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Abstract: The tunable optical pulling force on a graded plasmonic core-shell nanoparticle consisting
of a gain dielectric core and graded plasmonic shell is investigated in the illumination of a plane
wave. In this paper, the electrostatic polarizability and the equivalent permittivity of the core-shell
sphere are derived and the plasmonic enhanced optical pulling force in the antibonding and bonding
dipole modes of the graded nanoparticle are demonstrated. Additionally, the resonant pulling force
occurring on the dipole mode is shown to be dependent on the aspect ratio of the core-shell particle,
which is illustrated by the obtained equivalent permittivity. This shows that the gradation of the
graded shell will influence the plasmonic feature of the particle, thus further shifting the resonant
optical force peaks and strengthening the pulling force. The obtained results provide an additional
degree of freedom to manipulate nanoparticles and give a deep insight into light–matter interaction.
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1. Introduction

The change of the field gradients or linear momentum carried by photons will give
rise to the optical force [1]. Radiation pressure induced by photon momentum exchange
always pushes objects in the light flow direction, which is known as “optical pushing”.
In contrast, if the light–matter momentum transfer leads to the backward motion of the
objects, this phenomenon is named “optical pulling”. The optical pulling force is a more
novel phenomenon than the pushing one because it requires many more critical conditions
to realize it and has many more potential applications in nano-manipulation [2–8]. One
possible way to obtain the optical pulling force to pull the object towards the light is by
increasing the forward scattering via Gaussian beam [9,10], Bessel Beam [11], and other
tractor beams. Recently, the optical pulling forces acting on a nano-object consisting of
chiral [12–14], hyperbolic [15], and gain [16–18] materials have been widely investigated.
The introduction of a gain material could provide additional forward scattering strength
with the appropriate gain threshold to achieve the optical pulling force [17]; therefore,
investigating the threshold gain for the pulling force in different gain-assist nanostructures
constitutes another task for researchers. Actually, the threshold gain for the pulling force
was analytically studied for nano-spheres, thin cylinders and thin slabs [18]. Moreover, the
continuous modulation from the pushing to the pulling force was exhibited by controlling
the incident angle of the interfering plane waves near the Fano resonance of the plasmonic
nanoparticle [19]. The plasmonic enhanced optical force has been applied to quantum
measurement, signal detection, and other fields [20–24]. Furthermore, tunable optical
pulling forces originating from plasmon singularity and Fano resonance on plasmonic
nanoparticles have been investigated in detail [25–27].
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The approaches to realize and maximize the optical fulling force rely on designing
a specific tractor beam [2,3,5,27–30], modifying the surroundings of the manipulated
objects [31–33], or utilizing a gain-assist structure [15,18,25,34]. The resonant interplay
between plasmonic structures and gain media and the coupling with a gain medium located
in the core of a metallic nanoshell, when excited by means of an external pump, produces
intense changes of the electromagnetic fields around the structure, thus producing novel
features which can be useful for a variety of applications, such as photothermal therapy,
enhanced spectroscopy, and spaser [35–38]. Graded materials are the materials whose
material properties can vary continuously in space with a gradient coefficient, and graded
core-shell spheres show a widely tunable plasmonic response band [39–42]. The near
field distribution [43], far field scattering as well as nonlinear response [44] enhanced by
plasmon resonances could be adjustable by changing the gradient coefficient and aspect
ratio of the inner and outer radii of the sphere. More recently, the nonlinear optical
properties of graded magnetite nanoparticles in a colloid were investigated experimentally
as a sample of the extension from the electrical field to the magnetic field [45]. The gradient
coefficient provides us with a new freedom to control the plasmonic feature of the graded
core-shell particle and could thus be further adopted to tailor the optical pulling force on
the core-shell structure. Recently, the optical trapping force on a gain-enriched metallic
nanoshell by a Gaussian beam was investigated [38], which opened perspectives for gain-
assisted optomechanics where nonlinear optical forces are finely tuned to efficiently trap,
manipulate, channel, and deliver an externally controlled nanophotonic system. The aim of
this paper is to explore the optical pulling force on a gain-assist graded core-shell sphere at
the nanoscale and to investigate the dependence of the pulling force on the gain threshold
and the degree of gradation. Moreover, the equivalent permittivity of the graded core-shell
is adopted to explain the pulling force that occurs in different plasmon resonant modes in
the cases of low and high aspect ratios.

