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Abstract: The RSA (Rivest–Shamir–Adleman) cryptosystem is an asymmetric public key cryptosys-
tem popular for its use in encryptions and digital signatures. However, the Wiener’s attack on the
RSA cryptosystem utilizes continued fractions, which has generated much interest in developing
competitive factoring algorithms. A general-purpose integer factorization method first proposed by
Lehmer and Powers formed the basis of the well-known Continued Fraction Factorization (CFRAC)
method. Recent work on the one line factoring algorithm by Hart and its connection with Lehman’s
factoring method have motivated this paper. The emphasis of this paper is to explore the representa-
tions of P

Q as continued fractions and the suitability of lower ordered convergences as representations
of a

b . These simpler convergences are then prescribed to Hart’s one line factoring algorithm. As an
illustration, we demonstrate the working of our approach with two numbers: one smaller number
and another larger number occupying 95 bits. Using our method, the fourth convergence finds the
factors as the solution for the smaller number, while the eleventh convergence finds the factors for the
larger number. The security of the RSA public key cryptosystem relies on the computational difficulty
of factoring large integers. Among the challenges in breaking RSA semi-primes, RSA250, which
is an 829-bit semi-prime, continues to hold a research record. In this paper, we apply our method
to factorize RSA250 and present the practical implementation of our algorithm. Our approach’s
theoretical and experimental findings demonstrate the reduction of the search space and a faster
solution to the semi-prime factorization problem, resulting in key contributions and practical implica-
tions. We identify further research to extend our approach by exploring limitations and additional
considerations such as the difference of squares method, paving the way for further research in
this direction.

Keywords: continued fractions; one line factoring; prime factorization; semi-primes; Wiener’s attack;
public key cryptography; RSA attack; cybersecurity

1. Introduction

The RSA (Rivest–Shamir–Adleman) cryptosystems apply large semi-primes in an
encryption algorithm for the generation of public keys and private keys to successfully
secure an online communication [1–3]. The security of such cryptosystems depends on
prime factorization of large numbers being a huge computing challenge [4–6]. Though
the semi-prime factorization of large numbers has always interested mathematicians for
centuries, the practical importance of preserving the security of these cryptosystems has
led to exploration of the limitations of existing approaches towards the emergence of new
methods, thereby redefining the cybersecurity landscape from time to time [7–13].

In the past two decades, integer factorization algorithms have evolved by improving
existing ones to a great extent such that very large semi-primes of more than 250 decimal
digits can be factorized with sufficient computing power [14–17]. Some of the famous
integer factorization algorithms are Lenstra’s elliptic curve algorithm [18], Pomerance’s
quadratic sieve, and the General Number Field Sieve [19,20]. Not only mathematicians,
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but also computing professionals and organizations have been exploring the properties of
primes for several decades. More recently, their research directions have moved towards
developing efficient tests for primality with the key objective of creating several applications
in the domain of information security, particularly the RSA public key cryptosystem. A
sieve in this context refers to the process of searching for prime numbers among all the
integers up to a prescribed bound [6,20,21]. The early practical building blocks of public-key
cryptography are attributed to the Diffie–Hellman protocol over finite fields and the RSA
cryptosystem. Though several other cryptographic primitives have entered the landscape,
the RSA and finite field Diffie–Hellman methods are more prevalent in terms of their
use for secure information transmission and key exchange in the computing field [22].
The key sizes in these primitives are much longer when compared to elliptic curve-based
cryptosystems. Thus, finding semi-primes has been a challenge and has drawn immense
attention among researchers looking to break the RSA cryptosystem [23,24].

Our previous research work involved proposing several factorization methods includ-
ing approaches using Pythagorean triples, sum of squares, and polynomials, as well as
investigation of their impact on RSA attacks [25–30]. Readers are encouraged to refer to our
previous work and related published articles in the literature that provide the preliminary
definitions and commonly used mathematical notations adopted in this work. In this paper,
we take a modest step to further the method of continued fractions by applying one line
factoring algorithms with an effect on semi-prime factorization of the RSA primitive. The
main aim of this paper is to characterize k:kN as per Lehman [31] and apply this to Hart’s
one line factorization method [32]. Our research work is the first of its kind in exploring the
relationship between the convergence of PQ and the attributes of k, which is used in Hart’s
one line factorization algorithm and has applications in cryptography. Little is known about
the attributes of k, and our research provides a better understanding of its relationship with
the convergence of a solution. This paper presents the theory of our factorization approach
and illustrates the working of our method with examples for breaking keys of different
sizes. Our key contribution lies in the reduction of the search space and the faster solution to
the semi-prime factorization problem. We provide the practical implementation and results
of our experimentation conducted using small and large semi-primes as well as RSA250,
which has 250 decimal digits (829 bits). In addition, our modest contribution includes
considering a general form of the Brahmagupta–Fibonacci identity [33] and applying it to
the difference of squares, which extends our earlier work on the sum of squares approach
for semi-prime factorization [15,17].

