doing so, the data steward defines data
preparation rules that can be generalized and applied to the entire base data. While such an
approach is primarily intended to relieve the experts, it also represents a privacy preserving
measure [69]. Since the data steward never has access to the entire dataset, he or she can
only gain as much insight as required for the fulfillment of his or her task. In addition,
particularly sensitive data can be concealed entirely. However, by applying afterwards the
defined rules to the entire base data, a comprehensive data preparation can still be ensured.
Figure 3 illustrates the workflow that is followed in our approach.

Stock of
Raw Data

Data Sampler

Privacy
Threshold

Data
Steward

Specification of
Data Preparation

Rules

Privacy
Assessor

Evaluate3

Load Data Sample1

Sample
Rejection

4 Sample
Acceptance
5Compare to
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2

Update Policy7Apply Data Preparation
Rules to Base Data

8

Data Preparation
Policy

Request another
Data Sample

6

Figure 3. Workflow of the sample-based approach for data preparation applied in SMARTEN.

À Initially, the data sampler picks a representative data sample from the stock of raw
data. Descriptive analyses are performed on the base data to identify data items that require
special attention, e.g., null values, extreme values, and outliers. Metadata provided by the
data producers can further facilitate the sample selection, for instance, to identify attributes
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that are either particularly relevant for data preparation or have little or no influence on
data refinement. Á If a reasonable sample is found, the data sampler forwards it to the
privacy assessor Â. The privacy assessor evaluates whether the sample meets the necessary
privacy requirements. These are specified by the data producer by means of a privacy
threshold. For more information on setting these thresholds, see Section 4.3.

In addition to ε-differential privacy (see Section 3), other metrics can also be used for
this purpose. For instance, k-anonymity describes how well an individual can disappear in
a crowd. The k indicates that there are at least k− 1 other individuals (respectively, data
items) with similar attribute values, so that they cannot be distinguished unambiguously.
Thus, information obtained from the data cannot be associated with a single individual, but
only with a group of size k. Another metric is the entropy which evaluates the information
content of a dataset. In simple terms, it assesses how much a data item deviates from the
expected norm. For instance, if it is known that the value of an attribute A is almost in all
cases x, then a data item where A has the value y has a particularly high information content.
For more information on these and other technical privacy metrics that can be used to
evaluate the samples, please refer to literature, e.g., the work by Wagner and Eckhoff [70].
With regard to the quality of the data refinement, however, the principle of fairness must
also be considered in the sampling. For instance, no bias must be introduced due to the
sampling [71]. For instance, if the value of the attribute A is predominantly x in the sample,
while the attribute values x and y are equally distributed in the base data, the data steward
might estimate the significance A incorrectly. This would have a negative impact on the
quality of the outcome of the data preparation phase. There are also a wide range of
technical fairness metrics that can be used in the privacy assessor of SMARTEN. For details
on such metrics, please refer to literature, e.g., the work by Lässig et al. [72].

Ã If the privacy assessor rejects the sample because it violates the privacy threshold, the
data sampler must prepare a new sample and the assessment cycle restarts. If no sample can
be found that satisfies the privacy threshold, e.g., since the threshold is too restrictive or the
base data contain too sensitive information, automated data pre-processing can be applied.
Here, an artificial intelligence approach performs both the data cleansing [73] and the data
transformation [74]. However, the quality of the data preparation is expected to be impaired,
as the data steward’s domain knowledge cannot be taken into account [75]. In addition, such
fully automated data processing is not permissible in certain application areas, e.g., when
dealing with medical data [76]. Alternatively, synthetic data with characteristics similar to
those of the real base data can be generated. Such an approach is used for data refinement
when only very little base data are available [77]. The data steward can define preparation
rules for these synthetic data, without having access to the real base data. However, this
also impairs quality of data preparation, as overfitting—i.e., the generated data imply that
certain issues are more significant than they are—or underfitting—i.e., certain data issues
are not reflected in the generated data at all—may occur in the synthetic data.

