
Article

Scaling Conjecture Regarding the Number of Unknots among
Polygons of N � 1 Edges

Alexander Y. Grosberg

����������
�������

Citation: Grosberg, A.Y. Scaling

Conjecture Regarding the Number of

Unknots among Polygons of N � 1

Edges. Physics 2021, 3, 664–668.

https://doi.org/10.3390/

physics3030039

Received: 22 June 2021

Accepted: 30 July 2021

Published: 12 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Center for Soft Matter Research, Department of Physics, New York University, 726 Broadway,
New York, NY 10003, USA; ayg1@nyu.edu

Abstract: The conjecture is made based on a plausible, but not rigorous argument, suggesting that
the unknot probability for a randomly generated self-avoiding polygon of N � 1 edges has only
logarithmic, and not power law corrections to the known leading exponential law: Punknot(N) ∼
exp[−N/N0 + o(ln N)] with N0 being referred to as the random knotting length. This conjecture is
consistent with the numerical result of 2010 by Baiesi, Orlandini, and Stella.
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1. Introduction and Problem Formulation

Randomly generated self-avoiding polygons represent an interesting object for math-
ematical physics, for several reasons. First, such polygons can serve as a zeroth approxi-
mation model for ring polymers. Different realizations, or members of the ensemble, of
random polygons mimic different spatial arrangements of polymers, sampled via thermal
fluctuations; importantly, ring polymers are currently the subject a great deal of interest,
as evidenced, for example, by recent papers [1–5]. Despite this multitude of studies, the
fundamentals of the statistical mechanics of topologically constrained polymers remain
insufficiently understood. Second, random polygons—especially those comprised of the
edges of a lattice, e.g., a cubic lattice—allow for concise mathematical formulation of the
problems of interest, which, for an off-lattice model, is difficult even to formulate, let alone
solve. Of course, this situation is by no means unique; other problems are also frequently
more easily addressed using lattice models. Specifically, here, the problem in question is
that of the knot entropy; see [6] for a general discussion. Indeed, this quantity is easy to
define for the lattice polygon. Let Ωunknot(N) be the total number of distinct rooted, i.e.,
with one point fixed, polygons with N edges, which are topologically equivalent to the
trivial knot (an unknot or a circle). Since lattice polygons are considered, Ωunknot(N) is a
well-defined finite number. By definition, then, ln Ωunknot(N) is the entropy of an unknot.

Let us emphasize that this paper deals only with loops made by the closing of one
single line, like letter O, not like letter θ or sign ∞, etc.; the loop may be embedded in
various ways in three dimensions, forming an unknot or knots of different topologies, but
the loop itself remains a simple O, albeit a “lattice O”.

The number of unknots must be compared with the total number of distinct rooted
polygons of N edges in three-dimensional space; let us call it Ωloop(N). Then, ln Ωloop(N)
is the entropy of the full ensemble of loops of all knot types. In terms of these quantities,
the probability of finding an unknot among the randomly (and uniformly) generated
polygons is:

Punknot(N) = Ωunknot(N)/Ωloop(N) . (1)

Clearly, ln Punknot represents the corresponding change of entropy. Under the con-
ditions of thermodynamic equilibrium, ln Punknot is related to the minimal amount of
mechanical work, needed to untie all the knots.
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Some statements are rigorously established about these quantities; see review [7] and
references therein. In particular, it is known that there exists a limit,

lim
N→∞

ln Punknot(N)

N
= − 1

N0
. (2)

In other words,
Punknot(N)|N�1 ' const · exp[−N/N0] . (3)

The quantity N0 is sometimes referred to as the random knotting length: for N < N0,
most polymers are unknots, while, for N > N0, unknots are exceedingly rare. The exponen-
tial behavior of unknotting probability (3) is also proven for random off-lattice polygons
and established numerically for a number of other models [7], albeit with very different
values of N0, ranging from a few hundred to a few million. Remarkably, no analytical
method is known to find this quantity for any model.