2. Models and Methods

We consider a core-shell sphere consisting of a dielectric gain core and graded plas-
monic shell illuminated by a plane electric field in the host medium with a relative per-
mittivity, εh. Here, we make the assumption that the dielectric function of the graded
materials varies along the radial direction, r, in the spherical coordinates (r, θ, ϕ) and can
be written as εs(r). The inner and outer radii are a and b. For simplicity, the size of the
particle is assumed to be much smaller than the incident wavelength, and therefore the
retardation effect is neglected and a long-wavelength approximation could be adopted [46].
The electric potentials in whole space satisfy the following equation within the quasi-static
approximation [43]:

∇·
[
εβ(r)∇ φβ

]
= 0, (1)

where φβ is the electric potential in each area (β = c, s, h indicates the core, the shell and
the host media, respectively) and could derivate the local electric field by:

Eβ = −∇φβ. (2)

In the illumination of an external uniform electric field along the z-direction, it can be
written as:

1
r2

∂

∂r

[
r2εβ(r)

∂φβ

∂r

]
+

1
r sin θ

∂

∂θ

[
εβ(r)

sin θ

r
∂φβ

∂θ

]
= 0, (3)

The electric potentials in each region have the following general expressions:

φc(r, θ) = −ArP1(cos θ)E0, r ≤ a,

φs(r, θ) = [A1R+
1 (r) + B1R−1 (r)]P1(cos θ)E0, a < r ≤ b,

φh(r, θ) = (−r + b3Br−2)P1(cos θ)E0, r > b

(4)
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where A, B, A1, B1 are four unknown coefficients to be determined, Pn(cos φ) is the n-th
order Legendre polynomials, and the radial function, Rn(r), in the shell region satisfies the
following equation:

∂

∂r

[
r2εs(r)

∂Rn(r)
∂r

]
− n(n + 1)[εs(r)Rn(r)] = 0, (5)

where R+
n (r) and R−n (r) are the two solutions that are regular at the origin and infinity,

respectively, and are the key to achieving the polarizability of the graded core-shell particle.
Considering the boundary condition, i.e., the continuity of the potentials and normal

electric displacements:

φc(r, θ)|r=a = φs(r, θ)|r=a,

φs(r, θ)|r=b = φh(r, θ)|r=b,

−εc
∂φc(r,θ)

∂r

∣∣∣
r=a

= −εs(r)
∂φs(r,θ)

∂r

∣∣∣
r=a

,

−εs(r)
∂φs(r,θ)

∂r

∣∣∣
r=b

= −εh
∂φh(r,θ)

∂r

∣∣∣
r=b

.

(6)

The coefficients are obtained as:

A1 = −3bT−1 (a)/T(a, b),

B1 = 3bT+
1 (a)/T(a, b),

A = −a−1[A1R+
1 (a) + B1R−1 (a)],

B = [F(b)− εh]/[F(b) + 2εh],

T(a, b) = T+
2 (b)T−1 (a)− T−2 (b)T+

1 (a),

T±1 (a) = R±1 (a)− a εs(a)
εc

∂
∂r R±1 (a),

T±2 (b) = 2R±1 (b) + b εs(b)
εh

∂
∂r R±1 (b),

R1(r) = A1R+
1 (r) + B1R−1 (r),

F(b) = bεs(b)
R1(b)

∂R1(b)
∂r .