Ä If a valid sample is found, it is forwarded to the data steward. Only at this stage
does a human gain insight into the base data excerpt. The data steward identifies data
issues in the sample and specifies which data cleansing steps and transformation tasks
are necessary as part of the data preparation. Å If he or she needs further insights into
the base data, he or she can request another sample from the data sampler until he or she
is satisfied with the data quality. He or she can also retrieve statistical information about
the base data, such as minima, maxima, or average values, e.g., to fill missing attribute
values. Æ These data cleansing steps and transformation tasks for the sample can then be
mapped to three general transformation operators, namely filter operators, map operators, and
reduce operators. A filter operator filters out data items from the base data for which certain
properties hold, a map operator transforms data items or modifies certain attributes, while
a reduce operator groups and aggregates data items. Ç These generalized transformation
operators can then be applied to the entire base data [78].

Our approach therefore combines a sample-based, an expert-based, and a rule-based
approach. This way, the best possible data preparation quality can be achieved [79].
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In technical terms, the three general privacy measures presented in Section 3, selection,
projection, and aggregation, are used to ensure privacy. In sampling, selection is primarily
used to reduce the number of data items. Projection can enhance privacy, e.g., by removing
identifying attributes. When specifying the preparation rules, the data steward can use
aggregations to deal with data issues such as missing attribute values.

4.2. Data Processing Phase

To meet the privacy requirements in the data processing phase, we designed a new data
management architecture—or, more precisely, we added privacy features to an existing data
management concept suitable for the data refinement process as introduced in Section 2.
To this end, we leverage the zone architecture for data lakes introduced by Sharma [80]. Data
lakes are an architecture for managing big data. For this purpose, the data are stored not
only as raw format, but also in various processing stages. In a zone architecture, data in the
same processing stage are organized in a common zone. Apart from zones in which data are
stored persistently, there are also zones in which data are only kept in a volatile form, e.g.,
in order to transform them and forward them to downstream zones. Data consumers are
granted access to one or more data zones via dedicated interfaces according to predefined
access policies. In SMARTEN, we extend this generic core concept by additional privacy
features. The resulting SMARTEN architecture is shown in Figure 4.
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Figure 4. Extended date lake zone architecture to ensure privacy in the data processing phase.

This zone architecture reflects the data refinement process. The zones depicted in gray
are processing zones in which data are only temporarily held, whereas the zones depicted
in white are storage zones in which data are kept persistently. There are storage zones for
raw data, information, and knowledge.

Raw data enter the data processor’s scope via the Transient Landing Zone. This zone is
a temporary buffer to be able to enrich the data with metadata relevant for processing, as
well as to build access structures, such as data catalogs that facilitate the handling of the
data. Then, these enriched data are stored in the Raw Data Zone. The SMARTEN workflow
presented in Figure 3 operates on this zone in the data preparation phase. The specified
data preparation rules are applied in the Preparation Zone. For this purpose, a processing
engine reads the raw data affected by the rules into a processable data structure and applies
the required transformations, namely a sequence of filter operators, map operators, and
reduce operators. This zone represents a key extension to the original zone architecture.

The outcomes of the data preparation phase are stored in the Information Zone. The data
items present in this zone are therefore in a fully processable structure. Thus, these data
items can be made more privacy-friendly in a target-oriented manner by the Privacy Zone.
This zone represents another second key extension, since it initiates the data processing
phase in SMARTEN. In this zone, a repository is maintained in which privacy scripts are
stored that implement different dedicated privacy techniques for specific types of data.
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Examples of such techniques are given in Section 3. The appropriate scripts are selected
by the Privacy Zone and applied to the prepared data [81]. Details on how to determine
which techniques have to be applied are given in Section 4.3.