The organization of this paper is as follows: Section 2 provides a brief background
history and theory on continued fractions. In Section 3, we present our method to factorize
using continued fractions as a worked example. The application of our approach for
factoring RSA250 is detailed in Section 4. Our practical observations are described in
Section 5. Section 6 provides suitable measures of performance for our proposed method
and future research ideas. Section 7 describes the difference of squares and, finally, in
Section 8, the conclusions and contributions of this ongoing research are summarized.

2. Theory

The theory on continued fractions and the history of various factorization methods
form the back backbone of this research investigation. Fermat’s factorization method which
was formulated in the early 1600’s uses the difference of squares and was published much
later [34–36]. However, most modern factorization algorithms are based on Fermat’s factor-
ization method [37–40]. In the 1920s, Maurice Kraitchik presented a notable improvement
to Fermat’s factorization. Instead of having a number n as a difference of squares, Kraitchik
determined that it would suffice to find a difference of squares equal to a multiple of N [41].
This can be mathematically stated as X2 ≡ Y2 mod N. In 1985, Pomerance’s Quadratic
Factoring Algorithm [19] used Kraitchik’s scheme with the steps given below:

(1) Generate congruences U ≡ V mod N.
(2) Determine factorizations of U and V for some of the congruences.
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(3) Determine a subset of the factored congruences which, when multiplied, produce a
special congruence X2 ≡ Y2 mod N.

(4) Factorization of N : gcd(X − Y, N).

Consider X2 ≡ Y2 mod N. This can be rewritten as given below:

(1) X2 − Y2 ≡ 0 mod N.
(2) X2 − Y2 = kN.
(3) (X − Y)(X + Y) = kN.
(4) P = gcd(X − Y, kN) or Q = gcd(X + Y, kN).

Our premise is that if we can find such a solution as mathematically derived in the
above steps, then the greatest common divisor (gcd) will be a solution to the factorization
of N : N = PQ. We carefully consider Knuth’s work of 1981, which states that attempting
to factorize a semi-prime N = PQ with 4kN “is a rather curious way to proceed, if not
down right stupid” [42]. Further, according to Knuth, finding k is clearly a chicken and egg
scenario. In this work, we aim to perform experiments to investigate the characteristics
of k by working backwards from the answer and narrowing the search field for possi-
ble k values. Further, we study many correct solutions which are the convergences of PQ,
which have not been explored previously. We believed that this ongoing research work
would lead to interesting findings and make better use of our narrower definition of the
parameterization of k.

We next provide a brief background of related articles and their evolution in this
domain. Continued Fraction Factorization (CFRAC) is well defined among factorization
algorithms and is the baseline against which all others are measured. In number theory, the
CFRAC method was the first general-purpose factorization algorithm that was efficiently
implemented in 1975 as a computer algorithm by Morrison and Brillhart [7] using the
continued fraction approach of

√
kN. A few years later, Pomerance and Wagstaff explored

this further and considered in detail the Knuth–Schroeppel function, which attempted
to find suitable values for k that generated new ideas for factoring large integers [43,44].
Subsequently, Williams and Shallit provided a computational history of factoring and the
refinement of several ideas in this space [45]. While such combinations of number theory
ideas have their mathematical merits, in this paper, our interest lies in finding a more
simple and elegant approach that can motivate many researchers from the information
security domain to explore further in this direction. We focus on the initial work published
in 1974 by Lehman, who considered the ratio of P

Q as a
b such that x2 − y2 = 4kN, k = ab [46].

After nearly four decades, Hart considered Lehman’s work and ideas from Shank’s method
(SQUFOF) reported in 1982 [31] and subsequently developed a one line factoring algorithm
in 2012 [32].

From the above equation provided in (2), namely X2 − Y2 = kN, we obtain

Y2 = X2 − kN. If we let X =
⌈√

kN
⌉

, then Y2 =
(⌈√

kN
⌉)2

− kN.
Our simple approach looks for a k value which provides a perfect square. The greatest

common divisor (X − Y, N) will be a solution to the factorization of N : N = PQ.
We propose a new method that considers the continued fraction of the factorization

of N. The mathematical representation and the logic of the algorithm are as follows.
P/Q ≈ p/q, where p/q are the convergences of P/Q.