(7)

The spherical shell permittivity profile is given by the graded Drude model [43]:

εs(r, ω) = εb −
ω2

p(r)
ω(ω + iΓ)

, (8)

where ωp(r) and Γ are the spatially varying plasmon frequency and the relaxation rate,
respectively. r We introduce a graded plasmon frequency ω2

p(r) = ω2
p(0)(1 − hrk) in

the graded Drude model [47], where h and k are two gradient coefficients denoting the
gradation of the shell. Without loss of generality, we further normalize the external field
frequencies ω and the relaxation rate Γ by ωp(0). Consequently, Equation (8) reduces to

εs(r, ω) = εb−
(

1− hrk
)

/[ω(ω + iΓ)]. In the case of 1− hrk > 0, the graded Drude model
has a positive imaginary part, indicating that it is a lossy material.

The gain effect of the dielectric core can be realized by using a semiconductor or dye
molecules with pumping [48]. In the theoretical part, we describe the gain core with a
relative permittivity function whose imaginary part has a negative value, i.e., εc = εc0 + iεcg
with εcg < 0 corresponding to the material gain. The electrostatic polarizability including
the radiation reaction of the graded core-shell sphere can be written as:

α =
α0

1− i 2
3

k3
hα0

4πε0εh

(9)
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with α0 = 4πε0εhb3B, kh = 2π
λ

√
εh and ε0 being the permittivity of vacuum. The time-

averaged optical forces on the nonmagnetic Rayleigh nanoparticle for the incident wave
are expressed as:

〈F〉 = 1
2

khE2
0Im(α). (10)

We normalize the force with F0 = πb2Sinc/c (Sinc) is the power flow density of the
incident wave and c is the speed of light). In the long-wavelength approximation, the
dipole contribution dominates the electric response of the dielectric particle. If the dipolar
factor B of the core-shell particle vanishes in Equation (4), this means that the core-shell
particle and the host medium are the same in view of the dielectric response. Substituting
εeq for εh in the dipolar factor B and implying B = 0 yield the self-consistency equation [49],
which is solved to obtain the equivalent permittivity of the graded core-shell particle:

εeq(b) =
bεs(b)
R1(b)

∂R1(b)
∂r

. (11)

If one considers the nongraded case and the gradient coefficient is set to h = 0, then
the equivalent permittivity of the graded core-shell particle is naturally reduced to the
nongraded case:

εeq(b) = εs(0)
2a3[εc − εs(0)] + b3[εc + 2εs(0)]
a3[εs(0)− εc] + b3[εc + 2εs(0)]

. (12)

3. Results and Discussion

The graded Drude model in Equation (8) shows that the gradient coefficient h plays a
more important role than k within the present framework because the permittivity is inde-
pendent of k when the radius is fixed, especially for the dipole moment, which we mainly
focus on in the following. Figure 1 illustrates the permittivity of the graded shell as a func-
tion of the gradient coefficient h with the following parameter: ωp(0) = 1.367× 1016 s−1,
Γ = 2.733× 1013 s−1, εc0 = 2.1 and εh = 1. This shows that the graded shell can change
from being dielectric-like to metallic-like with an increasing incident wavelength. On the
other hand, the graded shell is more like a metal when h is low within the present spectrum.
Actually, from Equation (8) one concludes that the dielectric-like or metallic-like profile of
the graded Drude model is dependent on the choice of h and k, and for a plasmonic shell
lower h and lower k values are needed. In what follows, the parameter range of h is used
as being from 0 to 0.3 to achieve the plasmonic profile of the shell.
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Figure 1. Real (a) and imaginary (b) parts of the graded shell permittivity εs(b) as a function of the
gradient coefficient, h, and the incident wavelength, λ. The white curve in (a) indicates a value of
zero. Other parameters are the outer radius b = 10 nm and the gradient coefficient k = 0.4.
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Figure 2 shows the normalized time-averaged optical force as a function of the incident
wavelength with different gradient coefficients h and gain coefficients εcg for cases with a
low aspect ratio (a/b = 0.2) and high aspect ratio (a/b = 0.8), respectively. The evolution
of the optical force on the gradient coefficient h in the non-gain case (εcg = 0) is well
seen in Figure 2a. As it is a graded plasmonic core-shell sphere, one expects two surface
plasmon resonant modes, i.e., the bonding dipole mode at the long wavelength λ+ and
the antibonding dipole mode at the short wavelength λ−. These two resonant modes lead
to enhanced optical forces, and meanwhile the resonant wavelength is blue-shifted and
the magnitudes of the peak value are decreased when the gradient coefficient h increases.
It is easy to understand that both the real and imaginary parts of the permittivity of the
graded shell are determined by h (see Figure 1), especially the real part which dramatically
influences the resonant wavelength. When the gain level is increased, an enhanced negative
optical force occurs in the antibonding dipole mode. There exists a critical level of gain in
order to achieve the maximal optical pulling force, and a further increase of the gain level
could not give rise to a stronger optical pulling force. On the other hand, the absolute value
of the resonant peak is dramatically decreased with an increasing h for both the positive
and negative forces. As for the optical force enhanced with the bonding dipole mode, it is
not sensitive to the gain in the low aspect ratio case.