The concealed data are then transformed into knowledge by the data analyst. However,
since different data consumers may have different privacy requirements, the data processor
generates n different versions of the knowledge rather than just one. For each of these vari-
ants, a different combination of privacy scripts has been applied prior to processing. Thus,
they represent different levels of privacy. For each level, there is a zone labeled Privacy Level
x Zone. As a result, there is an appropriate variant of the knowledge for any purpose [82].
To determine the appropriate number of such privacy levels, privacy experts first analyze
the available data sources and assess the potential threats posed to data subjects, i.e., the
severity of the impact that a disclosure would entail. Mindermann et al. [83] demonstrate
how a method called STPA-Priv [84], which is based on System Theoretic Process Analysis,
can be used for this purpose. Here, experts are systematically guided by tools to uncover
existing data privacy risks. The experts can document their findings regarding the privacy
risks in a processable model that describes which knowledge can be derived from which
data sources [85]. The derivable knowledge is thereby represented as knowledge patterns.
Additionally, explanatory keywords are assigned to each of these patterns. By means of
these keywords, data subjects can easily identify exactly those patterns that are relevant
for them, i.e., patterns that have to be concealed in their data. In addition, a collaborative
filtering approach can be used to recommend further patterns to data subjects that might
be relevant to them as well [86]. These patterns are then translated into non-disclosure
requirements, which are used for the configuration of SMARTEN (see Section 4.3).

The Delivery Zone regulates which data consumer has access to which privacy level.
For each access, this zone checks which knowledge may be disclosed and shares only that
variant with the data consumer. Third parties are not aware of any other variants. An
access control policy defines which data consumer is allowed to access which privacy level.
Please refer to literature for details on how such an access control policy can be designed,
e.g., the work by Stach and Mitschang [87].

Orthogonal to these processing and storage zones there is a Data Management and
Security Layer. Such a layer is needed in every data lake for data governance tasks, e.g., to
assist data retrieval, to support efficient data access, or to implement data security measures.
In SMARTEN, this layer has another relevant function. Permanent storage of the raw data
and all their processing stages is necessary so that the data processor can fulfill its obligation
to prove to the data producer that, e.g., the requested privacy techniques have been applied
prior to processing. For this purpose, Provable Data Possession can be applied. Here, a data
producer can verify whether the data are at rest in the respective privacy level. In our
approach, a third-party auditor, e.g., a data protection authority, can perform this task on
behalf of the data producer. In doing so, the third-party auditor requires neither insight
into the data of the data processor nor into the data of the data producer [88].

To this end, the Data Management and Security Layer encodes and encrypts all data
at rest in SMARTEN. The third-party auditor challenges the data processor regularly to
ensure that the data are present in all required privacy levels. For this purpose, there is a
puzzle mechanism that ensures that solving a puzzle always takes a certain amount of time.
This puzzle is related to the encrypted data at rest. If the data processor takes too long to
provide an answer to a challenge, it implies that he or she needs to generate a solution to
the puzzle. Therefore, it can be assumed that the data processor has to generate a version
of the data in the intended privacy level on the fly during the challenge. However, if the
data processor responds quickly to the challenge, it means that he or she already knows
the solution to the puzzle, i.e., the data are at rest in the requested privacy level [89].

4.3. Elicitation of Non-Disclosure Requirements

For the configuration of SMARTEN, i.e., the specification of privacy thresholds and
privacy techniques that have to be applied, we adopt a two-stage approach in order to
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address the two separate phases of the data refinement process. For this purpose, we rely
on digital signatures that can be inseparably attached to the data. These signatures specify
the non-disclosure requirements of the data producers. Such an approach ensures that an
attacker cannot alter the requirements retrospectively in order to gain deeper insights into
the data of the data producer [90].

Digital signatures are used to prove the authenticity of a data object, e.g., a message, a
file, or a data item. For this purpose, asymmetric cryptography is used, i.e., a key pair is
generated that consists of a signing key and a verification key. The signing key is kept secret
by the signer, while the verification key is shared with the public. To sign a data object, the
signer encrypts it with his or her signing key. The data object can only be verified with
the corresponding verification key. If the verification is successful, it is ensured on the
one hand that the data object has not been tampered with and on the other hand that it
originates from the alleged source, since only this source has access to that signing key.
An attribute-based signature uses keys that are composed of a set of attributes. A signed
object can only be successfully verified if the key used for this purpose has a certain subset
of these attributes. In SMARTEN, we also use attribute-based signatures, except that the
non-disclosure requirements of the data producers are used instead of attributes. However,
attribute-based encryption algorithms require a lot of computational power. Therefore, we
adopt an approach introduced by Gritti et al. [91], in which the computations are distributed
and can be partially outsourced. Our adapted approach is shown in Figure 5.
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Figure 5. Two-stage approach to specify non-disclosure requirements applied in SMARTEN.