Y2 =
(⌈√

kN
⌉)2

− kN ⇒ Y2 =
(⌈√

4pqN
⌉)2

− 4pqN

The circular conundrum observed by Knuth [31] is that k = 4pq and that p
q ≈ P

Q .

If P/Q is known, then a convergence p
q can be found and then a suitable k value can

be determined. Hence, we have the chicken and the egg conundrum:

(1) We cannot know p
q because we do not know P

Q ;

(2) We cannot solve for P
Q because we do not know p

q .
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However, our study in this direction is not limited by Knuth’s observation that this
“is a rather curious way to proceed, if not Down Right Stupid” [42]. Regardless of the
obvious short comings provided by Knuth, we explore our proposed approach with worked
examples in the next section, which provides the basis of our main investigation into
applying our method for successfully factorizing RSA250 in the subsequent section.

3. Worked Examples

We provide the verified working of our factorization approach using two worked
examples in this section. In the first example, we consider an integer (13,290,059) to factorize
using continued fractions. This can be achieved with a brute force search by incrementing
through k until k = 4pq ⇒ p/q = 11/8. This provides us with a factorization of 13,290,059
with factors P = 4261 andQ = 3119.

Let us now consider the solution and describe the ratio of P/Q as a continued fraction
such that 4261/3119 => 1 2 1 2 1 2 1 1 3 12.

We will now consider each convergent fraction of the continued fraction in turn until
we find a k value which provides a solution to x2 − y2 = kN, k = 4pq.

Using our approach, the fourth convergence for 4261/3119 => 1 2 1 2 1 2 1 1 3 12
provides the solution. The first four convergences are indicated by [k,x,y,z]. Note that
when z = 0, a solution is found.

1. p
q = 1

1 ⇒ [k, x, y, z] = [4, 7292, 114, 5].

2. p
q = 3

2 ⇒ [k, x, y, z] = [24, 17860, 134, 15].

3. p
q = 4

3 ⇒ [k, x, y, z] = [48, 25258, 209, 7].

4. p
q = 11

8 ⇒ [k, x, y, z] = [352, 68397, 221, 0].

For the example considered here, we arrive at gcd(68397 − 221, 13290059) = 4261.
From the above, it can be verified easily that the fourth convergence finds the factors as the
solution for this example. We note that all other convergences after this one also provide
suitable values for k that lead to a solution. Other approaches such as Silverman’s method
require many polynomials to generate the residues [47].

As a second example, we consider the integer 21,565,941,721,999,797,939,843,713,963,
a 95-bit prime number as illustrated by Crandall and Pomerance [48] on pg307. To factor-
ize using continued fractions, the solution can be achieved with a brute force search by
incrementing through k until the following value is reached:

k = 4pq ⇒ p/q = 17887/6172

This obtains a factorization of 21,565,941,721,999,797,939,843,713,963 with factors
P = 1000000000000037 and Q = 21565941721999.

Consider the solution describing the ratio of P/Q as a continued fraction such that
1,000,000,000,000,037/21,565,941,721,999 ⇒ 46 2 1 2 2 2 2 1 1 1 3 8 13 1 263 1 5 38 1 4
1 2 8 2 1 1 2.

The continued fraction length is 26 and, by applying our approach, the 11th conver-
gence provides a suitable k value and the resulting factorization shown below:

1. p
q = 46

1 ⇒ [k, x, y, z] = [184, 1992017388691164, 33696672, 4942] .

2. p
q = 93

2 ⇒ [k, x, y, z] = [744, 4005628619975628, 66115834, 9235] .

3. p
q = 139

3 ⇒ [k, x, y, z] = [1668, 5997665445179121, 26939199, 4084] .

4. p
q = 371

8 ⇒ [k, x, y, z] = [11872, 16000964349800346, 91024971, 12000] .

5. p
q = 881

19 ⇒ [k, x, y, z] = [66956, 37999594654919919, 84176579, 11777] .

6. p
q = 2133

46 ⇒ [k, x, y, z] = [392472, 92000153692897192, 370945991, 18331] .

7. p
q = 5147

111 ⇒ [k, x, y, z] = [2285268, 221999902043111349, 519272009, 23683] .

8. p
q = 7280

157 ⇒ [k, x, y, z] = [4571840, 314000055736153583, 655378625, 20303] .

9. p
q = 12427

268 ⇒ [k, x, y, z] = [13321744, 535999957779289827, 962310841, 18309] .
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10. p
q = 19707

425 ⇒ [k, x, y, z] = [33501900, 850000013515449911, 875520517, 15650] .

11. p
q = 71548

1543 ⇒ [k, x, y, z] = [441594256, 3085999998325641543, 1674472639, 0] .