The subject of the present note is the question—how does Punknot approach its ex-
ponential asymptotic? In other words, how does the difference, ln Punknot(N)/N + 1/N0
(note that ln Punknot(N) < 0), behave at large N, or how does this difference tend towards
zero? The question is about the tail of probability Punknot(N) and whether it is similar to
other subtle probability distributions known in various branches of physics; see, e.g., [8].

2. Developing the Argument

Let us start with Ωlinear(N)—the number of distinct self-avoiding “open polygons”
of N edges in three-dimensional space starting from, i.e., rooted in the origin (the open
polygon is simply a broken line, with non-connected ends). This quantity was carefully
studied in the theory of self-avoiding walks (see, e.g., [9], as a classical source), and it is
known to behave as

Ωlinear(N)|N�1 ' const · zN · Nγ−1 , (4)

where γ is a critical exponent which is universal, unlike the growth constant z, which is
not universal. Therefore, z depends, for example, on the lattice type, while γ does not. The
numerical value of γ was studied with great attention both analytically by renormalization
group and ε-expansion [10], and by high-precision Monte Carlo [11,12]: the result was
γ ≈ 1.16.

Based on the knowledge of Ωlinear(N), one can deduce the estimate of Ωloop(N). This
deduction is known [9], and, here, for the purpose of subsequent generalization, let us
repeat the derivation using the scaling argument, originally due to Khokhlov [13] and
later developed by Duplantier [14]. This argument views transformation from a linear
chain to a loop as a chemical reaction between chain ends. The argument suggests that the
probability of two ends of a linear chain, meeting together in space, is of the same order as
the conditional probability of the ends of two separate chains meeting in space, conditioned
on the fact that these two chains share the same volume R3 ∼ N3ν. Here, ν ≈ 0.588 is a
usual “metric” or Flory critical exponent, while R is the mean squared average gyration
radius of the chain of length N. This argument yields the following estimate for Ωloop(N):

Ωloop(N)

Ωlinear(N)
∼ Ωlinear(2N)

[Ωlinear(N)]× [R3Ωlinear(N)]
. (5)

This relation can also be explained in a different way. Equation (5) represents the
statement that two different probabilities are of the same order, i.e., they scale with the
same power of N. The left-hand side of Equation (5) is the probability that a randomly
chosen linear chain of N monomers can be closed due to two ends being next to each other
by pure chance. The right-hand side of Equation (5) estimates the probability, dealing
with two linear chains of the same length N being co-localized in the same volume ∼ R3;
for these two chains, the right-hand side of Equation (5) indicates the probability that the
end of one of the chains is found next to the end of the other. Indeed, the numerator of
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the right-hand side of Equation (5) represents the number of states of one linear chain of
combined length 2N that is the same as two separate chains with the ends of these chains
forced to be next to each other. The first factor in the denominator is the number of states
for one half-chain, while the second factor is enhanced by a factor R3 as soon as the second
chain can be rooted in any place within volume R3 around the root of the first chain (the
monomer size is taken to be unity). Assembling all this together, one arrives at:

Ωloop(N)
∣∣∣

N�1
' const · zN · N−3ν . (6)

This result also follows straight from Equations (1.10) and (1.11) of Ref. [14], and is
known for self-avoiding polymers, as stated in textbooks, see, e.g., [9]. The most important
property of the result (6) is that it does not involve the index γ, which cancels away from
the “chemical equilibrium” condition (5). This cancellation of γ has an important physical
interpretation: γ describes the situation around chain ends, as monomers close to the ends
find themselves in a different kind of environment compared to internal monomers close
to the middle of the chain. Since the loop does not have any ends, there is no effect to be
described by γ.