In contrast to the low aspect ratio case, the gain has a more dramatic influence on the
bonding mode than on the antibonding mode in the high a/b case. An extremely strong
optical pushing force (see Figure 2f) and pulling force (see Figure 2g) are achieved with the
same level of gain as in the previous case. In addition, the gradient coefficient is found to
dramatically enhance the optical pulling force in the bonding dipole mode, as shown in
Figure 2g. Up to now, the gain-assisted optical pulling force has been found in both the
antibonding mode and bonding mode in the graded core-shell particle. However, it should
be mentioned that these two kinds of negative forces arise from different origins in terms
of the equivalent medium, which is considered in detail below.

We now adopt the equivalent permittivity of the graded core-shell sphere, as shown in
Equation (11), and plot the equivalent permittivity of the graded core-shell sphere for both
low and high aspect ratio cases in Figures 3 and 4. It is found that Im(εeq) could exceed
−7 in the equivalent permittivity spectrum of the low aspect ratio case due to the surface
plasmon resonance. Note that εcg is merely −0.07 in the present model, which is not a high
level of gain [50]; however, the equivalent sphere achieves an extremely high plasmonic
enhanced effective gain level. As for the case of the high aspect ratio, the surface plasmon
resonance leads to an extremely high loss peak in the equivalent permittivity spectrum.
It should be mentioned that there exists only one resonant mode occurring in the inner
surface of the core-shell sphere in the equivalent permittivity spectrum. This is because
the equivalent permittivity obtained by the self-consistency method is independent of the
host medium and this resonance is the intrinsic property of the core-shell sphere itself.
Actually, the intrinsic plasmon resonance arises from the plasmonic singularity [25], and
the resonant curve shapes vary with different εcg. If increases further, Im(εeq) in the high
aspect ratio case will show a negative value peak.
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To give a simple approach for finding the resonant optical force and, on other hand, to
mathematically explain why the resonant optical pulling force exists in the bonding (or an-
tibonding) resonant modes corresponding to a high (or low) aspect ratio, we now introduce
the equivalent permittivity of the core-shell sphere as obtained in Equation (12). When the
core-shell particle is modeled as a sphere with an equivalent permittivity, the optical force
on the corresponding equivalent sphere in the long-wavelength approximation is:

〈F〉 = 2πε0εhkhb3E2
0

3Im(εeq) + 2(khb)3[Re(εeq)− εh
]2/3[

Re(εeq) + 2εh
]2

+
[
Im(εeq)

]2
+ 4(khb)3Im(εeq)εh

. (13)