For the example considered here, we arrive at gcd (3085999998325641543 − 1674472639,
21565941721999797939843713963 ) = 21565941721999.

From the above, it can be verified that the eleventh convergence finds the factors
as the solution for this example. As per the previous example, all other convergences
after this one also provide suitable values for k and lead to a solution. The two worked
examples shown above demonstrate the simplicity of our proposed approach and the
steps for convergence of a solution. The first example is a smaller integer, while the
second is a very large integer, which is used for illustration in other studies found in the
literature [48]. From the above-described worked examples, we arrive at the following
three general properties:

• gcd(p, q) = 1.
• ∃ p

q ∈ R+ : p
q ≈ P

Q , pq ≪ PQ.

• P
Q is unknown.

Our main interest is in applying our approach to the breaking of keys as key sizes
for RSA and finite field Diffie–Hellman have become unwieldy. In the next section, we
demonstrate the use of our approach to factorize RSA250.

4. Application to Breaking RSA250

At the center of secure information transmission is the RSA cryptosystem. An infor-
mation transmission scheme that meets a 128-bit security strength is widely accepted with
a key size of approximately 3072 bits [24]. Even though high computing power is currently
affordable with advancements in information and communication technologies, there are
certain practical reasons for public key cryptographic schemes employing weak keys. One
main reason for implementing weak key sizes is to ensure backward compatibility. Further,
small key sizes are used in embedded environments with a scarcity of computational
power for public-key cryptographic operations. Hence, several research studies assess the
difficulty of the mathematical problem of prime factorization that underpins the security of
RSA. They focus on the feasibility of integer factorization and the RSA factoring challenges
thereof. A recent research study’s target was the RSA240 factoring challenge [24], while
previous records were related to breaking 768-bit keys [23,28]. RSA250 has 250 decimal dig-
its (829 bits) and was only factored in 2020, which makes it a good candidate for exploring
our method as it is of great research interest in the field of information security.

In this paper, let us now consider RSA250 to apply our approach of factorization where
we limit the search using the attributes P and Q. We note that P

Q is known for RSA250
and hence the convergences for p

q are known. Let us consider the numbers given below
for RSA250:

[N] 2140324650240744961264423072839333563008614715144755017797754920881418023
447140136643345519095804679610992851872470914587687396261921557363047454770520805
119056493106687691590019759405693457452230589325976697471681738069364894699871578
494975937497937

[P] 6413528947707158027879019017057738908482501474294344720811685963202453234
4630238623598752668347708737661925585694639798853367

[Q] 3337202759497815655622601060535511422794076034476755466678452098702384172
9210037080257448673296881877565718986258036932062711

The ratio of P/Q is given by the continued fraction below and has a length of 261.
The italicized and underlined part of the continued fraction provides the first suitable
convergence for p/q which leads to a solution.

1 1 11 1 3 1 4 2 1 2 6 3 1 1 1 1 1 1 26 1 4 1 4 4 7 1 3 1 1 2 3 2 1 1 7 1 4 1 1 1 5 1 1 1 1 6 12 5
1 1 2 3 1 2 1 1 2 77 1 32 21 1 1 3 5 1 2 11 3 1 1 1 30 1 4 4 1 2 5 2 1 2 1 21 1 2 3 1 7 2 1 1 4 9 1 25
1 28 1 1 1 34 1 1 4 1 2 1 6 2 6 5 5 2 4 1 3 3 2 5 1 1 2 3 1 1 3 5 1 1 5 1 1 3 2 36 2 3 2 1 1 1 9 12 1 1 3
1 1 4 1 4 1 14 1 2 2 6 1 1 1 2 25 47 1 1 5 1 5 1 2 3 2 1 183 1 1 1 1 4 3 1 3 1 1 2 3 1 6 19 1 1 2 1 2 2 1
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1 1 4 4 1 44 3 1 29 1 12 3 17 1 1 1 11 1 36 36 2 1 8 14 1 7 5 2 1 3 1 8 16 19 1 6 9 1 3 2 1 1 1 2 1 1 4
2 2 1 221 1 1 4 1 3 1 1 4 2 2 17 1 4 2

The 93rd convergence produces a suitable k value which provides the solution for the
factorization of RSA250 as given below:

[k, x, y, z] =

[204434212109703939500757143525262968326103010158225539227567282455007329593
11323112,

6614798436316441172282844923498308148226213631865434648727190399017807486039
139073942545631415475256341666247623393955394055140997466682174264049017168200037
978399935,

63565612507432739868213955281603065344711254828495897407657403845305428771221
668091,

0].
In the case of RSA250, the underlined part of the continued fraction convergence

given above for the convergence of the ratio P/Q illustrates that, using our method, a
convergence using only 93 of the 261 terms produces a suitable k value.

k = 2ˆ3 × 3 × 7 × 103 × 281 × 3407 × 72,907 × 157,733 × 334,993 × 26,532,262,619,089
× 106,061,927,979,829 × 113,832,765,910,030,508,110,732,786,883.