The estimate (6) is accurate in terms of the power, so we can rewrite it as:

Ωloop(N)
∣∣∣

N�1
' const · eN ln z−3ν ln N+o(ln N) . (7)

Thus, corrections in the exponential are much smaller than ln N.
The next step in building the argument is yet another mathematically proven state-

ment [7] that the number of N-step self-avoiding unknots, Ωunknot(N), behaves such that
there exists a limit,

lim
N→∞

ln Ωunknot(N)

N
= z0 < z , (8)

or
Ωunknot(N)|N�1 ' zN+o(N)

0 . (9)

At the same time, there is a scaling prediction [15], supported by a significant amount
of numerical evidence [16–18], suggesting that a trivial knot loop, in terms of its overall
size (e.g., gyration radius), is controlled by the same index ν ≈ 0.588, which describes the
self-avoiding walks. Although there is a counter-argument pointing to the limited depth of
analogy between trivial knots and self-avoiding loops [19], one can try to take this analogy
one step further and conjecture that the number of unknots has the same scaling as the
number of self-avoiding loops (6), but with a modified growth constant:

Ωunknot(N)|N�1 ' const · zN
0 · N−3ν

' const · eN ln z0−3ν ln N+o(ln N) .
(10)

In other words, the above argument yields the conjecture that the cancellation of
the index γ, as in Equation (5), occurs for knot-avoiding loops—just as it is proven to
do for self-avoiding loops. From physics point of view, this is justified by the fact that
γ is supposed to characterize chain ends, while an unknot has no ends. Since this is a
non-rigorous conjecture, it is important to stress where the argument may have limitations.
In this regard, cancellation of the index γ is the most essential point where the conjecture is
justified only by a physical argument and not by mathematics.

Another important point is also that the power ν needs to be of the same value
in both relation (6) and relation (10). If this conjecture is correct, then the probabil-
ity of unknot, Punknot(N) = Ωunknot(N)/Ωloop(N), is predicted to have the following
asymptotic behavior:

Punknot(N)|N�1 ' const · eN(ln z0−ln z)+o(ln N) . (11)
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To reiterate, the non-rigorous conjecture, found here, is, first, motivated by the anal-
ogy between knots-avoiding and self-avoiding—both described by the same metric ex-
ponent ν, and, second, by the fact that there is no index γ or its analogs since there are
no ends in the loop.

3. Concluding Remarks

Equation (11) represents the result of the present paper. Of course, this equaion
indicates that the random knotting chain length can be expressed as 1/N0 = ln(z/z0).
However, this is not a significant result because the growth constant z0 (or even z) are not
simple quantities to compute theoretically or to measure experimentally; essentially, z0
and N0 contain the same information. The real non-trivial statement is that there is o(ln N)
instead of o(N) in the exponential. In other words, the conjecture suggests that there is
no power-law correction factor to the main exponential trend in unknot probability. The
correction, of course, exists, but it is at most logarithmic. This can be contrasted with the
fact that the probabilities of various non-trivial knots are routinely fitted to expressions like
Nµ exp(−N/N0) (with N0 as for trivial knots); see, e.g., [20–22]. In these terms, the result
of the present paper is that for the trivial knots, µ = 0 exactly.

The questions of critical exponents, related to the entropy of random polygons, were
examined numerically, in quite some detail in the series of studies by the Italian group of
E. Orlandini and co-authors [21–23]. In particular, Ref. [23] presented the most accurate
study to date of (in the present notation) the exponent µ and it was found that, within the
numerical accuracy of the Monte Carlo simulations made there, the result for an unknot
was so small that it was not distinguishable from µ = 0. In this sense, the result of the
present study can be viewed as a confirmation or rather an explanation of the numerical
observation made about a decade ago.

Does this result have practical implications beyond mathematical curiosity? In general,
random knots are a fact of life in case of a DNA plasmid and a number of other biological
contexts; see, e.g., [24]. Historically, in the first study [25] on random polymer topology, the
main surprise was to observe that the probability of non-trivial knots, i.e., 1− Punknot(N),
although still rather small at the tested range of N values, is, nevertheless, an increasing
function of N. In this sense, the main observation is that for long polymers, Punknot(N)
is small. This is, of course, consistent with the statement of the mathematical theorem
(2), except the latter deals with the mathematical limit of N → ∞, while, in practice, the
exponential dependence of Punknot(N) on the chain length, N, seems to be consistent with
observations, even at modest values of N being certainly smaller than random knotting
length N0; see, e.g., [26]. In this sense, the statement of the absence of power law corrections,
made in the present paper, may have quite some practical implications.
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