In addition to the actual two stages that are used to specify the privacy thresholds in
the data preparation phase and the privacy requirements in the data processing phase, our
approach also includes a preliminary phase for organizational purposes.

Key Generation and Deployment. Initially, a data producer announces his or her non-
disclosure requirements to a trusted authority. When dealing with sensitive data, regula-
tions such as the GDPR mandate that there has to be an independent supervisory authority
(Art. 51 and Art. 52). This can, for instance, serve as the trusted authority. Ê This authority
then generates two key pairs for the signature. Let τ be the set of privacy thresholds and
λ be the set of requested privacy levels for the knowledge gained from processing the
data. Then, full keys (depicted in black) reflect the union of these two sets ϕ = τ ∪ λ, while
delegated keys (depicted in white) reflect only λ, i.e., a true subset of ϕ. The full keys are
provided to the data producer, while the delegated keys are provided to the data processor.

Full Authentication. Ë To ensure that the data are not tampered with and that the non-
disclosure requirements are not lost during transmission, the data producer signs the raw
data with his or her full key. Ì In the data preparation phase, the data processor verifies
the signature against his or her privacy policy ρ1. This policy describes which privacy
thresholds are applied by the privacy assessor. Only if the requirements in τ are satisfied
by ρ1 is the applied privacy policy valid and the raw data in question can be preprocessed.
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Í This is monitored on behalf of the data processors by their privacy officer. A privacy
officer requires no technical knowledge, as the privacy thresholds sufficiently specify how
the data may be processed. If the data preparation is executed in compliance with the non-
disclosure requirements, the privacy officer re-signs the data with the delegated key, i.e., τ
is removed from the signature. In the data processing phase, the thresholds contained in τ
are no longer relevant. However, non-disclosure requirements might indicate what a data
producer wants to conceal. Thus, this filtering is necessary due to data minimization [92].

Delegated Authentication. Î The re-signing initiates the data processing phase. In this
phase, the data processor verifies the modified signature against his or her privacy policy
ρ2. This policy describes the privacy measures for which privacy scripts are available
in the Privacy Zone. Only if the scripts comply with the requirements described in the
signature can the prepared data be further processed. Ï However, as such an auditing
is by no means trivial, it has to be handled by a privacy engineer. A privacy engineer
represents an intermediary between legal experts and IT experts. He or she is able to
evaluate the means by which the non-disclosure requirements of the data producers can
be met without rendering the quality of the processing results useless. Only if the privacy
engineer approves the applied measures is the gained knowledge offered in the respective
Privacy Level x Zone to data consumers. Since a semi-honest-but-curious data processor
can be assumed, this approach is a reliable way to enforce the non-disclosure requirements
of the data producers.

As always with cryptographic approaches of this kind, security stands and falls with
the authority that issues the keys. If this authority is malicious or becomes compromised,
no assurances can be made regarding the security of the signatures. In this case, all keys
issued by this authority would have to be invalidated and replaced. However, assuming
that the data processor is at least semi-honest-but-curious (see Section 3) and therefore
complies with applicable law such as the GDPR, the associated authority can also be trusted.
Since this supervisory authority has to be independent according to GDPR, no involved
party has any influence on it. Thus, even if the data processor is assumed to be somehow
compromised, the key authority remains trustworthy. Furthermore, government agencies,
such as the German Federal Office for Information Security (see https://www.bsi.bund.
de/EN/Home/home_node.html, accessed on 31 July 2022), can also provide such key
generation services, i.e., operate as such this trusted authority. However, if no authority can
be found that all parties involved can fully trust, it is also possible to have several authorities
responsible for key generation and key escrow instead of a single central authority. In this
case, if some of these authorities become compromised, the security of the keys would not
be affected, as long as not all of them are exposed at the same time. Such a distributed
approach could be achieved for instance by means of multi-party computation [93] or secret
sharing [94].