Equation (13) illustrates that the optical force can be enhanced by the surface plasmon
resonances occurring when Re(εeq) = −2εh, and the optical pulling force can be achieved
when the numerator of Equation (13) has a negative value. Note that the second term
of the numerator is always positive and that the potential negative optical force requires
Im(εeq) to be negative and its absolute value to be larger than the second term. On
the other hand, by substituting Re(εeq) = −2εh into Equation (13) and ignoring the
second term for a sufficiently small khb, Equation (13) reduces to a simple version as
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〈F〉 = 6πε0εhkhb3E2
0/Im(εeq), which indicates that the absolute value of the negative

optical force is inversely proportional to Im(εeq).
We highlight the values of Im(εeq) at resonant wavelengths in Figures 3 and 4, and

this explains why, mathematically, the optical pulling force occurs in different modes with
the low and high aspect ratios in vacuum (εh = 1). In general, F/F0 is negative when the
equivalent sphere plays a role as the active gain medium with Im(εeq) < 0, and F/F0 is
positive when the equivalent sphere is lossy with Im(εeq) > 0. Moreover, it is concluded
that the stronger optical pushing force can be achieved when the equivalent loss is low
(Im(εeq) = 0.0338) (see Figure 3b), and one can realize a stronger optical pulling force
when the equivalent gain is low (Im(εeq) = −0.0046) (see Figure 4b). With the equivalent
permittivity, one can predict where the pulling force occurs in a simpler way. The inserts
indicate the near field intensity distributions of the graded core-shell sphere in the different
resonant modes for both low and high aspect ratio cases. It is well seen that the antibonding
mode is dominated by the surface plasmon resonant on the inner surface. In contrast, the
bonding mode is more influenced by the plasma on the outer surface. A dramatically high
concentrated local field intensity in the dielectric core is found in the low aspect ratio case,
especially in the bonding mode.

To further demonstrate this, the phase diagrams of the equivalent permittivity as
a function of λ and h for both cases are plotted in Figure 5. The parameter space for
Im(εeq) < 0 is clearly plotted with a red–black color, and the pulling force peaks are
located on the white lines that indicate the resonant conditions, Re(εeq) = −2εh. Moreover,
the pushing force peaks on the white lines lying in the gray region (Im(εeq) > 0) are
indicated in Figure 5 as well. The resonant pulling forces in the high aspect ratio case
are generally stronger than those in the low aspect ratio (see Figure 2c,g), as soon as∣∣Im(εeq)

∣∣ are much smaller on the pulling force line in Figure 5b, according to the previous
analysis of Equation (13). Actually, in spite of the giant resonant pushing/pulling force
on the white lines, in Figure 5b there exists a broader parameter space for a slight pulling
force where Im(εeq) < 0. Let us remark here that Re(εeq) might not rigorously satisfy the
resonant condition, i.e., Re(εeq) > −2εh with h increasing since the loss of the graded shell
is inversely proportional to h, as illustrated in Figure 1b; consequently, there exists a cut-off
for the resonant white line in the low aspect ratio case when h reaches ∼ 0.24. Still, a tiny
pulling force peak occurs in the bonding mode in Figure 2c with a large h.
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Figure 5. Im(εeq) versus incident wavelength, λ, and gradient coefficient, h, for the cases of (a) low
aspect ratio (a/b = 0.2) and (b) high aspect ratio (a/b = 0.8). Gray regions indicate the parameter
space for a positive value. The white lines show the positions of Re(εeq) = −2εh. The gain coefficient
is set as εcg = −0.07 for both cases.

Finally, we investigate the dependence of the pulling force on the aspect ratio of the
graded core-shell particle in Figure 6. The resonant pulling force tends to occur in the
gain-assisted core-shell sphere with either a low aspect ratio or high aspect ratio (see the
rectangle), and in contrast the resonant pushing force exists in the case of a wider moderate
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aspect ratio. On the other hand, the resonant wavelength together with the resonant pulling
force peak varies with the graded coefficient h. This gives rise to a broader parameter space
in order to realize the resonant pulling force in the antibonding mode and, on the contrary,
a smaller space in the bonding mode with a high h.
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Figure 6. Normalized optical force, F/F0, versus incident wavelength, λ, and aspect ratio, a/b, in the
cases of (a) h = 0 and (b) h = 0.3 with εcg = −0.07. The white curves indicate a pulling force much
stronger than −5, which is marked by a white rectangle.