In RSA250, the representations of P and Q have the same number of decimal digits.
Using this property and the value of

√
N, a lower bound and an upper bound for pos-

sible k values can be determined [49]. The challenge is to find such a restricted search
space for suitable k values. Using our method, an upper bound as well as a lower bound
for k can be determined to limit that search area for suitable k values. For the case of
RSA250, the ratio of P/Q convergences reduces to a problem of a ratio given by a 41-bit
convergence divided by another 41-bit convergence that results in an upper bound and
lower bound for k. The essence of this is that our method reduces the problem of the
search space in a prime field with 125 decimal digits for RSA250, which has 250 decimal
digits. The problem reduces to searching for ratios (convergences) whose denominators
and numerators are 41-decimal digit composites. We note that one of the composites is
113,832,765,910,030,508,110,732,786,883, which is a 30-decimal digit number.

The purpose of choosing a known RSA250 factorization to apply our method is
twofold: firstly, we are able to determine that a solution exists, and secondly, we are able to
determine the practical implication of our approach in reducing the size of the numbers
that need to be manipulated to arrive at such a semi-prime factorization solution faster for
breaking keys in real-life applications. The authors do acknowledge that the search now
involves a larger range of composite candidates for the numerator and the denominator in
determining the lower bound and upper bound for suitable k values. Next, we provide
further observations through the practical implementation presented that would interest
researchers and practitioners in the field of information security.

5. Practical Implementation and Observations

In this section, we provide a practical implementation of our factorization approach
using continued fractions and discuss our observations based on our experiment conducted
with large integers. We note that brute force searching is feasible only for smaller integers.
As reported in the literature, brute force methods are usually time-consuming and hence
may not be efficient for many real-time applications [50,51]. Also, for large numbers,
the k method may not be optimal. However, for all RSA numbers whose factorizations
are known, a key observation provided in this paper shows that there is a relationship
between the length of the continued fraction and the position where the first suitable k value
appears. Further, all congruencies after this first k value are also valid k solutions. Exploring
this relationship significantly reduces the search field for k = 4pq. More experimental
exploration in this direction is an area of our ongoing research.

We provide a three-step algorithm below and the practical implementation along
with the source code in the Java programming language. The Java code illustrates the
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simplicity of the practical implementation of our algorithm and the potential to further
develop applications in information security. Firstly, we present how the continued frac-
tion is generated using the ratio of a known P

Q . We then use this set of convergences
to create each convergence p/q. From this we then determine k : k = 4pq. We recall
Y2 =

(⌈√
4pqN

⌉)2 − 4pqN. An explanation of the three steps in the algorithm and the
Java code of the implementation are provided below.

Step 1: Obtain the continued fraction using the factorization of N : N = PQ. An
implementation of this step in the Java programming language was developed to practically
demonstrate our simple approach. The continued fraction is returned as shown in the code
snippet of our implementation in Java:
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solves 𝑌 = 4𝑝𝑞𝑁 − 4𝑝𝑞𝑁. The Java implementation of the logic is provided below 
and the result is presented as [𝑘, 𝑥, 𝑦, 𝑧]. 

     Public static Boolean ConFracSeries(BigInteger [] ContinuedFraction,int SeriesLength,  

      BigInteger N) { 

      BigInteger [] RATIO = new BigInteger [2], KABC = new BigInteger [4]; 

      Boolean done=true; 

      int Maximum_Factors = 1000; 

      BigInteger [] R1Factors = new BigInteger [Maximum_Factors]; 

      BigInteger [] R2Factors = new BigInteger [Maximum_Factors]; 

      BigInteger K4; 

      for(int i=0;i<SeriesLength;i++) { 

       RATIO=GetRatio(ContinuedFraction,i); 

       K4=RATIO[0].multiply(RATIO[1]).multiply(new BigInteger(“4”)); 

       String str=““+RATIO[0]+”/”+RATIO[1]+”=>“;System.out.print(str); 

       KABC=Get_KABC(K4,N); str=“ [k,a,b,c]=[“+KABC[0]+”,”+KABC[1]+”,”+KABC[2]+  

        “,”+KABC[3]+”]”; System.out.println(str); 

       if(KABC[3].equals(BigInteger.ZERO)) {i=SeriesLength;} 

      return done; 