Protective measures must also be taken with regard to the keys themselves. Only if
the methods used to generate them are secure are the digital signatures generated with
them trustworthy. For the purpose in SMARTEN, we recommend the use of an elliptic curve
cryptography, with which we aim for 224-bit/256-bit keys, giving us a minimum strength
of 112 bits/128 bits of security [95]. Technological progress, such as quantum computing,
may in the future render this encryption method, which is considered sufficiently secure
today, ineffective [96]. In this case, post-quantum cryptography [97] would have to be used for
digital signatures in SMARTEN. However, this would not affect the underlying concepts
and procedures presented in this paper, since they are inherently technology-independent.

Next, we evaluate SMARTEN in terms of functionality, usability, and performance.

5. Evaluation

In this section, we evaluate whether SMARTEN achieves our goal of making the
data refinement process privacy-friendly. To this end, we perform a feature assessment in
Section 5.1 to determine which privacy properties SMARTEN provides. Then, in Section 5.2,
we report on the results of a user study that provide evidence on the usability of SMARTEN

https://www.bsi.bund.de/EN/Home/home_node.html
https://www.bsi.bund.de/EN/Home/home_node.html
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from the perspective of data processors. Finally, in Section 5.3, we present the results of a
performance measurement to quantify the overhead caused by SMARTEN in terms of data
throughput and memory consumption during data processing. Since the sample-based
approach we introduce for the data preparation phase constitutes the key component of
our work, we also focus on this aspect in the user study and the performance measurement.
At the end, we summarize the lessons learned in Section 5.4.

5.1. Feature Assessment

As outlined in Section 2, data protection regulations such as the GDPR impose legal
requirements on the data refinement process. In this feature assessment, we therefore
investigate whether SMARTEN complies with these requirements.

SMARTEN provides technical measures that ensure compliance with the principles
relating to processing of personal data (Art. 5). Data minimization is considered in many
ways. First, data stewards receive only insight into a small section of the data due to our
sample-based approach. Second, by applying the privacy scripts in the Privacy Zone, the
information content is minimized prior to processing. Third, even with respect to the
non-disclosure requirements, the data processor receives only as much information as
necessary, due to our two-stage signature approach. This fine-grained and target-oriented
data minimization also ensures that the data processor is able to maximize the accuracy
of the refined data. Furthermore, the provision of different variants of the refined data at
different privacy levels enables to enforce a purpose limitation towards the data consumer.

Since the non-disclosure requirements of the data producers are inseparably attached
to the data by means of digital signatures, the lawfulness of processing (Art. 6) as well as con-
ditions for consent (Art. 7)—including all their amendments in the subsequent articles (Art. 8
and Art. 9)—can be guaranteed by the data processor. Given the fact that a semi-honest-
but-curious data processor can be assumed, it is sufficient to have two supervisory bodies
in place, the privacy officer and the privacy engineer. Due to the measures introduced by
SMARTEN, they are able to assess and ensure compliance with the requirements.

SMARTEN adheres to the transparency and information rights (Art. 12–Art. 14), as third-
party auditors can monitor at any time on behalf of the data producer which data are
present in which processing stage at the data processor. Furthermore, the non-disclosure
requirements clearly stipulate in a transparent manner how the data are processed.

The right to erasure (Art. 17) is directly supported by SMARTEN, while the right to
rectification (Art. 16) can also be achieved indirectly in the same way. While the trusted
key authority cannot delete the data, it can invalidate the keys of the data processor. Since
all data are available only in encrypted form due to the signatures, invalidating the keys
renders the data unusable. Rectification can be realized as a sequence of an erasure and
re-submission of the corrected data.