It should be noted that, in this paper, we use a flat imaginary part of εc instead of a
more realistic frequency-dependent one [25,35,38]. In what follows, a brief comparison
between the results with the Lorentzian dependent permittivity and those with a flat
constant permittivity for the gain media are given in order to certify the validity of this
study. Thus, the gain media is described by the permittivity with a Lorentzian shape [38] as:

εc(ω) = εc0 −
εcg∆

2(ω−ωg) + i∆
, (14)

where εc0 is the background permittivity of the gain core, ωg is the emission centerline of
the gain elements, and ∆ = 2/τ is the width of the Lorentzian shape where τ is the energy
relaxation time of the gain. εcg is a dimensionless parameter measuring the amount of gain
present in the system.

Figures 7 and 8 illustrate that when the gain lines shape is centered exactly on the
plasmon resonant frequency, the optical pulling force obtained by εc(ω) in Equation (14)
is the same as that with a flat constant εc. It is worth noting that εc(ω) at the plasmon
resonant position has the same real and imaginary values as the flat one. One of the goals
in this study is to demonstrate the different behaviors of the optical force in plasmonic
resonant modes of a graded nanoshell with different aspect ratios (i.e., a/b) on the same
level of gain. Thus, what makes sense is the central gain amount at the resonant frequency.
From this point of view, the conclusions made with the flat constant model are the same as
those made with the frequency-dependent one. However, it is found that the overall gain
amount (εcg = −0.07) slightly exceeds the spaser threshold (see Figure 9) for both cases in
Figures 7 and 8, which might lead to a spaser instability [35].
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Figure 7. Real (a) and imaginary (b) parts of εc(ω) in the case of a low aspect ratio (a/b = 0.2) of
Figure 2c with εcg = −0.07 and h = 0. (c) The same as Figure 3a but using the present εc(ω).
Parameters: τ = 10−14 s, ωg = ω− = 2πc/λ−, λ− = 337.8 nm.
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Figure 8. Real (a) and imaginary (b) parts of εc(ω) in the case of a high aspect ratio (a/b = 0.8) of
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According to Ref. [35], a more complex model should be introduced. However, the analyti-
cal results for the coefficient B in Equation (4) contain the hyper-geometric function F(α, β, γ, z)
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in R+
1 (r) and R−1 (r), i.e., R+

1 (r) = rF(α1, β1, γ1, z) and R−1 (r) = r−2F(α−1, β−1, γ−1, z), where

α±1 =

[
k± 3−

√
(k + 1)2 + 8

]
/2k, β±1 =

[
k± 3 +

√
(k + 1)2 + 8

]
/2k, γ±1 = (±3 + k)/k

and z = −hrk/(ω2 + iωΓ− 1). Thus, it is not straight to analyze the temporal dynamic
evolution of the dipole moments and study the condition of instability, especially for the
case of the metallic nanoshell where more than one plasmonic resonant mode exists. The
exact nature of this final state requires a thorough study dependent on the various model
parameters, which is not within the scope of this paper.

4. Conclusions

In summary, in this paper, giant gain-assisted resonant pulling forces are demonstrated
on a graded core-shell nanoparticle in a long-wavelength approximation. It is found that
these plasmonic enhanced pulling forces can exist in either the antibonding or bonding
modes based on the choice of the aspect ratio of the core-shell sphere. Generally, the
antibonding mode in the low aspect ratio case and the bonding mode in the high aspect
ratio would lead to the resonant pulling force, and this could be demonstrated by the
obtained equivalent permittivity of the graded core-shell sphere. The gradation of the
shell has a dramatic influence on the resonant wavelength of the pulling force and could
strengthen the resonant pulling force with the same level of gain as in the nongraded case.
Moreover, the parameter space for realizing the pulling force is broadened with a higher
gradient coefficient. The present study may give a deep insight into the mechanism of the
pulling force in gain systems and offer an effective way to obtain large negative forces for
nano-manipulation.
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