     } 

The astute reader will observe that for [𝑘, 𝑥, 𝑦, 𝑧], a solution is found when 𝑧 = 0. 
Another observation is that there are intermediate solutions which may be used in concert 
to find a solution. Some ideas from Silverman using multiple polynomials may produce 
results [47]. Similarly, some recent research focusing on quantum computing and block-
chain technologies requires that RSA cryptography be revisited [52–54]. However, we ob-
serve that it is still not easy to solve the RSA modulus using quantum computing. Shor’s 
algorithm requires as many qubits as there are bits in the modulus [12,36,55]. Quantum 
computers which can attack RSA easily are not expected in the immediate future. These 
ideas form areas of future ongoing research and are beyond the scope of this paper. 

Step 3: Test the convergence and see if this is a solution for which k : k = 4pq that
solves Y2 =

(⌈√
4pqN

⌉)2 − 4pqN. The Java implementation of the logic is provided below
and the result is presented as [k, x, y, z].
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The astute reader will observe that for [k, x, y, z], a solution is found when z = 0.
Another observation is that there are intermediate solutions which may be used in concert
to find a solution. Some ideas from Silverman using multiple polynomials may produce
results [47]. Similarly, some recent research focusing on quantum computing and blockchain
technologies requires that RSA cryptography be revisited [52–54]. However, we observe
that it is still not easy to solve the RSA modulus using quantum computing. Shor’s
algorithm requires as many qubits as there are bits in the modulus [12,36,55]. Quantum
computers which can attack RSA easily are not expected in the immediate future. These
ideas form areas of future ongoing research and are beyond the scope of this paper.

6. Extension to Research Using Difference of Squares

Our research investigations through the experimental study conducted have resulted
in several findings, as described in previous sections. These form encouraging foundations
for us to explore the theory of the difference of squares as a future research direction.
Our observations from the practical examples given above motivate us to extend our
research using difference of squares. We now explore this idea of difference of squares
with the Brahmagupta–Fibonacci identity [33], normally applied to P and Q each as a
sum of two squares. We apply the Brahmagupta–Fibonacci identity to P and Q which
we now express as a difference of two squares. We note that the Brahmagupta–Fibonacci
identity has an inherent constraint in that it can only be applied to semi-primes congruent
to 1mod4. Further, the two primes forming the construction of the semi-prime must also
be congruent to 1mod4. This constraint limits the solvable semi-primes to a quarter of the
possibilities. We are limited to only 1mod4 = 1mod4 ∗ 1mod4 for the solvable semi-primes
as 3mod4 = 1mod4 ∗ 3mod4, 3mod4 = 3mod ∗ 1mod4, 1mod4 = 3mod4 ∗ 3mod4 cannot
be resolved.

We note that the Brahmagupta–Fibonacci two-square identity is analogous to Euler’s
four-square identity and this is relevant to the semi-prime factorization problem. A sum-
mary follows of the Brahmagupta–Fibonacci identity as well as its extensibility, which is
also known as Euler’s Factorization.
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Previously, the result arrived at was a sum of four squares which can be expressed as
the product of two sums of two squares, as shown below:

N = (x1y1)
2 + (x1y2)

2 + (x2y1)
2 + (x2y2)

2 =
(

x2
1 + x2

2

)(
y2

1 + y2
2

)
Euler’s factorization method [23] can be mathematically formulated as shown below:

N = (x1y1 − x2y2)
2 + (x1y2 + x2y1)

2 = (x1y1 + x2y2)
2 + (x1y2 − x2y1)

2

The parity (E: even; O: odd) of the squares can be used to find a factor, as presented in
our earlier work [15].

P = (E 1 − E2)/(O1 − O2)Q = (E 1 + E2)/(O1 − O2)

We observe that the limitation of the sum of four squares is that it only applies
to P, Q ≡ 1mod4, which relates to Fermat’s Christmas Theorem discovered as early as 1640.
Fermat’s Christmas Theorem on the sum of two squares states that an odd prime can be
expressed as P = x2 + y2 if P ≡ 1 mod 4.

The method outlined above is restricted to provide factors of semi-primes whose con-
struction is of the form N = PQ : 1mod4 = 1mod4 ∗ 1mod4 only. The solutions are limited
in this case. It is observed that with 3mod4 = 1mod4 ∗ 3mod4, 3mod4 = 3mod4 ∗ 1mod4,
1mod4 = 3mod4 ∗ 3mod4, the solvable semi-primes cannot be resolved.