The right to restriction of processing (Art. 18) is also enforced by means of the signatures.
Only if the processing policy meets the required attributes, i.e., appropriate thresholds or
adequate privacy measures, the data can be decrypted and processed.

Since humans are involved in each phase of the data refinement process, i.e., data
stewards as well as privacy officers in the preparation phase and data analysts as well as
privacy engineers in the processing phase, a fully automated data processing (Art. 22) is ruled
out by default.

By including third-party auditors as well as trusted authorities, independent supervisory
authorities (Art. 51 and Art. 52) are strongly involved in SMARTEN.

Although only the most relevant aspects regarding applicable data protection regu-
lations could be discussed here, overall it can be concluded that SMARTEN represents a
comprehensive privacy-by-design solution (Art. 25).

5.2. User Study

Behringer et al. [98] conduct a user study to evaluate the quality of data preparation
when using a dynamic sampling approach similar to the one applied in SMARTEN. To
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this end, they compare the dynamic sampling approach (DS), in which the data steward
defines data preparation rules on a representative sample, which are then applied to the
entire base data and he or she receives feedback on the effects of the rules, with a static
sampling approach (SS) without this interaction and an approach in which no sampling
takes place (NS) and data preparation is performed on the entire base data. Twelve
participants (nine male and three female) use the three approaches to cleanse a given
dataset. The participants are all between 20 and 38 years old (mean = 25.5, standard
deviation = 6.25) and have a computer science background.

In the user study, both objective measures and subjective measures are taken into
account. On the one hand, it is assessed how many data issues the participants are able to
resolve in the base data using the respective approach. On the other hand, a 5-point Likert
scale is used to measure how satisfied the participants are with the respective approach. In
Figure 6, the main findings of the user study are presented.
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Figure 6. Key findings of the user study conducted by Behringer et al. [98]. (a) Mean percentage of
cleaned data issues; (b) overall Satisfaction of the participants.

When looking at the percentage of data issues that the participants were able to resolve
with the respective approaches (see Figure 6a), it is evident that the dynamic sampling
approach outperforms the other two approaches. Furthermore, even the application of a
static sampling approach is a significant improvement over an approach without sampling.
By applying an one-way ANOVA with repeated measures, the statistical significance of this
finding can be confirmed. The statistical significance of the results is also confirmed by the
Bonferroni-adjusted post-hoc analysis.

When considering the subjective ratings of the participants (see Figure 6b), it becomes
apparent that the two sampling approaches are distinctly more popular overall than the
approach without sampling. From a user perspective, however, there is no perceived
difference in popularity between the two approaches. The statistical significance of these
two observations can also be verified by means of a Friedman test and a Wilcoxon test.

Since a similar sample-based approach is applied in SMARTEN, these findings are
also highly relevant for us. As the user study indicates that users prefer to have any
kind of sampling approach instead of having to operate on the entire base data, it can
be assumed that data stewards appreciate working with SMARTEN. Furthermore, any
kind of sampling also represents an improvement in terms of data preparation quality.
Even though SMARTEN does not provide feedback to the data stewards on the impact
of the data preparation rules—such feedback would enable to draw conclusions about
the base data and is therefore not envisaged in SMARTEN for privacy reasons—the
systematic selection of data items still is an improvement over static sampling. SMARTEN
is therefore a genuine improvement for data stewards in terms of usability. As part of
future work, we intend to carry out another user study in which privacy metrics are
also considered for sampling, in order to validate this initial assumption regarding the
efficiency of SMARTEN.
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5.3. Performance Measurement

To determine the performance overhead caused by SMARTEN, we have implemented
three different data preparation rules. Each of these rules reflects one of the three trans-
formation operators, namely a filter operator, a map operator, and a reduce operator: The
filter operator eliminates all data items with a certain attribute value (i.e., a selection). The
map operator removes a certain attribute (i.e., a projection). The reduce operator groups
the data items by a categorical attribute and calculates the mean value of an attribute for
each group (i.e., an aggregation). These rules are then applied to base data.

A relational database (SQLite DB 3.37.2, see https://www.sqlite.org/, accessed on
31 July 2022) is used to store the base data. We implemented the processing engine which
is required in the Preparation Zone using Python 3.10.3 (see https://www.python.org/,
accessed on 31 July 2022) and Pandas 1.4.1 (see https://pandas.pydata.org/, accessed on
31 July 2022). All base data are loaded into a DataFrame, where the transformations are
applied. The database as well as the processing engine are deployed on a computer with
an Intel Core i7-1165G7 and 32 GB DDR4-3200 main memory.

For the evaluation, we used synthetic base data. On that account, we generated
stepwise from 500 to 5000 k data items. In each step, we have increased the amount of data
tenfold. This represents a maximum data volume of about 12 GB. In our evaluation, we
measured both the data throughput, i.e., how much data per second is processed, and the
main memory peak usage. For each operator and each base data size, we performed the
measurements ten times. After each run, we reset the database to exclude distortions due
to warm caches. In Figure 7, the median of the runs are shown—we use the medians to
exclude side effects caused by background processes.

For comparison purposes, we have also implemented the three operators as SQL
commands which can be executed directly by the SQLite DB. We use this as our baseline.
This represents an optimum. In this baseline, the initial retrieval of the data is eliminated
and the available index structures of the database can be used to support the processing.
Therefore, the closer the processing engine used in SMARTEN approximates this baseline,
the better the performance has to be assessed.
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Figure 7. Cont.
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Figure 7. Evaluation results regarding the overhead caused by SMARTEN. (a) Data throughput of
the filter operator; (b) memory usage of the filter operator; (c) data throughput of the map operator;
(d) memory usage of the map operator; (e) data throughput of the reduce operator; (f) memory usage
of the reduce operator.

It can be noticed that the selection data throughput and the projection data throughput
hardly show any differences (see Figure 7a,c). Even though the throughput of SMARTEN
is lower than the one of the baseline, both show an identical progression. That is, the
throughput of SMARTEN is in O(baseline). For the aggregation, the two curves are also
somewhat similar (see Figure 7e). Here, however, the difference between the two curves is
significantly bigger than in the case of the selection and the projection. This is due to the
fact that, especially in the case of grouping, the database can make use of index structures
concerning the categorical attribute.

It is noticeable that the performance of SMARTEN drops for the biggest set of base data
for in all three operators. This is due to the Pandas-based implementation of the processing
engine. Pandas loads a DataFrame completely into main memory. Since in our evaluation
the database and the processing engine share the available main memory, there is almost
no free main memory left for this base data volume. To address this issue, we have also
implemented the processing engine using Modin 0.13.3 (see https://modin.readthedocs.io/,
accessed on 31 July 2022) and Dask 2022.3.0 (see https://docs.dask.org/, accessed on 31 July
2022) as its compute engine.

Dask is a Python library that supports data partitioning and parallel computations.
For this purpose, it provides a data structure called Dask DataFrame, which is internally
composed of several Pandas DataFrames. The data contained in the Dask DataFrame
are partitioned row-wise, and each partition is stored in a Pandas DataFrame. The Dask
DataFrame has an identical API as the Pandas DataFrame, yet all commands are executed in
parallel. The abstraction framework Modin takes care of the data distribution and assigns
the tasks to the available processor cores. Due to these properties, switching the SMARTEN
processing engine from Pandas to Modin is pretty straightforward.

The results of the data throughput measurements are surprising at first glance. Appar-
ently, the Modin-based implementation has the worst performance for all three operators.
However, it has to be considered that Modin causes an organizational overhead due to
the initial partitioning and distribution as well as the merging of the results. This over-
head is amortized for large amounts of data, as can be seen for the 12 GB of base data.
Here, the Modin-based implementation approximates the baseline even further. That is,
with a combination of a Pandas-based implementation for small datasets and a Modin-
based implementation for large datasets, SMARTEN has a throughput behavior which is
asymptotically similar to the one of the baseline.