We now propose an extension to the Brahmagupta–Fibonacci identity outlined above
by not considering the sums of squares for the two prime number construction of the semi-
prime. Instead, we will now consider the difference of squares. Using the difference of squares
allows all of the primes, both 1mod4 and 3mod4, to be expressed in this way. By considering
the difference of squares all primes can be considered, and, as a consequence, all semi-prime
constructions may now be considered (not just the 1mod4 = 1mod4 ∗ 1mod4 constructions).

The limitation of the sums of squares method of factorization is the key motivation in
our work to consider the difference of squares. We then investigated with the following
question in mind:

Can we modify the Brahmagupta–Fibonacci identity [33] so that it can be applied to
the difference of squares?

If we can find such a method, then we posit that Fermat’s factorization can be used.

N = x2
1 − x2

2 = (x1 − x2)(x1 + x2)

This removes the 1mod4 constraint and includes all primes, namely 1mod4and3mod4.
The modified Brahmagupta–Fibonacci identity can be applied to the product of two

differences of two squares as shown below:
N = PQ, where P and Q are both odd primes.

P =
(

P+1
2

)2
−

(
P−1

2

)2
, Q =

(
Q+1

2

)2
−

(
Q−1

2

)2
.

N =
(

N+1
2

)2
−

(
N−1

2

)2
trivial

Further, this can be extended such that N = PQ, where P and Q are both odd primes.

N =

((
P + 1

2

)(
Q + 1

2

))2
−

((
P + 1

2

)(
Q − 1

2

))2
−

((
P − 1

2

)(
Q + 1

2

))2
+

((
P − 1

2

)(
Q − 1

2

))2

N =

((
P + 1

2

)(
Q + 1

2

)
−

(
P − 1

2

)(
Q − 1

2

))2
−

((
P + 1

2

)(
Q − 1

2

)
−

(
P − 1

2

)(
Q + 1

2

))2

kN = a2 − b2 − c2 + d2, ad − bc = 0,
kN = (a − d)2 − (b − c)2.
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In Section 4, we showed that the convergence provides a value for k that can be bound
within a search field of composites with reduced complexity to about 1/3 of the number
that is considered for factorization. We acknowledge that this is now in a composite field
rather than a search in a prime field. The attributes of k are now further constrained and the
search in the composites now requires that additional constraints be met, as shown below:

kN = a2 − b2 − c2 + d2, ad − bc = 0,
kN = (a − d)2 − (b − c)2.
The above theoretical ideas pave the way for future research into extending the

proposed algorithm with the aim of further reducing the search space in order to find a faster
solution to the semi-prime factorization problem. However, comparative investigations on
the difference of squares method are considered to be future work as they are beyond the
scope of this paper.

7. Measures of Performance and Future Research

In this section, we identify suitable measures of performance for our proposed method
and further improvement ideas in our ongoing research work. We consider the relationships
between solutions of the form kN = x2 − y2 + z2, z : z = 0 and how the solution is found
in a reduced search space. However, many intermediate solutions exist and we look for
relationships between the following:

k1N = x2
1 − y2

1 + z2
1, k2N = x2

2 − y2
2 + z2

2. . . knN = x2
n − y2

n + z2
n

Further, we look for forms which fit into the modified Brahmagupta–Fibonacci identity.

7.1. Measures of Performance

Our ongoing research is motivated by comparing measures of performance for our
method with some popular existing works. We summarize them below:

Lehman’s method [31] looked for multipliers k : 0 < k ≤ 3
√

N + 1. This obtained a
factoring time of O

(
3
√

N
)

.
The method presented here places a constraint on the lower bound of k by remov-

ing continued fraction convergences which are unlikely to find a suitable k value. We
observe that a convergence appears approximately within one-third of the convergence
and provides the upper and lower bound interval. A faster solution can be achieved by
segmenting the interval to search in multi-processor platforms. This would be part of our
ongoing research work considering other research ideas such as the difference of squares
presented earlier.

It would be worthwhile to consider intermediate solutions of the form kN = ad− bc = 0,
which may otherwise have been discarded, that provide solutions to kN = a2 − b2 − c2 + d2.
Such criteria would restrict the number of candidates for k which are subjected to the limits
of

√
kN.
Our experiments were conducted with a computer with the following specifica-

tions: Intel Xeon E5-2697 v2 2.7 GHz, 32 GB DDR3 memory. From our previous example
(21,565,941,721,999,797,939,843,713,963, which is a 95-bit prime number) considered by
Crandall and Pomerance [48] on pg307, we present the performance of our algorithm. A
brute force search finds that 17,887/6172 leads to a factorization, with an exhaustive search
time of 10 min 38 s.