With regard to the memory footprint, there are no noticeable differences for the
selection and projection (see Figure 7b,d). However, for aggregation (see Figure 7f), the
memory consumption is significantly higher in the Pandas-based implementation. This is
due to the fact that Pandas loads all data into memory, while the other two implementations
process the data group-based.

https://modin.readthedocs.io/
https://docs.dask.org/
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5.4. Lessons Learned

The main innovation of SMARTEN is that, in contrast to state-of-the-art approaches,
the characteristics of the phases of the data refinement process are fully addressed. By
supporting different privacy metrics for data sampling in the data preparation phase,
and different privacy filters for data provisioning in the data processing phase, any use
case is supported, even those dealing with highly sensitive data, such as location-based
services [99] or eHealth services [100]. Moreover, SMARTEN can also be extended by
further privacy metrics and privacy filters to meet future challenges. This way, the privacy
requirements of data producers can be fully satisfied and at the same time the quality
requirements of data consumers can be satisfied. To the best of our knowledge, SMARTEN
is the only approach that covers the entire data refinement process and thus enables
privacy-aware and demand-oriented data provisioning.

The results of our evaluation show that SMARTEN meets the requirements towards a
privacy-by-design solution for the data refinement process. Furthermore, our sample-based
approach has a positive impact on the work of the data stewards and the involved overhead
in terms of data throughput and memory consumption is reasonable.

6. Conclusions

Due to technological progress, it is nowadays possible to capture data on literally any
aspect of life almost continuously. Smart services take advantage of this fact by preparing
the acquired data in order to extract processable information from them. This information
can then be processed and analyzed to derive knowledge. This knowledge is the key driver
of smart services. Users benefit significantly from smart services as the comprehensive
knowledge base enables them to tailor their portfolio of services to the user’s needs and
thus offer him or her an optimal service experience. Despite the undeniable advantages
of such smart services, which have become an indispensable part of everyday life, this
development also has its negative aspects. When data are prepared and processed, the
parties involved also gain deep insights into confidential and privacy-sensitive information.
It is therefore mandatory to take technical measures which ensure that smart services are
provided with the necessary data, but prevent the disclosure of sensitive data.

To this end, we discuss the refinement process that transforms raw data into opera-
tional knowledge. While there are various approaches to conceal sensitive information,
all of these approaches mainly deal with the second phase of the data refinement process,
i.e., the data processing phase. For the data preparation phase, there are no dedicated
privacy approaches—let alone a holistic consideration of the data refinement process from a
privacy point of view. We therefore introduce SMARTEN, a privacy approach that smartens
up services in a privacy-friendly manner. To achieve this goal, we make the following
three contributions:

1. By adapting the data preparation phase of the data refinement process, data stewards
only obtain access to a representative sample of the data. The samples are compiled
in such a way that they comply with given privacy constraints. A data steward
operates on the sample, and these data wrangling activities can be transferred to pre-
processing rules, which are then applied to the entire data stock. This way, data can
be transformed into processable information without providing too many insights.

2. By adapting the data processing phase of the data refinement process, different privacy
filters can be applied to the acquired information before it is analyzed in order to
derive knowledge. The privacy filters are designed for each type of data in such a
way that specific aspects of the data can be concealed without impairing the quality
of the data significantly and thus rendering smart services inoperable in the process.

3. Using two-tier annotations, data owners can specify their privacy requirements. The
outer tier specifies which requirements must be met in the data preparation phase
while the inner layer describes which privacy measures have to be applied in the data
processing phase. In SMARTEN, these annotations are realized as digital signatures
that can be attached directly to the source data and thus inseparably tied to them.
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By means of these three contributions, SMARTEN renders the data refinement process
privacy-friendly without unnecessarily restricting smart services. Evaluation results show
that our sample-based data refinement approach is feasible for data stewards and achieves a
satisfactory level of data quality. In addition, the data processing overhead is relatively low.
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GPS global positioning system
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SQL structured query language
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STPA-Priv system theoretic process analysis for Privacy
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