Observe that 17887
6172 ⇒ [31 × 577]

[2 × 2 × 1543] , k = 4pq = 4 × 17887 × 6172 = 441594256 .
From the earlier example, the continued fraction length was 26 and the 11th conver-

gence provided a suitable k value. The resulting factorization is shown below:
The continued fraction for p

q is given as
1,000,000,000,000,037/21,565,941,721,999 => 46 2 1 2 2 2 2 1 1 1 3 8 13 1 263 1 5 38 1 4 1

2 8 2 1 1 2
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Observe that the 11th convergence o f
[

p
q

]
= 71548

1543 = [2 × 2 × 31 × 577]
[1543] .

k = 4pq = 4 × 71548 × 1543 = 441594256

Recalling the brute force method also obtains

k = 4pq = 4 × 17887 × 6172 = 441594256

[k, x, y, z] = [441594256, 3085999998325641543, 1674472639, 0]

P1 = 1000000000000037, P2 = 21565941721999

A brute force search found the solution using the fraction 17,887/6172, whose
factorizations are [31 577]/[2 2 1543], confirming the solution using our proposed
method above.

7.2. Improvements and Future Research

Hart used Y2 = ( ⌈
√

4kN ⌉ )2 mod N as 4pqN which is already known [21]. We
improved this by using Y2 =

(⌈√
4pqN

⌉)2 − 4pqN. This helps in reducing the search space
to arrive at a faster convergence of a solution to the semi-prime factorization problem.

Wiener’s cryptographic attack against RSA using the continued fraction method [55]
motivates many researchers to continue exploring faster approaches to factorization of
RSA. Public key encryption uses Euler’s totient function [56,57], which provides the basis
for factoring algorithms that have a major impact on cybersecurity. Hence, past works on
number theory, primality testing, and the implementation of algorithms [58–63] have been
the backbone of this research work to arrive at a new method. Further, the speeding up
of existing methods using more efficient methods and the adoption of more computing
power, including parallelism [64–67], have fueled this ongoing research. Our research
investigations have taken a modest step forward in this work and will continue to further
reduce the search space for arriving at a solution to the semi-prime factorization problem
more quickly. We hope that our research work on Hart’s one line factorization method will
stimulate interest in this method. In future work, we intend to investigate the use of our
narrower definition of the parameterization of k to demonstrate further improvements in
the Wiener attack. The scope of this investigation is well outside of this paper due to the
limitations stated before.

8. Conclusions

This paper proposed a new approach of applying continued fractions to the one
line factoring algorithm. Lower ordered convergences as representations of P

Q that form
continued fractions were applied to Hart’s one line factoring algorithm. We illustrated our
method using a worked example as well as by finding the factors of RSA250 successfully.
The key contributions of this work that paves the way for further research are as follows:

1. We established that continued fraction convergences p
q as representations of P

Q provide
solutions to Hart’s one line factorization.

2. We explored relationships of the form kN = x2 − y2 + z2 for convergence.
3. We investigated the suitability of the modified Brahmagupta–Fibonacci identity for

factorization considering

kN = a2 − b2 − c2 + d2, ad − bc = 0 kN = (a − d)2 − (b − c)2

4. Our experimental findings include the RSA modulus, the ratio of P
Q to be constrained

by a particular number of bits.

P, Qbits = N
2 bits ⇒ 1 < P

Q < 2 1 < p
q < 2 such that x2 − y2 = 4kN, k = pq.

k is still an area of interest and may yet yield deeper connections.
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In this paper, we studied many correct solutions which formed the convergences
of PQ that had not been explored previously. The results shown in this paper are quite im-
portant as we explored the relationship between the convergence of PQ and its relationship
to k, which is used in Hart’s one line factorization algorithm. Our significant contribution is
that after about one third of the way through the convergences, solutions for k were found
and all convergences after that resulted in valid solutions for k. Further, there is a scarcity
of research exploring the attributes of k, and this paper provides a better understanding of
its attributes.

Further, our practical implementation along with our findings motivated us to ex-
tend the study using the difference of squares. The theory on the difference of squares
provides the relationship to the proposed approach and future extensions to our algo-
rithm, motivating other researchers to consider such extensions to the existing work. We
believe the observations and limitations of this will open future investigations as forms of
ongoing research.

In Section 4, we showed that the convergence that provides a value for k can be
bound to a search field of composites with reduced complexity to about 1/3 of the number
attempting to be factorized whilst acknowledging that this is now a search in a composite
field rather than a search in a prime field. In Section 6, the attributes of k were further
defined, thereby constraining the suitable composite candidates for k.

Our findings are unique in that only one other paper has been published regarding
Hart’s one line factoring algorithm since its publication in 2012.

It is hoped that the wider research community might find our results interesting and
that further investigations into Hart’s work might be encouraged.
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